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Abstract

Microarray platforms are used increasingly to make comparative inferences through

genome-wide surveys of gene expression. While recent studies focus on describing the

evidence for natural selection using estimates of the within and between taxa muta-

tional variances, these methods do not explicitly or flexibly account for predicted non-

independence due to phylogenetic associations between measurements. In the interest

of parsing the effects of selection, we introduce a mixture model for the comparative

analysis of variation in gene expression across multiple taxa. This class of models iso-

lates the phylogenetic signal from the non-phylogenetic and the heritable signal from

the non-heritable while measuring the proper amount of correction. As a result, the

mixture model resolves outstanding differences between existing models, relates differ-

ent ways to estimate the across taxa variance and induces a likelihood ratio test for

selection. We investigate by simulation and application the feasibility and utility of

estimation of the required parameters and the power of the proposed test. We illustrate

analysis under this mixture model with a gene duplication family data set.

Keywords: gene expression, likelihood ratio test, mixture model, natural selection,

phylogenetic correction.
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Introduction

The availability of gene expression data en masse admits a genomic resolution comparative

expression experiment which measures many homologous gene transcripts simultaneously

across many taxa in the interest of determining which genes are likely to undergo selective

forces (Rifkin et al., 2003; Nuzhdin et al., 2004; Whitehead and Crawford, 2006). Through

such an experiment the investigator may determine the relative strengths of neutral drift

and natural selection forces on gene expression traits (Fay and Wittkopp, 2008) at the single

gene level while isolating whole groups of genes which act together and which might have

a common evolutionary history. These investigators propose the use of the variance within

and between taxa to determine the strength and form of hypothesized selection forces. The

expression of each gene is a single, continuously-valued trait, and, as in the usual comparative

experiment, the analysis is potentially obfuscated by the evolutionary dependence common

to the taxa. (Felsenstein, 1985; Harvey and Pagel, 1991; Martins and Garland, 1991; Purvis

and Garland, 1993; Garland et al., 2005; Rohlf, 2006)

To account for this dependence, we may examine the structured form of the phylogenetic

covariance matrix defined between taxa. The investigator typically considers the evolu-

tionary relationship evidenced by a phylogenetic tree estimated from molecular sequence

characters, but, for model based comparative analyses, we wish to translate these trees

into covariance matrices. Under the assumption of a Brownian motion process underlying

the evolution of the trait, we may construct a phylogenetic covariance from a known tree

(Felsenstein, 1988). For general phylogenetic covariance matrices, Martins and Housworth

(2002) suggested an eigenvector decomposition to identify variance with specific tree shapes.

In Corrada Bravo et al. (2008), we developed a new algorithm for estimating a tree and

its matching Brownian motion covariance directly from observed continuous-trait data. As

opposed to methods like neighbor-joining (Saitou, 1987), this method globally optimizes
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a projection criterion over all possible tree topologies using proven, efficient methods for

combinatorial optimization. For expression from gene duplication families, Gu (2004) and

Oakley et al. (2005) both re-parameterize the mutational rates on each branch of a known

tree covariance allowing it to better fit the phylogeny information. Of particular note, the

addition of an error component allows these covariances to extend to a model for the entire

experiment with a single covariance matrix (Ives et al., 2007; Felsenstein, 2008).

Practically, linear models model both dependence and error by implicitly assuming a co-

variance structure which decomposes the observed or experimental variance. Such decompo-

sitions are especially desirable since they correspond to known structures in the experiment.

Lynch (1991) defines a mixed effects model across multiple traits, capturing the phylogenetic

structure in a relationship matrix G and covariance between traits as a series of single pa-

rameter variance components. While adapting Lynch’s model for biological replicate data,

Christman et al. (1997) extend a memetic, due to Cheverud et al. (1985), where the trait

value (T) is separated into a phylogenetic component (P), a specific value (S) and a random

error component (E), namely T=P+S+E. This decomposition leads the authors to conclude

that Lynch’s model isolates heritable effects (P+S) from noise (E) but fails to separate them

from one another (P from S). Housworth et al. (2004) reformulate Lynch’s model to address

this deficiency by emphasizing a parameter which indirectly estimates the degree of phylo-

genetic signal in the sample. Guo et al. (2007) fit three types of Bayesian flavored mixed

effects models each parameterizing an increasing amount of phylogenetic signal, finding that

modeling the degree of signal present yields better models.

The importance of determining the amount of phylogenetic signal in a sample cannot

be understated. If there is a phylogenetic signal, the comparative analysis ought to find

and remove the extra variation. If no signal can be detected, then corrective methods will

overzealously bias the final estimates. Permutation tests at the level of tree estimation offer

a way of testing for the presence of a signal or not (Blomberg et al., 2003). Pagel (1999)
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introduced λ as a measure of the strength of the signal and developed a likelihood ratio

test for its presence. A continuous estimate carries more information than a dichotomous

hypothesis test and should it indicate a strong signal, we ought to apply an appropriate

phylogenetic correction.

Our goal in this paper is to integrate a framework for studying selection forces into phy-

logenetic, variance-decomposing models in a gene expression context. With respect to tests

of selection, Rifkin et al. (2003) proposed the use of the estimated mean squares to model

expected variation between and within taxa. In this framework, evidence of deviation from

expectation under neutrality is evidence of the effect of natural selection. Nuzhdin et al.

(2004) revised this idea using nested random effects in an ANOVA model and proposing the

numerator and denominator of the standard, uncorrected F-ratio to be estimates of the be-

tween and within taxa variance. In particular, they give forms of the tests which distinguish

between purifying and adaptive selection. Whitehead and Crawford (2006) continue the use

of plain mean square estimates, adding a test for stabilizing selection.

In this article, we present a mixture model for the covariance in order to resolve predeces-

sor models’ inability to separate phylogenetic effects from non-phylogenetic ones clearly and

to resolve the exclusion of clear consideration for the structured dependence in the testing

frameworks of Nuzhdin et al. (2004) and Whitehead and Crawford (2006). In such a model,

the necessary degree of correction is freely estimated so the investigator may draw inferences

on parameters un-confounded by dependence. We discuss the convergence of existing models

by demonstrating the relationships between their assumptions on the covariance; the mixture

formulation covers a continuum of models set between independent contrasts and the class

of phylogenetic mixed effects models. We describe the main assumptions and implications of

the model from the practical analysis point of view, illustrating its effect with a simulation

study and demonstrating its use in the study of gene family evolution in Saccharomyces

cerevisiae (Oakley et al., 2005).
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Methods

We are interested in modeling the variance of gene expression measurements, Ygr = (Ygr1, . . . , YgrT ),

which are made across the T taxa of a known phylogenetic tree for g = 1, . . . , G many genes

with r = 1, . . . , n many microarray replicates. Through a Brownian motion process (Felsen-

stein, 1985), a rooted, bifurcating, phylogenetic tree has a well understood translation into

the covariance matrix of a multivariate normal random vector.

Pagel (1999) and Freckleton et al. (2002) introduce the parameter λ as a measure of

the strength of phylogenetic correlation, or the “loss of history,” which induces a covariance

matrix V(λ). In defining V(λ) to be a phylogenetic covariance matrix whose off-diagonals

are multiplied by λ, the authors implicitly assume that opposing the phylogenetic structure

V0 is a specific, non-phylogenetic structure Λ0:

V(λ) = [λJT + (1− λ)IT ] ◦ V0

= λV0 + (1− λ)Λ0. (1)

Here, JT is a T × T matrix of ones, IT is the identity matrix of the same dimension and ◦

is the element-wise (Hadamard) product. We define Λ0 to be the diagonal matrix with the

same main diagonal as V0 and assume that 0 ≤ λ ≤ 1.

Adding the experimental error to this variance we might model the variability of this set

of measurements as

V ar(Ygr) = τ 2aλV0 + τ 2a(1− λ)Λ0 + σ2IT (2)

=
τ 2λ

τ 2 + σ2
a(τ 2 + σ2)V0 +

τ 2(1− λ)

τ 2 + σ2
a(τ 2 + σ2)Λ0 +

σ2

τ 2 + σ2
(τ 2 + σ2)IT (3)

= p1(κ1V0) + p2(κ1Λ0) + p3(κ2IT ), (4)
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where τ 2 is the rate of variation in the expression trait across taxa, σ2 is the rate of varia-

tion within taxa, a is a nuisance scale factor accounting for the difference in units between

sequence based trees (typically, the expected number of sequence substitutions) and the log

ratio scale of the gene expression measurements. This point is discussed further in the fol-

lowing sections. The proportions p1, p2, p3 are constrained to sum to one and κ1 and κ2 are

measurements of total variation on the sequence scale and the expression scale.

This variance has two important interpretations. The relative rate interpretation (Equa-

tion 2) expresses the variance in terms of rates of mutation so that sequence based models

and expression based models of evolution may be compared. The second, mixture model in-

terpretation (Equation 4) is that p1, p2, and p3 represent the proportion of the observed vari-

ance attributable to certain archetypical signals: the phylogenetic history, non-phylogenetic

variation and within-taxa variation respectively. One should note that this is precisely the

desired decomposition of the variance into T = P + S + E components from Christman

et al. (1997).

Under this second interpretation, formalized in the following section, these parameters

are estimable and evidence for selection forces can be evaluated. It may appear that a density

with this mixture covariance is not identifiable because different sets of (p,κ) yield the same

marginal covariance. In the mixture model, those densities are not the same; that is two

identifiable mixtures may produce the same marginal covariance.
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A Phylogenetic Mixture Model

We suppose that Ygr follows a mixture distribution with variance Equation 4 and some mean

vector µ. The mixture model probability density function of Ygr is given by

Pr(Ygr; p,µ,κ,V0,Λ0, I0) =

p1f(Ygr | µ, κ1V0) + p2f(Ygr | µ, κ1Λ0) + p3f(Ygr | µ, κ2I0). (5)

where f(y | µ,Σ) is a normal density with mean µ and covariance Σ and p1 + p2 + p3 = 1,

κ1, κ2 > 0. This mixture model supposes that the observed variation has three sources,

the correlated, phylogenetic signal; the uncorrelated, non-phylogenetic signal; and residual,

experimental variance each represented by the three distributions.

These component distributions may be interpreted as particular archetypical scenarios.

If the data show phylogenetic signal (a particular type of non-independence) then we believe

that they come from the f(Ygr | µ, κ1V0) component. If the data were independent but not

identically distributed (each has is own specific variance) then f(Ygr | µ, κ1Λ0) is the correct

model. If the taxa were truly independent, identically distributed noise then f(Ygr | µ, κ2I0)

takes precedence. Mixing proportions p1, p2, p3 represent the relative strengths or the

probabilities of each component.

Since V0 and Λ0 are sequence based estimates they require a different scale (κ1) than the

expression log ratio based error term (κ2). Recall that V0 is a tree structured covariance, Λ0 is

a diagonal matrix with the same diagonal entries (same specific variance but no covariance),

and we typically assume that I0 is the identity matrix of size T .

This model can be fit using the Expectation Maximization algorithm (Dempster et al.,

1977) outlined in the appendix, where the strategy is to find the maximum likelihood es-

timates (p,κ) and to transform them into (τ 2, σ2, λ, a). Some technical details (Everitt

7



and Hand, 1981) require that V0 and Λ0 are identifiable, that the off diagonal entries of V0

are not too small or that V0 is a reasonable tree estimate, a case readily checked by the

investigator.

Testing Selection Hypotheses

We consider the evidence in favor of natural selection forces characterized by the variance

between and within taxa (Rifkin et al., 2003) and the ratio between them, the F-ratio.

Nuzhdin et al. (2004) identify genes with both variance estimates low as undergoing stabiliz-

ing selection; genes with low F-ratios may be undergoing balancing selection; and genes with

large F-ratios may undergo adaptive divergence. Whitehead and Crawford (2006) add the

constraint that genes undergoing adaptive divergence ought to favor a particular direction,

i.e., correlate with an additional environmental covariate.

The variance estimates in these studies vary: the first article uses the mean squared error

for the variance within taxa and the mutational variance scaled by time for the variance

between taxa. The second uses the variance of a nesting factor (species) and the nested

factor (line). The last uses the variance among the population means and the variance

within populations. Using these ANOVA sums of squares implicitly assumes the following

variances,

V ar(Ygr) = σ2
errorIT (Rifkin et al. 2003) (6)

= σ2
speciesIT + σ2

line (species)IT (Nuzhdin et al. 2004) (7)

= σ2
pop.IT + σ2

individual (pop.)IT (Whitehead and Crawford 2006) (8)

Compare these variances with Equation 2 which uses a phylogenetic tree covariance, V(λ),

in place of the uncorrelated IT . While these studies do consider phylogenetic corrections
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at other points in their analysis, their ANOVA mean square estimates for the variances are

uncorrected for possible phylogenetic dependence (they use diagonal IT ).

In our mixture parametrization, τ 2 is the gene specific between taxa variance (numerator

of the F-ratio) and σ2 is the gene specific within taxa variance (denominator of the F-ratio).

Since σ2 is interpreted as the rate of mutation in the expression trait, the relative sizes of

τ 2 and σ2 imply the following different evolutionary scenarios. When τ 2 = σ2, the signal is

consistent with a Brownian motion process evolving along the given tree, representing the

neutral drift null hypothesis. If τ 2 < σ2, there is less expression divergence than predicted

by sequence divergence suggesting that the gene may be undergoing balancing selection.

Inversely, τ 2 > σ2 favors directional selection since the observed divergence is larger than

expectation. We relax the requirement that the residuals must also show correlation with

environmental covariates, that is that they show a particular direction as well. If τ 2 and σ2

are both “small” then we conclude that there is evidence of purifying or stabilizing selection.

Because it is not clear what constitutes an unusually small variance, we do not consider

testing stabilizing selection hypotheses at this time (see also the discussion at the end of the

article).

For relative rate type models, a neutral model variance supposes that the divergence

given by a sequence based tree directly predicts the divergence in the expression trait up to

a mutation rate constant, that is it assumes that σ2 = τ 2 or that

V ar(Ygr) = 2σ2 (p1aV0 + p2aΛ0 + p3IT ) , (9)

where p1 = λ/2, p2 = (1− λ)/2, p3 = 1/2. This variance may be used as the null model for

a likelihood ratio test (LRT) which compares the log likelihoods of the model fit under the

general mixture variance (Equation 4) and the model under the neutral variance (Hulsenbeck

and Rannala, 1997). Since the within and between taxa variance estimates can take several
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possible values, we can test for evidence of each of these types of selection using a single

omnibus test. If the test is not significant we cannot reject the neutral drift model, but if it

is significant we must look at the estimates of τ 2 and σ2 to determine the type of selection

evidenced.

To conduct the test, compare the LRT statistic versus its asymptotic distribution, where

ll(σ2, τ 2, λ) is the log likelihood of the unrestricted model and ll0(σ
2, λ) is the log likelihood

of the model when σ2 = τ 2:

LR = −2
{
ll(σ̂2, τ̂ 2, λ̂)− ll0(σ̃2, λ̃)

}
∼ χ2

1, (10)

for unrestricted maximum likelihood estimates (σ̂2, τ̂ 2, λ̂) and estimates (σ̃2, λ̃) under the

null model. An algorithm for computing both likelihoods is given in the appendix.

Results

Simulation: Need for corrections

While it is well accepted that phylogenetic corrections are necessary in comparative studies,

we construct the following simulation study to illustrate the cost of failing to correct a

phylogenetic signal on the statistical evolutionary hypotheses posited above. Suppose that

V0 is the following tree structured matrix with corresponding tree in Figure 1, that is the

main diagonal entries are the specific variances for each taxa (total branch length) and the

off diagonals are the covariances between taxa (shared branch lengths). For example, with

reference to the branch lengths in Figure 1, V ar(Taxa A) = 1 + 2 + 1 + 1 = 5 = [V0]11;
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V ar(Taxa B) = 1+2+1+3 = 7 = [V0]22; and Cov(Taxa A,Taxa B) = 1+2+1 = 4 = [V0]12.

V0 =



5 4 3 1 0

4 7 3 1 0

3 3 7 1 0

1 1 1 5 0

0 0 0 0 8


.

[Figure 1 about here.]

Under the mixture model proposed above, we define the selection hypotheses in the table

below. We construct an artificial array of 350 genes (50 genes undergo each type of selection)

and an artificial experiment where each gene is measured 500 times (5 taxa in V0 above, 100

individuals). λ is generated by sampling a Uniform(0,1) random variable once for each of

the 350 genes. Each gene has replicates drawn from one of three sources with probabilities

p1 = τ2λ
τ2+σ2 , p2 = τ2(1−λ)

τ2+σ2 , p3 = σ2

τ2+σ2 . The details of the data generation are given below.

Xgr ∼ Multinomial (p1, p2, p3) (11)

Ygr | {Xgr = 1} ∼ N
(
0, (τ 2 + σ2)V0

)
(12)

Ygr | {Xgr = 2} ∼ N
(
0, (τ 2 + σ2)Λ0

)
(13)

Ygr | {Xgr = 3} ∼ N
(
0, (τ 2 + σ2)I0

)
(14)

[Table 1 about here.]

Note that we choose a large number of individuals (arrays) to illustrate this problem clearly;

if the problem exists for a large number of individuals then it ought to exist for a small
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number of individuals. Also, all the methods presented operate gene by gene so that these

conclusions scale to any sized experiment.

We are most interested in considering the adequacy of methods based on ANOVA sums

of squares. For each gene g, the mean square approach generates estimates from the usual

one-way ANOVA table and considers significant effects using an F-ratio test. Since there are

T = 5 rows in V0, and we select n = 100 replicates, the proper reference for this test is the

F-distribution with 4 and 495 degrees of freedom.

The resulting simulated data is analyzed in Figure 2 which plots the logged values of τ 2

and σ2 under the scenarios tabled above. The seven versions of the variance based hypotheses

are color coded: the black points represent a neutral drift null scenario, the two shades of

blue are genes undergoing strong and weak directional selection; two shades of red, balancing

selection and two shades of green, stabilizing selection. Two grey lines indicate the level 0.05

two-sided thresholds for the F-ratio test. Points above the upper threshold show evidence of

directional selection. Points below the lower threshold show evidence of balancing selection.

We do not implement the corresponding stabilizing selection tests.

[Figure 2 about here.]

The top two panels illustrate the same data when V0 captures the true correlation between

taxa. The true values of τ 2 and σ2 are the same for every gene in the same group, so the

spread of points represents sampling variability (and to some extent the effect of λ). The

plot on the left (2a) shows the ANOVA estimates and on the right (2b) shows the estimates

from the mixture model. Intuitively, both variance estimation procedures partition the total

observed variance into within and between taxa parts. Since we assume the mixture model

is the true generating model, we can see that the ANOVA estimates tend to over estimate

σ2 and make up for the excess by increasing the variance in the estimate of τ 2. In a joint

bias-variance tradeoff, the ANOVA estimate trades low variance in the σ2 estimate for bias
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and higher overall error in the τ 2 estimate.

The left hand plots (Panels 2a and 2c) employ the mean square estimates for the be-

tween and within taxa variances. In Panel 2a, since all the groups of genes in each class of

hypotheses are centered about the identity line, it is clear that choosing genes using their

F-ratio is not specific for the directional alternative or the balancing alternative; some genes

from each group fall above or below the corresponding threshold. This pattern holds even

in the lower left plot (2c) where we assume the data really are independent and identically

distributed.

In addition to problems with the hypothesis tests, the estimates of σ2 and τ 2 appear

over-estimated when we do not account for the dependence structure. In Figure 2a and

2c, the neutral drift cluster and the stabilizing selection clusters (which are and should be

centered on the identity line), appear biased much farther up the identity line than they

should.

Contrast these observations with the estimates from with the mixture model (Panel 2b).

The plot shows what we would ideally like to see: all the genes clearly separate based on the

true values of their parameters. The effects are clearly separated implying that there are a

sufficient number of replicates to identify all the effects. Note that this scenario represents

artificially ideal conditions: a large number of observations, good separation, each gene

class has the same true parameter. The point is that the mean square estimates do not

behave as expected under this optimal setting and we would not expect them to do so under

more realistic experimental conditions. In practice, we might expect each gene to have a

different set of parameters (τ 2 and σ2) and the groups to overlap significantly. Furthermore,

the proportion of genes undergoing natural selection may alter the plot significantly, the

plot will depend on the proportion of genes under each type of selection and their relative

strengths.
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Simulation: Calibration

As we discussed in the methods section, the mixture model relies on a V0 matrix that captures

the phylogenetic relationship between the taxa. Additionally, tests of selection hypotheses

require a model that preserves the relationship between τ 2 and σ2. Since estimates of the

phylogenetic tree are typically obtained from sequence information (or similar independent

sources), there is no reason to believe that it is of the appropriate scale for expression level

data. If the given covariance structure is scaled too small then estimates of τ 2 will be

artificially large; likewise if the given covariance is too large, τ 2 will be too small. The

mixture model variance includes the parameter a to account for this scale (Equation 2).

We need to emphasize that the mixture assumption, made in the methods section, is

necessary to obtain an identifiable estimate of a. Had we assumed a marginal mixed effects

model (Lynch, 1991; Martins and Hansen, 1997; Guo et al., 2007) with the same variance

(Equation 2), the scale parameter and the variance would only be estimable as aτ 2. Prac-

tically, the investigator would have to assume some value of a in order to conduct selection

tests, but this would create an uncorrectable bias in the testing framework.

Figure 3 summarizes the scaling problem and this correction using the same set of seven

hypotheses from the simulation section. For these plots, we assume that we know V0, the

same as in the last section, but that data are generated from scaled versions of V0. In the

left panels (3a and 3d), the true V1/100 = V0/100 is 100 times smaller than the given V0.

In the middle (3b and 3e), the scale is correct. In the right panels (3c and 3f), the true

V100 = 100V0 is 100 times larger than the given V0.

The top row of Figure 3 demonstrates the effect of the wrong sized covariance by fitting

the mixture with V0 given. Notice that estimates are drawn uniformly downwards in Panel

3a but pushed upwards in panel 3c. For reference panel 3b is the same plot from Figure 2b.

Fewer points appear in the latter plot since estimates may be unobtainable when this scaling
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is too far off. The bottom row of Figure 3 shows the effect of estimating nuisance scale a for

large and small true values.

[Figure 3 about here.]

It makes sense that the procedure fails for a very small, since this case corresponds to the

scenario where the heritable component is weak, i.e., there is very little signal. At present,

this case can be identified by observing an unusually large proportion of genes for which

λ̂ = 0 since very small a forces λ to shrink even if the signal is present.

Simulation: Tests

Based on the data presented in the next section, we choose more realistic strong and weak

presentations of balancing and directional selection forces for studying the likelihood ratio

test. As we mentioned in the methods section, each hypothesis depends on the ratio τ2
/σ2

assuming that τ 2 = σ2 represents the null hypothesis. We set n = 5, 10 for small sample

microarray studies and n = 15, 30, 50 to check that the asymptotic distribution is correctly

chosen. For each hypothesis, we draw a simulation data set by selecting three nuisance

parameters (σ2, a, λ),

σ2 ∼ χ2
1, (15)

a = a′|a′ > 1, a′ ∼ χ2
1 (16)

λ ∼ Uniform(0, 1), (17)

and computing the LRT. We repeat this procedure 10,000 times, tabulating the proportion

of tests with p-values less than 0.05 in Table 2. Repeating the procedure 50 times allows us

to compute the simulation error (in all cases < 0.006). Note that we consider a > 1 since

the calibration simulation indicates that when a < 1 the available signal is hard to estimate.
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[Table 2 about here.]

While the likelihood ratio test has reasonable power only at moderate sample sizes (n =

15), it should be noted that it is an omnibus test in the sense that it tests for any deviation

from σ2 = τ 2. It is likely that a more powerful test can be built when it is of interest to test

for either balancing or directional selection. One could also conduct these tests separately

(as in Whitehead and Crawford (2006)), but that procedure would raise concerns about

multiple testing.

Housworth et al. (2004) observed that the small number of replicates available in compar-

ative experiments may not reach the statistical power necessary to make strong inferences.

For gene expression data, we observe elsewhere (Eng et al., 2008) that this sort of per gene

analysis may also suffer from low power, but propose that clustering together genes with

similar a covariance structure may generate additional power. That is, if we believe that

several genes evolved in concert and are willing to draw selection inferences on a whole group

(i.e., a each member of a group undergoes the same selection force versus a single gene under

a unique force) then we may employ genes as identical replicates in order to increase the

power of the test. For example, if we have n = 5 replicates, then the powers tabulated are

quite poor. If we are able to suppose that g = 2 genes (or experiments in the example in the

next section) have the same covariance structure, then there are effectively n = 5 × 2 = 10

available replicates so the power nearly triples for the balancing and stabilizing selection

hypotheses.

Gene Family Data Example

The application of phylogenetic techniques to gene duplication families in the yeast Sac-

charomyces cerevisiae supposes that the members of these families have sequences that are

linked to a common ancestor sequence, the target of a duplication event, and that the ex-
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pression level of these descendent sequences is itself a trait subject to evolutionary forces

(Thornton and DeSalle, 2000; Gu, 2004; Oakley et al., 2005). In such an analysis, the mem-

bers of these families constitute the taxa of interest and the models developed in Gu (2004)

and Oakley et al. (2005) test how well a sequence derived covariance matrix matches the

predicted history of the expression trait. Since there is good reason to expect a phylogenetic

structure between the genes, we will re-analyze the data set presented in Oakley et al. (2005)

to illustrate the mixture model.

Using Gu’s procedure (2004) for searching the proteome to identify 10 large gene fami-

lies (between 7 and 18 genes each), Oakley et al. (2005) process expression arrays from 19

experiments from the Stanford Microarray Database (http://genome-www5.stanford.edu)

and compute maximum likelihood phylogenetic trees for each family. Each experiment rep-

resents a different experimental condition, so we may draw inferences about the evidence of

selection under particular conditions. There are 19 experiments each of which contains some

of the 10 gene families for a total of 169 family specific measurements. Each experiment is

a separate dataset where g corresponds to a gene family, t a single transcript in the gene

family and r an array in the experiment. The data are analyzed are available from the

supplementary materials from Oakley et al. (2005) (http://www.lifesci.ucsb.edu/eemb/

labs/oakley/pubs/MBE2005data/).

First consider the application of an ANOVA model which assumes that the residuals

from its fit will be independent and identically distributed (iid). For each gene family in

Table 3, the maximum residual correlation between all pairs of taxa over all replicates in

all experiments demonstrates that the residuals are frequently not independent (8 out of 10

families have correlation greater than 0.50 in at least one pair of taxa) and Levene’s test for

the homogeneity of variances rejects the identically distributed assumption for 6 of the 10

families. These observations reinforce the need for an adjustment to account for the violation

of the iid assumptions.

17



[Table 3 about here.]

The same 10 gene families appear in Table 4 which lists the number of experiments in

which the gene family was measured, the number of these experiments which show some

evidence of phylogenetic signal (λ > .5) and the number of experiments which may had

significant selection likelihood ratio tests at level 0.05 split into balancing and directional

selection. Tables of the experiments with significant tests and their p-values are available in

the supplementary materials.

[Table 4 about here.]

The plot in Figure 4 shows the ANOVA estimates and the mixture model corrected

estimates plotted on log scale (τ 2 is between taxa and σ2 is within taxa). We have enlarged

and colored points with a significant LRT at level 0.05 to illustrate their positions on these

plots. As in the simulation plots, points about the identity line favor neutral expectations

and points significantly distant from the line favor selection hypotheses. Not every extreme

point is consistently highlighted because each test has a different sample size (number of

genes in the family).

The ANOVA estimates appear to have a strong trend where τ 2 is smaller than expected,

reflecting the tendency of the ANOVA estimate to favor σ2 at the cost of shrinking τ 2 to

zero if necessary (we saw this same pattern in Figure 2). The mixture estimates are more in

line with neutral expectations.

The third panel (Figure 4c) subtracts the estimated common variance estimate under

the neutral model; this is the scale that the LRT considers for significant deviations from

the common variance. We see that most of the points with non-significant tests appear near

the origin (the unrestricted maximum likelihood estimates are close to the neutral variance

estimate) and points further from the origin have significant test statistics.
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[Figure 4 about here.]

Concordant with the finding in Oakley et al. (2005) that most families have a “non-

phylogenetic” model in different experimental conditions (117 of 152), a large proportion of

experiments corrected with the mixture model show weak phylogenetic signal, λ < .5 (115

of 169). This raises some questions about how to interpret the results since Whitehead and

Crawford (2006) only defined selection scenarios for τ 2 and σ2 supposing that λ = 1. We do

find, however that the Hexose Transport gene family appears to show strong phylogenetic

signal in 8 of 14 experiments versus 12 of 14 in Oakley et al.’s analysis (2005). This family

is also strongly represented in the balancing selection list (5 of 7 significant experiments).

As an illustration for combining experiments, the family of heat shock proteins has ten

genes and the data sets examined in Oakley et al. (2005) contain two separate heat shock

related experiments with n = 2 and n = 7 arrays each. When analyzed separately, neither

experiment has a significant LRT. But, if we suppose that the experiments may be treated as

replicates, there are n = 9 arrays available and the LRT is significant at level 0.05 (p=0.037)

with ratio 0.286 indicating balancing selection.

Discussion

We have investigated the estimation of the variance of expression traits within and between

the tips of a given phylogenetic tree, demonstrating a problem with current analyses and

proposing a solution. The model we developed anticipates the use of microarray platforms

to make general inferences about the strength of evidence for natural selection forces in

expression traits. As described previously, mutational variability/mean square type selection

inference relies on estimating τ 2 and σ2. We have paid less attention to the frameworks put

forward in Gu (2004) and Oakley et al. (2005) which define natural selection on the basis

of a likely history parameterized in the form of V0. This model is also different from the
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Bayesian type Guo et al. (2007) model which allows one of some, all, or no phylogenetic

signal; we emphasize the transformative role of λ, τ 2 and σ2 in the sense that they also find

a tree-structured covariance matrix consistent with observed data. Further, likelihood ratio

based hypothesis testing is straightforward with these parameters.

Since this model only considers likelihood based decompositions of the variance, we can

augment it with the application of standard statistical linear model theory to accommodate

much more complicated experiments. In time course expression experiments, this form of lin-

ear model may account for the correlation over time (Guo et al., 2007) and also approximate

gene associations by clustering genes with similar mean and variance effects together (Eng

et al., 2008). For comparison, Oakley et al. (2005) corrected for correlated adjacent time

points by using the first order differences, while Gu (2004) found the effect negligible. It is not

unbelievable that more complex factors like expression under various conditions/treatments

across taxa will be of interest and the model we have presented may serve as a useful com-

ponent in that analysis.

Supplementary Material

Supplementary file 1 including tables of significant gene families from the example analysis

are available at Molecular Biology and Evolution online (http://mbe.oxfordjournals.org/).
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Eng, K. H., S. Keleş, and G. Wahba. 2008. A Linear Mixed Effects Clustering Model for

Multi-Species Time Course Gene Expression Data. Technical Report 1143, University Of

Wisconsin-Madison, Department of Statistics.

Everitt, B. S., and D. J. Hand. 1981. Finite mixture distributions. Chapman and Hall.

Fay, J. C., and P. J. Wittkopp. 2008. Evaluating the role of natural selection in the evolution

of gene regulation. Heredity 100:191–199.

Felsenstein, J. 1985. Phylogenies and the comparative method. The American Naturalist

125:1–15.

21



———. 1988. Phylogenies and the Quantitative Characters. Annual Review of Ecological

Systems 19:447–471.

———. 2008. Comparative Methods with Sampling Error and Within-Species Variation:

Contrasts Revisited and Revised. The American Naturalist 171:713–725.

Freckleton, R. P., P. H. Harvey, and M. Pagel. 2002. Phylogenetic analysis and comparative

data: a test and review of evidence. The American Naturalist 160:712–726.

Garland, T., Jr., A. F. Bennett, and E. L. Rezende. 2005. Phylogenetic approaches in

comparative phsiology. Journal of Experimental Biology 208:3015–3035.

Gu, X. 2004. Statistical framework for phylogenomic analysis of gene family expression

profiles. Genetics 167:531–542.

Guo, H., R. E. Weiss, X. Gu, and M. Suchard. 2007. Time squared: repeated measures on

phylogenies. Molecular Biology and Evolution 24:352–362.

Harvey, P. H., and M. D. Pagel. 1991. The Comparative Method in Evolutionary Biology.

Oxford University Press.

Housworth, E. A., E. P. Martins, and M. Lynch. 2004. The Phylogenetic Mixed Model. The

American Naturalist 163:84–96.

Hulsenbeck, J. P., and B. Rannala. 1997. Phylogenetic methods come of age: testing hy-

potheses in an evolutionary context. Science 276:227–232.

Ives, A. R., P. E. Midford, and T. Garland, Jr. 2007. Within-Species Variation and Measur-

ment Error in Phylogenetic Comparative Methods. Systematic Biology 56:252–270.

Lynch, M. 1991. Methods for the analysis of comparative data in evolutionary biology.

Evolution 45:1065–1080.

22



Martins, E. P., and T. Garland, Jr. 1991. Phylogenetic Analysies of the Correlated Evolution

of Continous Characters: A Simulation Study. Evolution 45:534–557.

Martins, E. P., and T. F. Hansen. 1997. Phylogenies and the comparative method: a general

approach to incorporating phylogenetic information into the analysis of interspecific data.

The American Naturalist 149:646–667.

Martins, E. P., and E. A. Housworth. 2002. Phylogeny shape and the phylogenetic compar-

ative method. Systematic Biology 51:873–880.

Nuzhdin, S. V., M. L. Wayne, K. Harmon, and L. M. McIntyre. 2004. Common pattern of

evolution of gene expression level and protein sequence in Drosophila. Molecular Biology

and Evolution 21:1308–1317.

Oakley, T. H., Z. Gu, E. Abouheif, N. H. Patel, and W. H. Li. 2005. Com-

parative methods for the analysis of gene-expression evolution: an example us-

ing yeast functional genomic data. Molecular Biology and Evolution 22:40–50.

http://www.lifesci.ucsb.edu/eemb/labs/oakley/pubs/MBE2005data/.

Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877–884.

Purvis, A., and T. Garland, Jr. 1993. Polytomies in Comparative Analyses of Continuous

Characters. Systematic Biology 42:596–575.

Rifkin, S. A., J. Kim, and K. P. White. 2003. Evolution of gene expression in the Drosophila

melanogaster subgroup. Nature Genetics 33:138–144.

Rohlf, F. J. 2006. A Comment on Phylogenetic Correction. Evolution 60:1509–1515.

Saitou, N. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic

trees. Molecular Biology and Evolution 4:406–425.

23



Thornton, J. W., and R. DeSalle. 2000. Gene Family Evolution and Homology: Genomics

Meets Phylogenetics. Annual Review of Genomics and Human Genetics 1:41–73.

Whitehead, A., and D. L. Crawford. 2006. Neutral and adaptive variation in gene expression.

Proceedings of the National Academy of Sciences 103:5425–5430.

Appendix

EM Algorithm for V0 and Λ0 known up to scale a for a single gene. For all

replicates r = 1, . . . , R of a single gene, let C be the class variable taking values 1,2 and

3 for components N (µ, κ1V0), N (µ, κ1Λ0), and N (µ, κ2IT ) respectively. Suppose T is the

rank of V0 (the number of taxa). The algorithm stops when the observed data log-likelihood

(Equation 5) increases by less than 0.001. Since the estimate µ does not depend on C, its

estimate is µ̂ = 1
R

∑R
r=1(Z

′Z)−1Z ′Yr for design matrix Z (e.g., for balanced replicates these

are the group means).

1. E-Step

Ĉri = E(Cr = i|Yr, µ̂, κ̂1
(t), κ̂2

(t), p̂
(t)
i ),

=
P
(
Yr − µ̂|Cr = i, κ̂1

(t)κ̂2
(t)
)
p̂

(t)
i∑3

i′=1 P
(
Yr − µ̂|Cr = i′, κ̂1

(t), κ̂
(t)
2

)
p̂

(t)
i′

.
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2. M-step

p̂
(t+1)
i =

∑
r Ĉri
R

,

κ̂
(t+1)
1 =

1
T

∑R
r=1

[
Ĉr1(Yr − µ̂)′V−1

0 (Yr − µ̂) + Ĉr2(Yr − µ̂)′Λ−1
0 (Yr − µ̂)

]
∑R

r=1 Ĉr1 + Ĉr2
,

κ̂
(t+1)
2 =

1
T

∑R
r=1

[
Ĉr3(Yr − µ̂)′(Yr − µ̂)

]
∑R

r=1 Ĉr3
.

The required estimates from this algorithm are converted back to the original parametriza-

tion:

τ̂ 2 = κ̂2(1− p̂3),

σ̂2 = κ̂2(p̂3),

λ̂ =
p̂1

1− p̂3

,

â =
κ̂1

κ̂2

.

Null Model EM Algorithm for Likelihood Ratio Test. The previous EM estimates

(τ 2, σ2, λ, a) under the unrestricted, full model, to compute the LRT we compare the log-

likelihood of that model with the log-likelihood of a restricted model (neutral drift). Suppos-

ing that τ 2 = σ2, the mixing proportions become (p1, p2, p3) =
(
λ
2
, 1−λ

2
, 1

2

)
. The component

densities are components N (µ, κ1V0), N (µ, κ1Λ0), and N (µ, κ2IT ) where τ 2 = σ2 = κ2/2

and a = κ1/κ2.
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1. E-Step

Ĉri = E(Cr = i|Yr, µ̂, κ̂1
(t), κ̂2

(t), p̂
(t)
i ),

=
P
(
Yr − µ̂|Cr = i, κ̂1

(t)κ̂2
(t)
)
p̂

(t)
i∑3

i′=1 P
(
Yr − µ̂|Cr = i′, κ̂1

(t), κ̂
(t)
2

)
p̂

(t)
i′

.

2. M-step

p̂
(t+1)
1 =

∑
r Ĉr1

2
∑

r Ĉr1 + Ĉr2
,

p̂
(t+1)
2 =

∑
r Ĉr2

2
∑

r Ĉr1 + Ĉr2
,

κ̂
(t+1)
1 =

1
T

∑R
r=1

[
Ĉr1(Yr − µ̂)′V−1

0 (Yr − µ̂) + Ĉr2(Yr − µ̂)′Λ−1
0 (Yr − µ̂)

]
∑R

r=1 Ĉr1 + Ĉr2
,

κ̂
(t+1)
2 =

1
T

∑R
r=1

[
Ĉr3(Yr − µ̂)′(Yr − µ̂)

]
∑R

r=1 Ĉr3
.

Again, we obtain the required estimates by converting back to the original parametriza-

tion:

σ̂2 = κ̂2/2,

λ̂ = 2p̂1,

â =
κ̂1

κ̂2

.
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Figure 1: Example tree for simulation study.
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Figure 2: Simulation Example. Simulation under ideal settings for selection hypotheses
defined in the text with a tree-structured covariance (V0) and a non-phylogenetic covariance
(I0) shows that the ANOVA estimators do not discriminate between the hypotheses. The grey
lines identify tests of selection: the corresponding two-sided F-test thresholds at α = 0.05 for
F4,95. Panel (a) shows the ANOVA estimates of data generated under V0; Panel (b) shows
the mixture model estimates under V0 and Panel (c) illustrates that the ANOVA estimates
are inflated even under independent identically distributed characters (the primary ANOVA
assumption).
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(b) True Model V(1), a not estimated

log(Within Taxa)
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(c) True Model V(100), a not estimated

log(Within Taxa)
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(d) True Model V(1/100), a estimated

log(Within Taxa)
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(e) True Model V(1), a estimated

log(Within Taxa)
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(f) True Model V(100), a estimated

log(Within Taxa)
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Figure 3: Calibration Problem/Solution. Estimation of σ2 and τ 2 is sensitive to mis-
specifying the scale of the phylogenetic covariance matrix, a. When a is not accounted
for (Panels a, b, c), estimates are shrunk for a small (Panel a). When a is big, estimates are
too big (Panel c). The ideal pattern appears in the top center (Panel b). Simultaneously
estimating a fixes the problem (Panels e, f) for all but the smallest case (Panel d).
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(a) ANOVA Estimates
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(b) Mixture Corrected Estimates
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(c) Centered Mixture Estimates
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Figure 4: ANOVA and mixture model estimates for data from Oakley et al. (2005). Uncor-
rected ANOVA estimates (a) show a marked trend towards small between taxa variances
(τ 2) while corrected estimates (b) fit more neutral expectation. The effect of the common
variance in the neutral model is removed in panel (c). The ANOVA estimates show the same
low variance pattern in the σ2 estimate as in Figure 2. Ten extreme points are omitted from
panels (b,c) to make the scales comparable. Points with significant tests at level 0.05 are
enlarged and colored red for balancing and blue for directional selection evidence.
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Hypothesis τ 2 σ2 Number Plot Color
of Genes

Neutral Drift 1.00 1.00 50 black
Balancing Selection, Weak 1.00 5.00 50 light red
Balancing Selection, Strong 1.00 10.00 50 dark red
Directional Selection, Weak 5.00 1.00 50 light blue
Directional Selection, Strong 10.00 1.00 50 dark blue
Stabilizing Selection, Weak 0.10 0.10 50 light green
Stabilizing Selection, Strong 0.05 0.05 50 dark green

350 genes total

Table 1: Simulation Design.
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Table 2: Simulated Power for Likelihood Ratio Test. The Neutral Drift null hypothesis
row corresponds to the level of the test. The four selection hypotheses rows are estimated
statistical power at level 0.05. All powers were estimated with 10,000 replicates and 50
simulation replicates (simulation errors < 0.006).

Selection Estimated Power

Hypothesis τ2
/σ2 n = 5 n = 10 n = 15 n = 30 n = 50

Neutral Drift (Null) 1/1 0.017 0.034 0.038 0.049 0.050
Balancing, Weak 1/2 0.006 0.079 0.178 0.374 0.573
Balancing, Strong 1/5 0.002 0.223 0.517 0.884 0.981
Directional, Weak 2/1 0.034 0.091 0.121 0.336 0.549
Directional, Strong 5/1 0.043 0.167 0.278 0.648 0.845
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Gene Family Max residual Levene’s Test
correlation (p-value)

ABC Transporters 0.40 0.0093
ADP Ribosylation 0.56 0.0751
Alpha Glucosidases 0.71 0.1139
DUP 0.84 0.3998
GTP Binding 0.51 <0.0001
HSP DnaK 0.78 <0.0001
Hexose Transport 0.93 <0.0001
Kinases 0.43 0.0001
Permeases 0.60 <0.0001
Putative Helicases 0.75 0.0626

Table 3: Diagnostics for ANOVA residuals. The ANOVA method for estimating the muta-
tional variances assumes that the residuals will be independent and identically distributed.
The maximum residual correlation between pairs of taxa over all replicates in all experiments
demonstrates that the residuals are frequently not independent (8 out of 10 have correla-
tion greater than 0.50) and Levene’s test for the homogeneity of variances shows that the
identically distributed assumption holds for only 4 of the 10 families.
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Gene Family Number of λ > .5 Tests at level 0.05
(Number of Taxa) Experiments Directional Balancing
ABC Transporters (8) 17 4 1 0
ADP Ribosylation (7) 17 7 0 0
Alpha Glucosidases (6) 19 4 1 0
DUP (10) 13 8 0 0
GTP Binding (11) 17 7 0 1
HSP DnaK (10) 16 1 0 1
Hexose Transport (18) 14 8 0 7
Kinases (7) 16 8 2 1
Permeases (17) 12 5 0 1
Putative Helicases (11) 11 2 0 4

Table 4: Yeast Gene Family Data. Gene family data analyzed under the mixture model. A
small number of experiments show strong phylogenetic signal (λ > .5), while the number of
experiments with level 0.05 significant ratios τ 2/σ2 large (directional) or small (balancing)
are tabulated above.
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