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A Hierarchical Semi-Markov Model for Detecting
Enrichment with Application to ChIP-Seq Experiments

Pei Fen Kuan, Guangjin Pan, Ron Stewart and Sündüz Keleş

Abstract

Chromatin immunoprecipitation followed by direct sequencing (ChIP-Seq) has rev-
olutionalized the experiments in profiling DNA-protein interactions and chromatin re-
modeling patterns. However, limited statistical tools are available for modeling and
analyzing the ChIP-Seq data thoroughly. We carefully study the data generating
mechanism of ChIP-Seq data and propose a new model-based approach for detect-
ing enriched regions. Our model is based on a hierarchical mixture model which gives
rise to a zero-inflated negative binomial (ZINB), coupled with a hidden semi-Markov
model (HSMM) to address the sequencing depth and biases, the inherent spatial data
structure and allows for detection of multiple non-overlapping variable size peaks. In
particular, we demonstrate that the proposed ZINB accounts for the excess zeroes and
over-dispersion in the observed data relative to a Poisson distribution, and this model
provides a better fit as the background distribution. We also propose a new meta
false discovery rate (FDR) control at peak level as an alternative to the usual heuristic
postprocessing of enriched bins identified via bin level FDR control. We show with
simulations and case studies that this new procedure allows for the boundaries of peak
regions to be declared probabilistically and provides accurate FDR control.

Keywords: Hidden semi-Markov model; Hierarchical mixture model; Zero-inflated
Poisson; Zero-inflated negative binomial; False discovery rate; ChIP-Seq; ChIP-chip.

2



1 Introduction

The study of protein-DNA interactions is important in molecular biology to understand
its implication in gene regulation. In recent years, significant progress has been made in
profiling transcription factor binding sites and histone modifications using chromatin im-
munoprecipitation (ChIP) techniques (Mikkelsen et al., 2007; Robertson et al., 2007). Such
measurements are important for systems-level studies as they provide a global map of can-
didate gene network input connections. The ChIP experiments are usually followed by a
microarray hybridization experiment (ChIP-chip) for quantifying different binding or chro-
matin modification activities. Although the ChIP-chip experiments have been successfully
used to interrogate different genomes, there are some limitations of this technology, espe-
cially in studying the mammalian genome (Mikkelsen et al., 2007; Barski et al., 2007). Large
number of arrays are required to cover the mammalian genome and current array designs
for large genomes usually have lower resolution. The ChIP-chip experiments require large
amounts of DNA, thus involve extensive amplifications and could potentially introduce bias.
In addition, the probes are typically subjected to cross-hybridization which hinders the study
of repeated sequences and allelic variants (Mikkelsen et al., 2007; Wei et al., 2008).

More recently, a new technology has been developed to directly sequence the fragments
(ChIP-Seq) and offers whole-genome coverage at a lower cost. While ChIP-Seq technolo-
gies are currently evolving, most of the published work in ChIP-Seq are conducted via the
Solexa/Illumina platform (Mikkelsen et al., 2007; Barski et al., 2007). This high throughput
sequencing technology works by sequencing one end of each fragment (∼ 25− 36 bps) in the
ChIP sample, thereby generate millions of short reads/tags. These tags are then mapped to
the reference genome, followed by summarizing the total tag counts within specified genomic
windows, i.e., bins and analysis to detect enriched/bound regions, i.e., peaks. Although
this technology offers promising results for surveying large genomes at high resolution, there
are limited statistical tools to detect enriched regions. In contrast, numerous model-based
approaches are available for the analysis of ChIP-chip data (Ji and Wong, 2005; Keleş, 2007;
Gottardo et al., 2008). In addition, published statistical methodologies mainly control the
false positive or false discovery rates (FDR) at probe/bin level and rely on heuristic post-
processing to merge contiguous probes/bins declared to be statistically significant as a peak.

Our goal in this paper is to develop a comprehensive statistical model for detecting
enriched regions in ChIP-Seq data via a hierachical semi-Markov model. By studying the
underlying data generating process, our modeling framework incorporates the variability
in the sequencing depths and other source of biases. We investigate numerous candidate
models for ChIP-Seq data and provide the merits/demerits of each model analytically and
empirically. One of the major drawbacks with the current ChIP-Seq data analysis is the
absence of control experiments in detecting enriched regions to reduce experimental costs. To
allow for broader applicability of our modeling framework, we develop a model which allows
for (1) identifying enriched regions in one sample ChIP-Seq, (2) identifying enriched regions
in the presence of input, and (3) detecting differential enrichments between two samples. We
also introduce a new meta approach for controlling FDR at peak level, which allows for the
boundaries of binding sites to be declared probabilistically. We demonstrate the advantages
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of this new procedure over FDR control at bin level in both simulations and case studies.
Although our discussion is dedicated to ChIP-Seq experiments measuring transcription factor
binding and histone modifications, the proposed hierarchical semi-Markov model is a general
framework that can be applied to other types of data (e.g., ChIP-chip) which exhibit spatial
structure, by modifying the observed emission distributions.

2 A hierarchical model for ChIP-Seq data

In ChIP-Seq experiments measuring both the transcription factor binding and histone mod-
ification, enrichment due to specific binding/modification site is detected by a cluster of bins
mapping in the vicinity of the binding sites on the genome. This spatial data structure is an
important characteristic of ChIP-Seq (likewise ChIP-Chip) data, of which we will account
for via a hidden semi-Markov model (HSMM) in Section 3. We first investigate the distribu-
tion of the observed ChIP-Seq tags mapped to specified genomic windows/bins. The total
mappable reads/tags sequenced from an experiment is also known as the sequencing depth
of the experiment.

In a typical ChIP-Seq experiment, the probability that a bin is sequenced is affected
by numerous factors. The most important determinant is the latent state of the bin, re-
flecting whether or not fragments mapping to that bin are enriched. Fragments mapping
to enriched bins are over represented in the sample and almost surely being sequenced,
resulting in high tag counts. On the other hand, a non-enriched bin has a small probabil-
ity of being sequenced, since the DNA fragments corresponding to these regions are under
represented/absent in the sample. The sequencing affinity of a bin is also influenced by
non-specific immunoprecipitation and amplification biases, both of which are related to the
underlying sequence composition of the DNA fragments. This consideration gives rise to
bin specific distributions that account for the non-uniform genomic background as shown
in Zhang et al. (2008). They attributed the substantial variations in tag distribution on
the genomic background to preferential sequencing specific to the sequencing platform or
protocol.

An important factor that is usually ignored in modeling the background/non-enriched
distribution is the sequencing depth (total mappable reads) of the experiment that affects
the overall genome coverage. That is, bins exhibiting zero tag counts are a consequence of
non-enrichment and non-coverage due to insufficient sequencing depth, especially for large
genomes. In Sections 2.1 and 2.2, we provide detailed formulation of our modeling framework
for the observed ChIP-Seq data that accounts for (1) bin specific distributions and (2)
sequencing depth of the experiment for one sample and two sample problems separately.

2.1 One sample problem

A natural choice to model the observed tag counts is a Poisson distribution. However,
insufficient sequencing depth results in ChIP-Seq data having excess bins with zero counts
compared to a Poisson distribution. Both the bin specific distribution and excess zeroes result

4



in over-dispersion relative to a Poisson model for the observed tag counts. To motivate this
idea, we consider a subset of the data set measuring SMAD2/3 binding activities in embryonic
stem cells (ES) from the Thomson Lab, University of Wisconsin-Madison and the Morgridge
Institute for Research, Madison, WI. This subset consists of tag counts summarized at bins
of size 100 bps generated from 3 lanes on the same Illumina-Solexa machine in a single run,
labeled as replicates 1 to 3. These 3 replicates have comparable sequencing depths (2.18M ,
2.22M , 2.33M) and equal concentration (3pM) of sample materials loaded to the machine.
Figure 1 plots the mean and variance of the tag counts for each bin for Chromosomes 19
and 21, respectively. Since the bin specific means and variances are approximately equal
and the mean varies for different bins, this supports the bin specific Poisson distribution to
characterize the tag counts. In addition, a substantial proportion of the bins has zero counts
across all the 3 replicates, which suggest the use of an indicator variable to model the excess
zeroes.

Let Yj denote the observed tag counts for bin j (e.g., summarization based on tag shifting
by MACS (Zhang et al., 2008)), and Zj be the unobserved random variable specifying if bin
j comes from enriched (Zj = 1) or non-enriched (Zj = 0) distribution. Let DY be the
sequencing depth for the treatment sample. Based on the observations above, we consider
several candidate models for the non enriched bins (Zj = 0) to address (1) over-dispersion,
(2) excess zeroes, and (3) bin specific distributions:

1. Model 1 (Poisson)
Yj = Nj(DY ), where Nj(DY ) ∼ Po(λDY ).

2. Model 2 (Zero Inflated Poisson, ZIP)
Yj = Nj(DY )I(Bj(DY ) = 1) where Nj(DY ) ∼ Po(λ(DY )) and Bj(DY ) ∼ Be(p(DY )).

3. Model 3 (Negative Binomial)
Yj = Nj(DY ) where Nj(DY ) ∼ Po(λj(DY )) and λj(DY ) ∼ Ga(a0, b).

4. Model 4 (Zero Inflated Negative Binomial, ZINB)
Yj = Nj(DY )I(Bj(DY ) = 1) where Nj(DY ) ∼ Po(λj(DY )), λj(DY ) ∼ Ga(a0, b),
Bj(DY ) ∼ Be(pj(DY )) and pj(DY ) ∼ Beta(1, β(DY )).

Models 1 and 3 have been considered in Robertson et al. (2007) and Ji et al. (2008), respec-
tively. MACS (Zhang et al., 2008) considered a variant of Model 3 with λj estimated from
max(λBG, λ5k, λ10k) which could potentially result in higher false negatives if a peak spans a
large region, such as in histone modifications. Here Nj(DY ) measures non-specific sequencing
which is usually attributed to sequence and amplification bias. Non-specific sequencing could
result in tags mapping to multiple genomic regions and such tags are usually omitted in sum-
marizing total tag counts in each bin. Bj(DY ) indicates if bin j is sequenced and it depends
on the sequencing depths. Without loss of generality, we assume that DY = 1M . Model
1 assumes equivalence of mean and variance whereas Model 2 accounts for over-dispersion.

5



(a) Chromosome 19

(b) Chromosome 21

Figure 1: Mean/variance relationship by bin for Chromosomes 19 and 21. The mean and
variance are computed using 3 technical replicates measuring ES SMAD 2/3 binding sites.
The black solid line is the lowess fit.
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Under Model 2,

E(Yj|Zj = 0) = pλ,

Var(Yj|Zj = 0) = pλ[1 + λ(1− p)],

⇒ Var(Yj|Zj = 0)

E(Yj|Zj = 0)
≥ 1.

Therefore, the presence of excess zeroes results in an over-dispersion relative to a Poisson
model, known as a zero inflated Poisson (ZIP) model (Lambert, 1992). Both Model 1 and
Model 2 assume common bin distribution. Model 4 is analogous to Model 2 but it allows
for bin specific distributions, with p and λ replaced by pj and λj respectively. The priors
governing bin specific distributions in Model 4 are based on the following justifications. In a
ChIP-Seq experiment, the tags counts over different lanes/runs are usually pooled to increase
the sequencing depths instead of treating them as individual replicates, unless these replicates
exhibit other sources of variations (e.g., different machines, concentration, run day). This
suggests that one typically has a single observation to estimate λj and pj. Therefore, we
introduce conjugate priors which allow for information sharing across bins,

pj ∼ Beta(1, β) , λj ∼ Ga(a0, b),

Then, we have

P (Bj = z) = P (Bernoulli(1/(1 + β)) = z) for z ∈ {0, 1},
P (Nj = y) = P (NB(a0, b) = y).

The marginal density for the observed counts for a non-enriched (Z = 0) bin is given by:

P (Yj = 0|Zj = 0) = P (Bj = 0) + P (Bj = 1, Nj = 0)

=
β

1 + β
+

1

1 + β
P (NB(a0, b) = 0)

=
β

1 + β
+

1

1 + β

(
b

b + 1

)a0

,

P (Yj = y|Zj = 0) = P (Bj = 1)P (Nj = y)

=
1

1 + β

Γ(y + a0)b
a0

Γ(a0)(b + 1)y+a0y!
for y > 0.

When the sequencing depth is sufficient with β = 0, the model reduces to a negative binomial
distribution with parameters a0 and b (Model 3). Therefore the proposed model offers greater
flexibility than a regular negative binomial model. Both Model 3 and Model 4 are derived
in a hierarchical setting to account for bin specific biases.

To assess the goodness of fit of Models 1-4, we fit the each model on the tag counts
sequenced from naked DNA (histone-free DNA), which is a control sample and does not
contain any enrichment. Therefore, the variability and excess zeroes in the observed tag
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counts can be attributed to sequencing biases and sequencing depth. In addition, we also
evaluate these models in characterizing the background/non-enriched distribution on a ChIP
sample from a publicly available ChIP-Seq data measuring Ezh2 binding (Ku et al., 2008)
using the bottom 99% (an estimate of the non-enriched bins) of the data. The unknown
parameters of Models 1 and 3 are obtained via maximum likelihood estimation (MLE) or
methods of moments estimation (MME). Although MLE and MME estimation for Models 1
and 3 are straight forward, Models 2 and 3 require an EM algorithm to handle unobserved
data.

Figure 2 plots the distribution of the actual data against the simulated data of each
model using the estimated parameters and the BIC score of each model is displayed on
the main title of the corresponding plot. Model 4 appears to fit the data best (lowest
BIC score) in both the naked DNA control sample and the ChIP sample. An interesting
extension of the proposed hierarchical modeling framework would be to model log λj = Xβ

and log
(

pj

1−pj

)
= Mα, where X and M are the covariate matrices (e.g., functions of the

sequence compositions) which explain the sequencing biases. We are currently investigating
the characteristics (e.g., function of nucleotides) contributing to sequencing biases from naked
DNA control experiment.

Given that the background (non-enriched) distribution is best characterized by a ZINB,
we next consider analogous model for the enriched bins Zj = 1 to account for bin specific
distribution via a hierarchical model. Since the DNA fragments for enriched regions are
highly represented in the ChIP sample, the probability of an enriched bin being sequenced
can be assumed to be 1. The potential models are:

1. Model 1a
Yj = Sj where Sj ∼ Po(γj), γj ∼ Ga(a2, b2), under the constraint E(Y |Z = 1) ≥
E(Y |Z = 0).

2. Model 2a
Yj = Nj + Sj where Nj ∼ Po(λj), λj ∼ Ga(a0, b), Sj ∼ Po(γj), γj ∼ Ga(a1, b).

Both models assume bin specific distribution and variable enrichment levels. Model 2a is
nested in Model 1a with the restriction

Var(Y |Z = 0)

E(Y |Z = 0)
=

Var(Y |Z = 1)

E(Y |Z = 1)
.

Although Model 1a appears to offer more flexibility, it does not guarantee that P (Yj =
y|Zj = 0) ≤ P (Yj = y|Zj = 1), ∀y ≥ y∗, where y∗ is a sufficiently large tag count number.
On the other hand, Model 2a explicitly assumes that the tag counts for an enriched bin is
contributed by non-specific sequencing bias (Nj) and the actual level of enrichment (Sj),
and guarantees that P (Yj = y|Zj = 0) ≤ P (Yj = y|Zj = 1), ∀y ≥ y∗. Therefore, we
choose Model 2a to characterize the distribution of an enriched bin. Under this model,
λj + γj ∼ Ga(a0 + a1, b) and Nj + Sj ∼ Po(λj + γj). The marginal density for the observed
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(b) Ezh2 ChIP-Seq from Ku et al. (2008)

Figure 2: Goodness of fit of Models 1-4. Black lines are the density of the actual data. Gray
lines are the density for simulated data from each model. The BIC score for each model is
given in the header. 9



counts in an enriched (Z = 1) bin is given by:

P (Yj = y|Zj = 1) = P (Nj + Sj = y)

=
Γ(y + a0 + a1)b

a0+a1

Γ(a0 + a1)(b + 1)y+a0+a1y!
for y ≥ 0.

We derive an EM algorithm for fitting this hierarchical mixture distribution characterized by
Model 4 for non-enriched bins and Model 2a for enriched bins. The details of the algorithm
are provided in Appendix A.1.

2.2 Two sample problem

Two sample problem can arise in ChIP-Seq experiments in two different ways. The first
is comparison of a chromatin-immunoprecipitated (ChIPed) sample with a control sample.
Valouev et al. (2008) observed an under-representation of coverage in AT-rich regions of the
genome in their data. They attributed the inefficient sequencing in these genomic regions
to the lower melting temperature and showed that such sequencing biases were reduced by
normalizing against data from a control experiment. A second reason for two sample com-
parison is that a relative comparison between two samples to detect differential enrichments
could reduce the sequencing biases. We introduce a modeling framework for inferring (1)
enriched regions relative to a control experiment (e.g., total genomic DNA) or (2) comparing
differential enrichment between two ChIP samples. We first consider case (1) and let (Yj, Xj)
be the observed sample 1 (treatment) and sample 2 (control) tag counts for bin j. Similarly,
we define Zj to be the unobserved random variable specifying the underlying latent state
of bin j. In one sample ChIP-Seq, the ZINB model that arises from a hierarchical setting
appears to fit the observed data well. Thus, we consider possible extensions of this model to
account for both the bin specific bias and excess zeroes due to insufficient sequencing depth
within the two sample context. Let DX and DY denote the sequencing depths of control
and treatment experiments, respectively. Most of the current approaches in the analysis
of two sample ChIP-Seq apply linear scaling to the observed tag counts to normalize for
the difference in sequencing depths. This is undesirable since the distribution of the scaled
tag counts is different from the original distribution under the Poisson assumption. More
formally, if Y = Po(λ), then cY is no longer distributed as Poisson since E(cY ) 6= Var(cY ).
Another popular strategy is to randomly sample DX counts from Y (assuming DY > DX).
This is again undesirable, since the non-uniform background (Zhang et al., 2008) indicates
that random sampling is inappropriate. Moreover, using only a fraction of the original data
results in some information loss. Thus, we propose a model that appropriately incorporates
the sequencing depths of the two samples.

We introduce Bernoulli random variables Bj1 and Bj2 to denote if bin j is sequenced
under control and treatment experiments, respectively. These random variables will again
be utilized to account for the excess zeroes in the observed data. For ease of exposition, we
first assume Bj1 = Bj2 = 1. Let λj1 and λj2 denote the bin specific latent mean tag counts
for Xj and Yj. We assume that Xj and Yj are random samples from pX(.|λj1) = Po(λj1DX)
and pY (.|λj2) = Po(λj2DY ) respectively, and
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λj1 = λj2 if Zj = 0,
λj1 < λj2 if Zj = 1.

As in Newton et al. (2004) and Keleş (2007), we assume the latent mean counts (λj1, λj2) to
be a random pair from an unknown bivariate distribution f , which is taken to be a mixture
over the two hypotheses of interest:

f(λj1, λj2) = P (Zj = 0)f0(λj1, λj2) + P (Zj = 1)f1(λj1, λj2),

where the densities f0 and f1 describe the fluctuations of the means within each hypothesis.
The joint distribution of λj1 and λj2 is related to a one-dimensional base distribution π so
that the unknown components are estimable. In addition, we observe that the tag counts
for the control and treatment sample in the real ChIP-Seq data (see case studies) exhibit
significant correlation. An advantage of this hierarchical mixture modeling approach is that
it automatically incorporates the correlation between X and Y via λj1 and λj2 based on the
following data generating process:

1. Draw Zj ∼ Be(p0).

2. If Zj = 0, draw λj1 from π and Xj ∼ Po(λj1DX) and Yj ∼ Po(λj2DY ).

3. If Zj = 1, draw θj1, θj2 from π. Set λj1 = min(θj1, θj2) and λj2 = max(θj1, θj2). Draw
Xj ∼ Po(λj1DX) and Yj ∼ Po(λj2DY ).

We will now consider two different modeling approaches for the observed tag counts to
identify enriched regions in Y relative to X. The first approach is to model the bivariate
distribution of (Yj, Xj) jointly via a mixture model. According to the data generation process
described above, the mixture distribution f and π are related as follows:

f0(λj1, λj2) = π(λj1) and f1(λj1, λj2) = 2π(λj1)π(λj2)I[λj1 < λj2].

We take π = Ga(a, 1/b) because of the conjugacy property of Poisson-Gamma which makes
the computations analytically tractable. Given the hierarchical modeling framework, the
marginal density of the data can be derived as follows. For notation brevity, we drop the
subscript j. Then

P (X,Y ) = P (Z = 0)P (X,Y |Z = 0) + P (Z = 1)P (X,Y |Z = 1),

and

g
(1)
0 = P (X,Y |Z = 0) =

(
X + Y + a− 1

X,Y, a− 1

)(
b

b + DX + DY

)a
DX

XDY
Y

(b + DX + DY )X+Y
,

g
(1)
1 = P (X,Y |Z = 1) = 2NBX(a, b/DX)NBY (a, b/DY )P

(
B <

b + DX

2b + DX + DY

)
.

where B ∼ Beta(X + a, Y + a). The details on this derivation are given in Appendix A.2.1.
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An alternative to modeling the joint distribution of (X,Y ) is to model the distribution
of Y conditioned on X + Y and Z, since X and Y are distributed as Poisson conditional on
Z. Under the same data generating mechanism described above, we have

g
(2)
0 = P (Y |X + Y, Z = 0) =

(
X + Y

Y

)(
DY

DX + DY

)Y (
DX

DX + DY

)X

,

g
(2)
1 = P (Y |X + Y, Z = 1) =

(
X + Y

Y

)
∫ 1

DY
DX+DY

vY +a−1(1−v)X+a−1

h
1+ b

DY
v+ b

DX
(1−v)

iX+Y +2a dv

∫ 1
DY

DX+DY

va−1(1−v)a−1h
1+ b

DY
v+ b

DX
(1−v)

i
)X+Y +2a

dv
,

as given in Appendix A.2.2. We investigate the power of these two proposed formulations
for two sample ChIP-Seq in discriminating Z = 1 from Z = 0. In both models, g

(k)
1 /g

(k)
0

is an increasing function of Y for a fixed value of X, which is desirable since it is easier to
discriminate enriched from non-enriched bin as the difference between X and Y increases.
Next, we define the following quantities for fixed values of X = x, a, and b :

y∗(k) = argminY {g(k)
1 /g

(k)
0 > 1},

R(x)(k) = y∗(k)/x.

The quantity R(x)(k) can be interpreted as an analog of the minimum fold change in microar-
ray data analysis such that the probability of the observed tag counts under an enriched bin
is greater than that of a non-enriched bin. Figure 3 provides examples on the behavior of
R(x)(k) as a function of x for two arbitrary chosen values of a. In general, R(x)(1) exhibits
increasing trend with x, while R(x)(2) exhibits decreasing trend with x for fixed a and b. In
other words, for k = 1 where we model the joint distribution of (X,Y ), for larger X, Y has
to be a few times larger for a bin to be called enriched. On the other hand, for k = 2, the
reverse holds, which is perhaps more desirable if X is the genomic DNA input. We reason
this as follows based on the observation that the profile for control and treatment sample in
two sample ChIP-Seq data are highly correlated:

1. Genomic/chromatin DNA which is commonly used as control input in ChIP exper-
iments differ from the treatment sample in that no antibody is added to immuno-
precipitate the DNA fragments bound by DNA proteins. However, because of the
cross-linking of protein to DNA, regions tightly bound by proteins are less likely to be
sheared, compared to unbound regions. Therefore, DNA fragments corresponding to
these regions are more abundant than fragments that are randomly sheared as observed
in the ChIP-Seq data.

2. For a region with large tag counts in the control experiment, if the corresponding region
in the treatment sample has higher counts, this suggests some degree of enrichment in
the treatment sample and vice versa for regions with zero or small tag counts.

On the other hand, the first formulation may be more appropriate in cases in which high tag
counts in the control sample are due to technical bias instead of the underlying chromatin
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Figure 3: Power comparisons of Formulation 1 (bivariate mixture modeling) and Formula-
tion 2 (conditional mixture modeling). We plot R(x)(k) against x for two arbitrary values of
a for Formulation 1 (k = 1) and Formulation 2 (k = 2).
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structure. In such cases, a much higher tag counts in the treatment sample is required to
confidently declare a bin with high tag counts in control as enriched.

Next, we discuss the case in which Bj1 or Bj2 = 0. Under the bivariate framework in
Formulation 1, we consider the following complete data generating mechanism:

1. Draw Zj ∼ Be(p0).

2. If Zj = 0, draw pj1 ∼ h1 and Bj1 ∼ Be(pj1) and λj1 from π.

(a) If Bj1 = 0, set Yj = Xj = 0.

(b) If Bj1 = 1, draw pj2 ∼ h2 and Bj2 ∼ Be(pj2).

i. If Bj2 = 0, set Yj = 0 and draw Xj ∼ Po(λj1DX).

ii. If Bj2 = 1, set λj2 = λj1 and draw Xj ∼ Po(λj1DX) and Yj ∼ Po(λj2DY ).

3. If Zj = 1, set Bj2 = 1. Draw pj1 ∼ h1 and Bj1 ∼ Be(pj1). Draw θj1, θj2 from π. Set
λj1 = min(θj1, θj2) and λj2 = max(θj1, θj2).

(a) If Bj1 = 0, set Xj = 0 and draw Yj ∼ Po(θj1DY ).

(b) If Bj1 = 1, draw Xj ∼ Po(λj1DX) and Yj ∼ Po(λj2DY ).

We take h1 = Beta(1, β1) and h2 = Beta(1, β2) for the conjugacy properties of Poisson-
Gamma and Bernoulli-Beta which makes the computations analytically tractable. Then

P (X,Y ) = P (Z = 0)P (X,Y |Z = 0) + P (Z = 1)P (X,Y |Z = 1)

and

P (X,Y |Z = 0) = I(X = 0)I(Y = 0)
β1

1 + β1

+I(Y = 0)NBX(a, b/DX)
β2

(1 + β1)(1 + β2)

+

(
X + Y + a− 1

X,Y, a− 1

)(
b

b + DX + DY

)a
DX

XDY
Y

(b + DX + DY )X+Y

1

(1 + β1)(1 + β2)
,

P (X,Y |Z = 1) = I(X = 0)NBY (a, b/DY )
β1

1 + β1

+2NBX(a, b/DX)NBY (a, b/DY )P

(
B <

b + DX

2b + DX + DY

)
1

1 + β1

,

where B ∼ Beta(X + a, Y + a).
On the other hand, the conditional distribution of Y given X +Y does not have a closed

form if we model Y and X as zero inflated Poisson. Therefore, we consider an alternative
strategy. Ideally, if the control sample is the total genomic DNA, the number of tags in
each bin is approximately equal to the number of DNA copy sequenced (≥ 1). We assume
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that Xj = 0 is attributed to non-coverage due to insufficient sequencing depths and it does
not contain information about the enrichment level of bin j. Therefore, the above model
(g

(2)
0 , g

(2)
1 ) is defined for Xj ≥ 1, and for Xj = 0 we model the observed tag counts for the

treatment sample Y as in one sample ChIP-Seq.
If the interest is in comparing treatment 1 to treatment 2, the corresponding bin specific

hypotheses of interest for bin j are

λj1 = λj2 if Zj = 0 (Non enriched),
λj1 < λj2 if Zj = 1 (Enriched in treatment 2),
λj1 > λj2 if Zj = 2 (Enriched in treatment 1),

and the latent mean variables are distributed as

f(λj1, λj2) = P (Zj = 0)π(λj1) + 2P (Zj = 1)π(λj1)π(λj2)I[λj1 < λj2]

+2P (Zj = 2)π(λj1)π(λj2)I[λj1 > λj2].

The marginal distribution for P (X,Y |Z = 1) under formulation 1 is similar to above, whereas

P (X,Y |Z = 0) = I(X = 0)I(Y = 0)

(
1− 1

(1 + β1)(1 + β2)

)

+

(
X + Y + a− 1

X,Y, a− 1

)(
b

b + DX + DY

)a
DX

XDY
Y

(b + DX + DY )X+Y

1

(1 + β1)(1 + β2)
,

and

P (X,Y |Z = 2) = I(Y = 0)NBX(a, b/DX)
β2

1 + β2

+2NBX(a, b/DX)NBY (a, b/DY )P

(
B >

b + DX

2b + DX + DY

)
1

1 + β2

.

The conditional distributions for g0 = P (Y |X + Y, Z = 0) and g1 = P (Y |X + Y, Z = 1)
under formulation 2 are similar to above, whereas

g2 = P (Y |X + Y, Z = 2) =

(
X + Y

Y

)
∫ DY

DX+DY
0

vY +a−1(1−v)X+a−1

h
1+ b

DY
v+ b

DX
(1−v)

iX+Y +2a dv

∫ 1
DY

DX+DY

va−1(1−v)a−1h
1+ b

DY
v+ b

DX
(1−v)

i
)X+Y +2a

dv
.

3 A hidden semi-Markov model for spatial structure

As discussed earlier, an important characteristic of ChIP-Seq experiments is the spatial
data structure, in which an enriched region is represented by a cluster of bins mapping in
the vicinity of the binding site on the genome. We consider an automated algorithm that
incorporates the distribution of the peak sizes in inferring bound regions. As we will illustrate
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below, our proposed framework allows for an arbitrary number of non-overlapping peaks of
variable lengths in each contiguous genomic region to be declared probabilistically. This
bypasses the adhoc postprocessing procedure to combine contiguous bins in reporting final
list of bound regions (Ji et al., 2008).

Although our model is formulated in a hierarchical manner, the existence of analytic
marginal distributions allows us to easily recast the underlying spatial data structure as a
hidden semi-Markov process. In a hidden semi-Markov model (HSMM), explicit duration
distributions are introduced for each latent/hidden states. The peak size distribution ρ
specifies the duration distribution for Z = 1. On the other hand, the duration distribution
for Z = 0 (non enriched region) is taken to be W ∼ Geo(1 − p0) = pw−1

0 (1 − p0), where p0

is interpreted as the the probability of self transition to state Z = 0. Let Oj = (Xj, Yj) and
OL

1 = (O1, ..., OL) denote the observed data. The quantities needed to specify the HSMM
are the initial distribution π, transition probabilities amn = P (Zj = n|Zj−1 = m) and the
emission distributions of the observations bz(Oj), where bz(Oj) = P (Yj|Zj = z) for one
sample problem and bz(Oj) = P (Xj, Yj|Zj = z) (bivariate mixture) or P (Yj|Xj + Yj, Zj =
z) (conditional mixture) for two sample problem. Since self-transitions are prohibited in
HSMM, in the case of comparing mixture of two hypotheses (Z = 0, Z = 1), the underlying
data structure consists of segments of non-enriched regions alternating with enriched regions.
To motivate the HSMM in detecting multiple enriched regions, we consider the following data
generating process:

1. Set j = 1. Draw Z1 from πz.

(a) If Z1 = 0, draw a duration w from d0 = Geo(1 − p0) and set Z1, ..., Z1+w−1 = 0,
otherwise draw w from d1 = ρ and set Z1, ..., Z1+w−1 = 1.

(b) Draw Ok ∼ bz(.) for k = 1, .., 1 + w − 1.

(c) Set j = 1 + w.

2. While j ≤ L, draw w from d1−Zj−1
and set Zj, ..., Zmin(j+w−1,L) = 1− Zj−1.

(a) Draw Ok ∼ bz(.) for k = j, .., min(j + w − 1, L).

(b) Set j = j + w.

where bz(.) is the marginal distribution, e.g. b1(.) = P (Y |X + Y, Z = 1) in the conditional
mixture modeling framework. The semi-Markov model offers a flexible framework to capture
binding regions of variable lengths which is specified by ρ. We will discuss the choice of ρ
below.

We provide a motivating example of using a HSMM in a simulated ChIP-Seq data in
Figure 4. Each vertical bar corresponds to tag count for a bin. True enriched regions are
between bins 316 and 320 and between bins 442 and 448. We computed P (Zj = z|OL

1 ) for
each bin. Table 1 lists the tag counts for a few selected bins based on Figure 4.

Although bins 299 and 411 have higher tag counts than bins 316 and 446, the HSMM is
able to distinguish the true states of these bins by utilizing the underlying spatial structure
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Figure 4: Illustration of the effect of spatial structure. Dotted lines indicate the boundaries
of enriched regions.
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Table 1: Posterior probabilities for selected bins from Figure 4.

Bin Tag count True Z P (Z = 0|OL
1 ) P (Z = 1|OL

1 )

299 10 0 0.9901 9.867× 10−3

300 9 0 0.9901 9.869× 10−3

316 9 1 3.087× 10−3 0.9969
317 9 1 3.471× 10−5 ∼ 1
318 15 1 1.648× 10−8 ∼ 1
319 12 1 8.699× 10−9 ∼ 1
320 23 1 5.490× 10−6 ∼ 1
411 13 0 0.9997 3.392× 10−4

417 9 0 ∼ 1 4.011× 10−5

442 9 1 7.236× 10−2 0.9276
443 12 1 7.996× 10−4 0.9992
444 15 1 6.312× 10−9 ∼ 1
445 17 1 3.933× 10−14 ∼ 1
446 11 1 3.995× 10−12 ∼ 1
447 15 1 7.718× 10−9 ∼ 1
448 26 1 4.504× 10−6 ∼ 1

as indicated by the posterior probabilities P (Z = z|OL
1 ). In addition, P (Z = 0|OL

1 ) is lower
for a bin that is in the center of an enriched region compared to a bin near the boundary of
an enriched region, although both are in an enriched region. This is desirable since it is less
likely to commit a mistake in declaring bins that are near the center of an enriched region
compared to those at the boundaries.

Fitting a HSMM is challenging and more difficult than a regular hidden Markov model,
since the powerful Baum-Welch algorithm (Rabiner, 1989) is not readily applicable. The
Baum-Welch forward/backward algorithm involves multiplication of a large number of prob-
abilities, thus generating underflowing errors. In a regular hidden Markov model, numerical
underflow can be avoided via ad-hoc scaling the forward and backward variables. How-
ever, the analog of this scaling procedure is not available for HSMMs. Fortunately, a new
procedure was derived recently by Guedon (2003) in recent years that is immune to numer-
ical underflow and does not require ad-hoc scaling procedures. We adapt the derivation of
Guedon (2003) in our model fitting strategy. The unknown parameters in the HSMM and
the marginal distributions are estimated via the EM algorithm, coupled with the dynamic
programming strategy to estimate the location of multiple peaks in each region, which is
presented in the next section. Alternative strategies for mapping multiple peaks per region
include several heuristic methods in multiple motif finding (Bailey and Elkan, 1995; Keleş
et al., 2003). However, the dynamic programming in HSMM is more advantageous because
it does not rely on any heuristic strategies to infer multiple instances of peak regions. In
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addition, the by-products of the E-step in our proposed model allow for control of false pos-
itives or false discoveries at peak level, which will be described in Section 3.2.

Choice of peak size distribution ρ
The peak size distribution which usually ranges from 500 to 1000 bps for transcription factor
binding can be estimated from the agarose gel image. Alternatively, it could be estimated
via a cross-validation approach. In either case, the distribution can be approximated by
a non-parametric discrete distribution over the range of binding lengths and we refer the
readers to Keleş et al. (2006) for details on the estimation procedures. On the other hand,
genomic regions undergoing histone modifications cover a larger range of sizes. An example
of the distribution of peak sizes in H3K4me and H3K27me in human embryonic stem cells
is given in Figure 2(A) of Pan et al. (2007). This suggests that the distribution can be
approximated by a shifted geometric distribution, w ∼ p(1 − p)w−C for w ≥ C. C is
usually the minimum size of a histone modified region. To access the goodness of fit with
such peak distribution, we downloaded the annotated histone modification regions from
the Canada’s Michael Smith Genome Sciences Centre website at http://www.bcgsc.ca/

and plotted the distribution of actual peak sizes against simulated peak sizes in Figure
5. The peak sizes were simulated from a shifted geometric distributions with C = 200
and p = (0.0017, 0.00135, 0.0015, 0.0025, 0.0026, 0.002). Figure 5 illustrates that this shifted
geometric distribution is sufficient to approximate the lengths of histone modified regions.
Note that when the duration distributions for Z = 0 and Z = 1 are a geometric and shifted
geometric at C , the HSMM is equivalent to a regular hidden Markov model architecture
given in Figure 6.

3.1 Model fitting via EM algorithm and dynamic programming

Apart from the unobserved Zj = z ∈ {0, 1} which specifies the hidden state of bin j, we
introduce two additional latent variables (Tj, Vj), where Tj = z denote the event “state z
starts at bin j” and Vj = z denote the event “state z ends at bin j”. Let θ = (πz, dz, bz)
denote the unknown parameters in the model. Here d0(w) = pw−1

0 (1− p0) and d1 = ρ. The
unknown parameters in the marginal distributions bz are (a0, a1, b) in one sample problem
and (a, b) in two sample problem. Given the latent variables (Z, T, V ) and θ, the complete
data likelihood is given by

P (OL
1 , ZL

1 , TL
1 , V L

1 |θ) =

[
1∏

z=0

πI(T1=z)
z

]
×

[
1∏

z=0

L−1∏
j=0

∏
w≥1

dz(w)I(Tj+1=z,Vj+u=z)

]

×
[

1∏
z=0

L∏
j=1

bz(Oj)
I(Zj=z)

]

where OL
1 = (O1, ..., OL).
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Figure 5: Peak size distributions for histone modifications. The density and quantile-to-
quantile plots of simulated peak sizes against observed peak sizes. The data are simulated
from Geo(p)+200, where p = (0.0017, 0.00135, 0.0015, 0.0025, 0.0026, 0.002) for the 6 histone
modifications. The black and gray line in the density plots correspond to simulated and
actual data, respectively.
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Figure 6: Equivalent regular HMM representation. A hidden semi-Markov model in which
all the duration distributions are geometric/shifted geometric is equivalent to a regular HMM
with enlarged state space.

The E-step in the EM algorithm includes computation of the following quantities:

P (T1 = z|OL
1 , θ),

P (Tj+1 = z, Vj+u = z|OL
1 , θ),

P (Zj = z|OL
1 , θ).

Direct calculations of the quantities above is computationally prohibitive. We utilized the
dynamic programming scheme for HSMM by Guedon (2003) that is computationally ef-
ficient and immune to numerical underflow problems through a normalizing factor Nj =
P (Oj|Oj−1

1 ). The key quantities in the algorithm are

Fj(z) = P (Vj = z|Oj
1) (forward variable),

L1j(z) = P (Vj = z|OL
1 ),

Lj(z) = P (Zj = z|OL
1 ) (backward variable),

which are computed recursively. The derivation tailored for two hidden states (Z = 0, Z = 1)
are given in Appendix A.5. The M-step involves re-estimation of θ given the E-step variables.
To reduce computation time, we assume that the peak size distribution ρ has been estimated
and fixed. However, the M-step can be extended to incorporate the re-estimation of ρ, i.e., a
discrete non-parametric distribution in the case of transcription factor binding or a shifted
geometric distribution in the case of histone modifications.
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3.2 Inference

Comparisons of enriched regions from multiple experiments are meaningful if the peak set for
each experiment is declared under a pre-specified error control. Most of the available tools
for ChIP-chip and ChIP-Seq data control the FDR at probe/bin level, despite the interest
in inferring a set of bins which constitutes a peak/enriched region instead of individual
probes/bins (Ji et al., 2008). Although MACS (Zhang et al., 2008) proposed a version of
peak level FDR control based on sample swap, their definition of empirical FDR could be
violated in some cases (e.g., # control peaks > # ChIP peaks ⇒ FDR> 1). The sample
swap approach is also not applicable in two sample comparison of differential enrichments.
On the other hand, for bin level FDR control, reporting a peak set is usually carried out as
a heuristic postprocessing to merge contiguous bins declared to be statistically significant
and requires the user to pre-specify the maximum allowable bins below the threshold and
the minimum number of bins within a peak region. To bypass this ad hoc postprocessing
approach, we propose a meta FDR approach for controlling FDR at peak level. We will
now discuss several useful posterior probabilities that are byproducts of the E-step of the
EM algorithm and can be utilized for error control. A quantity of interest for inferring the
most probable start and end of an enriched region is P (Tj = 1, Vk = 1|OL

1 , θ), which is the
posterior probability of bins j and k defining the boundary of an enriched region and can be
used to rank candidate enriched regions. The boundaries of enriched regions could also be
decoded via the Viterbi algorithm (Rabiner, 1989) to determine the most likely sequence of
hidden states generating the observed data. In a HSMM, the Viterbi decoding automatically
generates a set of non overlapping enriched regions that maximizes the likelihood function
of the observed sequence of tag counts. Let PV = {p̂} be the list of enriched regions
identified via the Viterbi algorithm, where p̂ = (ĵ, k̂) are the start and end positions of an
inferred enriched region. Define βj,k to represent the posterior probability of region covered
by bins j, .., k being a false peak. The choice of βj,k is discussed below. Consider the goal
of identifying a list of enriched regions that is as large as possible while bounding the FDR
by α. We propose the following strategy for identifying the most probable enriched regions
while controlling FDR at level α. This strategy can be considered as a modified version of
the direct posterior probability approach of Newton et al. (2004).

1. Initialize:

(a) List of enriched regions: P = ∅.
(b) Candidate start positions: J = {1, ..., L−min(W) + 1}.
(c) Candidate end positions given a start position j: V|j ∈ J = {j + min(W) −

1, ..., j + min(L − j + 1, max(W)) − 1}. Here, min(W) and max(W) are the
minimum and maximum peak sizes, respectively.

(d) Actual FDR: α̂ = 0.

2. Compute actual FDR:
Define α̂ =

∑
(j,k)∈PV

βj,k/|PV |, where |PV | is the cardinality of PV from the Viterbi
algorithm. If α̂ ≥ α, go to step 3. Else go to step 4.
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3. Bound actual FDR:
Sort βj,k(1) ≤ βj,k(2) ≤ ... ≤ βj,k(|PV |). Let n ∈ {1, ..., |PV |} be the largest value such
that

∑n
r=1 βj,k(r)/n ≤ α. Update P = {p̂(1), ..., p̂(n)}, where p̂(r) corresponds to the

start and end coordinate in βj,k(r).

4. Pre-select Viterbi identified regions as enriched:
Update P = PV , J = J \{p̂ ∈ PV} and V|j ∈ J \{p̂ ∈ PV}. Go to step 5.

5. Update the set of enriched regions until the desired FDR level is reached:
While α̂ ≤ α:

(a) Let (̂i, ĵ, ŵ) = argmaxi,j∈J ,k∈VP (Tj = 1, Vk = 1|OL
1 , θ) and p̂ = (ĵ, k̂) be the start

and end position of the inferred enriched region.

(b) Update P = P⋃{p̂, ĵ −max(min(W), max(W)/2) + 1, ..., ĵ − 1}.
(c) Update J = J \{p̂} and V|j ∈ J \{p̂}.
(d) Update α̂ =

∑
(j,k)∈P βj,k/|P|, where |P| is the cardinality of P .

The procedure described above allows for meta FDR control at peak level by utilizing the
byproducts of the EM algorithm, an added advantage of the proposed hierarchical semi-
Markov framework. Since the Viterbi algorithm outputs the most probable candidate en-
riched regions that maximizes the observed likelihood, we first utilize this decoding to get
an initial set of enriched regions. If the empirical FDR α̂ of this set is larger than α, we
remove some candidate enriched regions in Step 3. On the other hand, if α̂ ≤ α, the set P
is expanded by including additional candidate enriched regions in Steps 4 and 5. We use
P (Tj = 1, Vk = 1|OL

1 , θ) in Step 5(a) to guide the selection of the most probable bound-
ary of an enriched region, whereas Step 5(c) is to avoid inferring two highly overlapping
regions as separate enriched regions. There are several choices for defining βj,k (the posterior
probability of region covered by bins j, .., k being a false peak):

1. 1− P (Tj = 1, Vk = 1|OL
1 , θ)

2. 1−∑k
t=j P (Zt = 1|OL

1 , θ)/(k − j + 1)

3. 1−maxt∈{j,...,k} P (Zt = 1|OL
1 , θ)

If (1) is chosen as the definition of βj,k, a false discovery will be declaring the boundary of an
enriched region wrongly. On the other hand, (2) and (3) can be interpreted as the average
and maximum significance level of declaring region covering bins j to k as enriched region.
We investigate the performance of these choices in extensive simulation studies.

4 Simulation studies

4.1 Choice of βj,k

We consider a simple simulation setup with L = 2000 and p0 = 0.98. In addition, we assume
a discrete peak size distribution ρ = P (W) = (1, 2, 3, 4, 3, 2, 1)/16 over the range 3 ≤ W ≤ 9
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and sufficient sequencing depth. The unknown state Zj for each bin is simulated according to
a HSMM while the emission distribution is simulated from a one sample hierarchical model
with λj0 ∼ Ga(2, c/(1 − c)) and λj1 ∼ Ga(2 + a1, c/(1 − c)), where c ∼ U(0.4, 0.5). We

consider a1 = (8, 13, 18, 23) which corresponds to signal to noise ratio (SNR=
√

(2 + a1)/2)
of (2.2, 2.7, 3.2, 3.5). An example of simulated data is given in Figure 7.
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Figure 7: An illustrative example of simulated data for various SNR. Black and gray bars
denote enriched and non enriched bins, respectively.

We evaluate the FDR control using the proposed procedure in Section 3.2 for the three
choices of βj,k. At various nominal FDR levels α, a set of peaks is obtained according to
Section 3.2. A peak is considered a true discovery if both the start and end position are within
a small margin (2 bins) of the set of known true peaks. Figure 8 plots the empirical FDR
against the nominal FDR for the three choices of βj,k from 50 simulations. We also included
the bin level empirical FDR control for the p-values computed from the null distribution
NB(2, c/(1 − c)) and adjusted according to Benjamini and Hochberg (1995). In all four
cases, bin level FDR tends to declare more false positives because it does not utilize the
spatial structure of the enriched regions. For low SNR, using (1) as the definition of βj,k

appears to be more conservative compared to (2) and (3). At nominal FDR≤ 0.05, the set
of peaks identified by (1) does not contain any false peaks, thereby have zero empirical FDR
value. It is not surprising that (1) is the most conservative among the three since a false
discovery is committed if the boundaries of a peak is declared wrongly. (3) is comparable
to (2), but slightly too liberal at small nominal FDR levels for low SNR. It is interesting
to observe that as the SNR increases, all the three choices of βj,k provide accurate FDR
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control. At high SNR, the posterior probabilities P (Tj = 1, Vk = 1|OL
1 , θ) are able to locate

the boundaries of enriched regions accurately. Based on the simulation results, (2) appears
to be the best choice for defining βj,k in the proposed meta FDR control at peak level.
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Figure 8: Empirical versus nominal FDR for various choices of βj,k. The different choices

of βj,k are (1) 1 − P (Tj = 1, Vk = 1|OL
1 , θ), (2) 1 −∑k

t=j P (Zt = 1|OL
1 , θ)/(k − j + 1), (3)

1−maxt∈{j,...,k} P (Zt = 1|OL
1 , θ) and (4) bin level FDR. Vertical bars are the corresponding

standard errors over 50 simulations.

We also evaluate the accuracy of the Viterbi algorithm in detecting the boundaries of
true enriched regions. The sensitivity is defined as the fraction of true enriched regions that
is within m bins of the peak regions from the Viterbi decoding. As shown in Figure 9, this
algorithm is able to identify all the peak regions accurately by allowing one bin margin of
error. The number of peaks detected by the Viterbi algorithm is approximately equal to
the number of true peaks indicating that it has an extremely low false positive rate, i.e., no
additional false peaks is detected. This provides evidence for pre-selecting Viterbi identified
regions as enriched in Step (4) of the proposed procedure in Section 3.2.

4.2 Simulations in two sample problem

Direct maximum likelihood estimation for the unknown parameters in two sample problem
requires intensive numerical optimization which could result in unstable estimates as shown in
Appendix A.3.2. Therefore, we propose a simpler approximate re-estimation for two sample
problem as given in Appendix A.3.1 and evaluate the accuracy of the estimates via simulation
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Figure 9: Sensitivity of the Viterbi decoding in identifying the boundaries of true enriched
regions at various tolerance/margin of errors. Vertical bars are the corresponding standard
errors over 50 simulations.
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studies. The data is simulated according to Section 2.2 with ω1 = 1/(β1 + 1) ∼ U(0.5, 1),
ω2 = 1/(β2 + 1) ∼ U(0.5, 1), π ∼ Ga(a, c/(1− c)), where a ∼ U(0.5, 10) and c ∼ U(0.4, 0.9).
Figure 10 plots the estimated values against the simulated true values for ω1, ω2, a and b
for 20 simulated data. As evident from this figure, the proposed re-estimation procedure
provides relatively good estimates for the unknown parameters in two sample problem.
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Figure 10: Estimated versus true parameters. Each panel plot the estimated versus true
values for the four emission distribution parameters in two sample problem for 20 simulated
data. Black lines/points are the true values. Gray lines/points are the estimated values.

Next, we evaluate the proposed meta FDR control procedure on two sample problem.
For bin level FDR control, we calculate the p-values from Bin(X +Y, DY /(DX +DY )). The
results over 50 simulations are summarized in the left panel of Figure 11. Bin level FDR
control has the worst performance in two sample problem since it does not account for the
spatial structure of enriched regions. On the other hand, the empirical FDR from proposed
meta FDR control with βj,k = 1−∑k

t=j P (Zt = 1|OL
1 , θ)/(k− j +1) is the closest to nominal

FDR. We also evaluate the accuracy of the Viterbi decoding in detecting boundaries of
simulated enriched regions in two sample problem. The right panel of Figure 11 summarizes
the sensitivities from 50 simulations. The average number of enriched regions from the
Viterbi decoding (17.2) is close to the average number of true enriched regions (17.88),
which again indicates a very low false positive rate. Most of the enriched regions from
Viterbi decoding are within m = 2 bins of the true enriched regions.
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Figure 11: Simulation results for conditional mixture emission in two sample problem. Left
panel plots the empirical versus nominal FDR for various choices of βj,k, in which (1) 1 −
P (Tj = 1, Vk = 1|OL

1 , θ), (2) 1−∑k
t=j P (Zt = 1|OL

1 , θ)/(k−j+1), (3) 1−maxt∈{j,...,k} P (Zt =

1|OL
1 , θ) and (4) bin level FDR. Right panel plots the sensitivity of the Viterbi decoding in

identifying the boundaries of true enriched regions at various tolerance/margin of errors.
Vertical bars are the corresponding standard errors over 50 simulations.
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5 Case studies

TGFb superfamily plays an important role in regulating self renewal and differentiation
potential of embryonic stem (ES) cells and lineage choices at gastrulation in embryogene-
sis (Tam and Loebel, 2007). The growth factors of the TGFb superfamily consists of two
branches, namely NODAL and BMP. Interplay between these two branches determines the
fate of ES cells, i.e., maintaining or exiting pluripotency. In particular, NODAL signaling
helps maintain pluripotency while BMP signaling triggers differentiation. Upon binding
to the receptors, NODAL branch signaling catalyzes phosphorylations on transcription fac-
tors SMAD2/3, while the signals from BMP branch phosphorylate transcription factors
SMAD1/5/8 (Ross and Hill, 2008). It is therefore crucial to understand the mechanisms
governing the two TGFb signaling pathways. ChIP-Seq experiments were conducted at the
Thomson Lab, University of Wisconsin-Madison and the Morgridge Institute for Research,
Madison, WI to map in vivo binding regions of SMAD2/3, SMAD4 and SMAD1/5/8 un-
der untreated and BMP4 ES cells treated for six hours. The data were generated from the
Illumina/Solexa sequencer.

We illustrate the proposed hierarchical semi-Markov model in a ChIP-Seq experiment
measuring transcription factor SMAD1/5/8 binding on BMP4 cells treated for six hours.
Locating the binding sites of this transcription factor an important step to elucidate how
BMP signaling initiates differentiation in ES cells. Our analysis is conducted using a bin
size of 100 bps on Chromosome 10. The peak size distribution which ranges from 200 to
2200 bps is determined empirically by a preliminary one sample bin level analysis without
the spatial structure. The corresponding control experiment is the genomic/chromatin DNA
input from BMP4 cells treated for six hours.

We analyse the data using both the one sample hierarchical mixture model (without
the genomic DNA input) and the two sample conditional hierarchical mixture model. For
computational efficiency, the parameters in the emission and duration distributions are ini-
tialized and fixed according to Appendices A.1, A.3.1, and A.4. In one sample analysis, the
Bernoulli random variable in ZINB (Model 4) converges to 1, which reduces the model to a
regular negative binomial model as shown in Figure 12(a). Figure 13 illustrates the annota-
tion from both analyses on selected regions at FDR=0.05. A total of 2445 and 1274 enriched
regions is obtained from one sample and two sample conditional hierarchical mixture model,
respectively. Among the 1274 enriched regions identified from two sample analysis, 95.7%
of the regions overlap with the enriched regions identified from one sample analysis. In ad-
dition, 88.5% of the 1274 regions is an exact subset of the larger peak set from one sample
analysis, i.e., the peak boundaries from two sample analysis fall within the peaks from one
sample analysis. This indicates that two sample conditional hierarchical model is able to
refine the boundaries of identified enriched regions as evident from Subfigures 13(a)-13(c),
13(f). Subfigures 13(d) and 13(e) further demonstrate the advantage of using the genomic
DNA input in two sample analysis in removing non-specific enriched regions.

Two genes of interests on Chromosome 10 are GATA3 and NODAL. GATA3 is an early
trophoblast associated gene which is expressed at very low level but is significantly induced
upon BMP signaling. On the other hand, NODAL is highly expressed in ES state but is
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Figure 12: Goodness of fit for BMP4 SMAD 1/5/8 analysis. Top panel is the goodness of fit
of Models 1 to 4 in one sample analysis. Bottom panel is the goodness of fit for two sample
conditional mixture model, where X is the genomic DNA input and Y is the ChIP sample.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 13: Example of identified enriched regions. Track 1 and 2 are the observed tag counts
for each bin in treatment (BMP4 SMAD1/5/8) and control (Genomic DNA input) sample,
respectively. Track 3 and 5 are the annotations by applying the FDR control procedure
in Section 3.2 for two sample conditional mixture and one sample mixture (ignoring the
control sample), respectively. Track 4 and 6 are the corresponding Viterbi identified enriched
regions without FDR control for two sample conditional mixture and one sample mixture,
respectively.
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significantly suppressed upon differentiation, and has been reported as a direct target of
NODAL signaling (Besser, 2004). The binding pattern of SMAD 1/5/8 at the promoter
regions of GATA3 and NODAL are given in Figure 14. We further map the 1274 identified
enriched regions to the promoter and UCSC gene regions in Table 2. More than 70% of the
identified enriched regions are located within -10000 bps of a transcription start site (TSS)
plus gene regions in Chromosome 10. To validate the specificity of the identified regions en-
riched in SMAD1/5/8 binding in BMP4 treated cells, we examine the corresponding binding
pattern in untreated ES cells. In untreated ES cells, BMP signaling is inactive and this is
reflected by the decrease in binding activities of SMAD1/5/8. For each of the peak regions,
we compute the average ratio RE of the emission distribution under enrichment (Z = 1)
against non enrichment (Z = 0), i.e.,

RE =

∑
i∈E P (Yi|Xi + Yi, Zi = 1)∑
i∈E P (Yi|Xi + Yi, Zi = 0)

,

where E is the set of bins in a peak region. We randomly draw 1274 non peak regions and
computed RNE, where NE is the set of bins in a randomly drawn non peak region and
this process is repeated 50 times. Large values of RE or RNE indicate reduction in binding
between BMP4 treated and untreated ES cells. As evident from Figure 15, the peak regions
show significant decrease in binding from BMP4 treated to ES cell compared to non peak
regions.

Table 2: Percentage of enriched regions in promoter and gene regions.

Promoter Percentage mapped

±2500 0.407
±5000 0.464
±10000 0.526
±25000 0.658
±50000 0.766
±100000 0.868

x-bps upstream + gene region Percentage mapped

x = 0 0.415
x = 2500 0.678
x = 5000 0.694
x = 10000 0.715
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(a) GATA3

(b) NODAL

Figure 14: BMP4 SMAD1/5/8 binding at the promoter regions of GATA3 and NODAL.
The rectangular boxes highlight ±2500-bps TSS of GATA3 and NODAL.
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Figure 15: Comparison of enrichment level for SMAD 1/5/8 in BMP4 treated against ES
cell in peak and non-peak regions. Gray lines are the 50 randomly drawn non-peak regions.

6 Discussion

The introduction of next generation sequencing instruments in recent years has enabled
whole-genome regulatory DNA-protein binding interactions (ChIP-Seq) to be elucidated at
lower costs and is becoming a popular alternative to the tiling array (ChIP-chip) exper-
iments. Although this technology offers promising results for surveying large genomes at
high resolution, limited statistical tools are available to analyze the ChIP-Seq data. Cur-
rent models for the background distribution of ChIP-Seq data include the regular Poisson
and negative binomial distribution. In this paper, we carefully studied the data generating
process of ChIP-Seq data and introduced zero-inflated Poisson (ZIP) and negative binomial
(ZINB) models to account for the excess zeroes in the observed tag counts. In particular,
we demonstrated that the more flexible ZINB for modeling the background distribution fits
the observed ChIP-Seq data better. The proposed hierarchical modeling offers a general
framework that incorporates bin specific distribution and sequencing biases, and allows for
information sharing across bins. Although our current hierarchical model implementation
is based on conjugate priors, our proposed hierarchical framework is extendable to include
additional covariates contributing to non-specific biases.

We also proposed a hierarchical mixture model for the two sample problem for inferring
enriched regions relative to a control experiment or detecting differential enrichment between
two treatment samples/libraries. The available tools for two sample ChIP-Seq data analysis
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usually normalize the sequencing depth between the two samples to the same number by
linear scaling. However, we showed that this is undesirable if the underlying distribution
of the tag counts is indeed Poisson or negative binomial. Instead of a linear scaling, the
sequencing depth is included as a parameter in our two sample hierarchical model. We
introduced (1) bivariate mixture model and (2) conditional mixture model, and investigated
the power of the two formulations in discriminating enriched from non-enriched distribution.
Our power analysis suggested that two sample conditional mixture model is more suitable if
the goal is to detect enriched regions relative to a genomic DNA input.

Most of the available tools for ChIP-Seq data analysis control the FDR at the bin level,
despite the inherent spatial structure in the observed data and the interest in inferring indi-
vidual peaks instead of individual bins. Reporting a list of enriched regions is usually carried
out as a heuristic postprocessing step to merge consecutive bins declared to be enriched as
well as removing small peaks, which affects the actual FDR level. We proposed a model
that incorporates the spatial structure in ChIP-Seq data via a hidden semi-Markov model
(HSMM). This allows for automatic detection of multiple non overlapping variable size peaks.
We also introduced a new meta approach for controlling FDR at peak level by utilizing the
byproducts of the EM algorithm and demonstrated that this approach provides accurate FDR
control in extensive simulation studies. Since optimizing model parameters in the HSMM is
computationally intensive, we proposed methods to pre-estimate the unknown parameters
and showed that this procedure provides good estimates in simulation and case studies. By
pre-estimating and fixing the unknown parameters, only one forward/backward recursion
is needed and this offers a reasonable computational time to analyze massive amounts of
ChIP-Seq data. Source codes for fitting the hierarchical semi-Markov model are available
upon request. (An R package will be made publicly available soon).
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A Appendix

A.1 Re-estimation for one sample problem

Let Bj, Zj be the latent variables and Bj ∼ Bernoulli(ω) where ω = 1/(β + 1). The E-step
of the k iteration involves calculating

P (Bj = z, Zj = 0|Y )(k) =
P (Yj|Bj = z, Zj = 0)ω(k)z(1− ω(k))1−zπ

(k)
0

P (Yj)
,

where P (Yj) = I(Yj = 0)(1− ω(k))π
(k)
0 + NBYj

(a0, b)ω
(k)π

(k)
0

+NBYj
(a0 + a1, b)(1− π

(k)
0 ),

ω(k) =

∑N
j=1 P (Bj = 1, Zj = 0|Y )(k−1)

∑N
j=1 P (Zj = 0|Y )(k−1)

,

π
(k)
0 =

∑N
j=1 P (Zj = 0|Y )(k−1)

N
.

For the M-step, we consider MME for re-estimation. Although b is a common parameter for
both enriched and non-enriched distribution, we use the non-enriched bins to re-estimate b
since they are the majority, and to simplify calculation.

a0 =
µ2

0

σ2
0 − µ0

, b =
µ0

σ2
0 − µ0

, a1 =
µ2

1

σ2
1 − µ1

− a0

where µ0 =

∑N
j=1 YjP (Bj = 1, Zj = 0|Y )

∑N
j=1 P (Bj = 1, Zj = 0|Y )

, σ2
0 =

∑N
j=1(Yj − µ0)

2P (Bj = 1, Zj = 0|Y )
∑N

j=1 P (Bj = 1, Zj = 0|Y )
,

µ0 =

∑N
j=1 YjP (Zj = 1|Y )

∑N
j=1 P (Zj = 1|Y )

, σ2
1 =

∑N
j=1(Yj − µ1)

2P (Zj = 1|Y )
∑N

j=1 P (Zj = 1|Y )
.

P (Zj = z|Y ) are byproducts of the hidden semi-Markov model.

A.2 Marginal distributions for mixture model

A.2.1 Bivariate mixture model

P (X,Y |Z = 0, B1 = 0) = I(X = 0)I(Y = 0),
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P (X,Y |Z = 0, B1 = 1, B2 = 0) = I(Y = 0)

∫
P (X|λ1)π(λ1)dλ1

= I(Y = 0)

∫ ∞

0

exp(−λ1DX)(λ1DX)X

X!

baλa−1
1 exp(−bλ1)

Γ(a)
dλ1

= I(Y = 0)
Γ(X + a)baDX

X

Γ(a)(b + DX)X+aX!

= I(Y = 0)NBX(a, b/DX),

P (X,Y |Z = 0, B1 = 1, B2 = 1) =

∫ ∫
P (X|λ1)P (Y |λ2)f0(λ1, λ2)λ1dλ2

=

∫ ∞

0

exp(−λ1(DX + DY ))(λ1DX)X(λ1DY )Y

X!Y !

baλa−1
1 exp(−bλ1)

Γ(a)
dλ1

=
Γ(X + Y + a)baDX

XDY
Y

(b + DX + DY )X+Y +aΓ(a)X!Y !

=

(
X + Y + a− 1

X,Y, a− 1

)(
b

b + DX + DY

)a
DX

XDY
Y

(b + DX + DY )X+Y
,

and

P (X,Y |Z = 0) = P (X,Y |Z = 0, B1 = 0)P (B1 = 0)

+P (X,Y |Z = 0, B1 = 1, B2 = 0)P (B1 = 1, B2 = 0)

+P (X,Y |Z = 0, B1 = 1, B2 = 1)P (B1 = 1, B2 = 1),

where

P (B1, B2) =

∫ ∫
p1p2g1(p1)g2(p2)dp1dp2

= Be

(
1

1 + β1

)
Be

(
1

1 + β2

)
.

Hence,

P (X,Y |Z = 0) = I(X = 0)I(Y = 0)
β1

1 + β1

+I(Y = 0)NBX(a, b/DX)
β2

(1 + β1)(1 + β2)

+

(
X + Y + a− 1

X,Y, a− 1

)(
b

b + DX + DY

)a
DX

XDY
Y

(b + DX + DY )X+Y

1

(1 + β1)(1 + β2)
.
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Now

P (X,Y |Z = 1, B1 = 0) = I(X = 0)

∫
P (Y |θ1)π(θ1)dθ1

= I(X = 0)

∫ ∞

0

exp(−θ1DY )(θ1DY )Y

Y !

baθa−1
1 exp(−bθ1)

Γ(a)
dθ1

= I(X = 0)
Γ(Y + a)baDY

Y

Γ(a)(b + DY )Y +aY !

= I(X = 0)NBY (a, b/DY ),

and

P (X,Y |Z = 1, B1 = 1) =

∫ ∫
P (X|λ1)P (Y |λ2)f1(λ1, λ2)dλ1dλ2

=

∫ ∫
P (X|λ1)P (Y |λ2)2π(λ1)π(λ2)I[λ1 < λ2]dλ1dλ2

=

∫ ∞

0

2P (Y |λ2)π(λ2)I(λ2)dλ2,

where

I(λ2) =

∫ λ2

0

P (X|λ1)π(λ1)dλ1

=

∫ λ2

0

exp(−λ1DX)(λ1DX)X

X!

baλa−1
1 exp(−bλ1)

Γ(a)
dλ1

=
Γ(X + a)baDX

X

Γ(a)(b + DX)X+aX!

∫ λ2

0

exp(−λ1(b + DX))λX+a−1
1 (b + DX)X+a

Γ(X + a)
dλ1

= NBX(a, b/DX)

∫ λ2

0

P (ψ1)dψ1,

and ψ1 ∼ Ga(X + a, 1/(b + DX)). Plugging in P (X,Y |Z = 1),

P (X,Y |Z = 1, B1 = 1)

= 2NBX(a, b/DX)

∫ ∞

0

∫ λ2

0

exp(−λ2DY )(λ2DY )Y

Y !

baλa−1
2 exp(−bλ2)

Γ(a)
P (ψ1)dψ1dλ2

= 2NBX(a, b/DX)NBY (a, b/DY )

∫ ∞

0

∫ ∞

ψ1

exp(−λ2(b + DY ))λY +a−1
2 (b + DY )Y +a

Γ(Y + a)
dλ2P (ψ1)dψ1

= 2NBX(a, b/DX)NBY (a, b/DY )

∫ ∞

0

∫ ∞

ψ1

P (ψ2)P (ψ1)dψ2dψ1,

where ψ2 ∼ Ga(Y + a, 1/(b+DY )) and ψ1 ⊥ ψ2. Let ω1 = (b+DX)ψ1 and ω2 = (b+DY )ψ2.
Thus, ω1 ∼ Ga(X + a, 1), ω2 ∼ Ga(Y + a, 1) and B = ω1/(ω1 + ω2) ∼ Beta(X + a, Y + a)
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and

P (X,Y |Z = 1, B1 = 1) = 2NBX(a, b/DX)NBY (a, b/DY )P (ψ1 < ψ2)

= 2NBX(a, b/DX)NBY (a, b/DY )P

(
B <

b + DX

2b + DX + DY

)
.

Hence

P (X,Y |Z = 1) = P (X,Y |Z = 1, B1 = 0)P (B1 = 0) + P (X,Y |Z = 1, B1 = 1)P (B1 = 1)

= I(X = 0)NBY (a, b/DY )
β1

1 + β1

+2NBX(a, b/DX)NBY (a, b/DY )P

(
B <

b + DX

2b + DX + DY

)
1

1 + β1

.

A.2.2 Conditional mixture model

Under Z = 0, λ1 = λ2 and X ∼ Po(λ1DX), Y ∼ Po(λ1DY ). Thus, Y |X + Y, Z = 0 ∼
Bin

(
X + Y, DY

DX+DY

)
. On the other hand for Z = 1, first we obtain

f1(λ1, λ2) =
2 exp(−bλ1)λ

a−1
1 ba

Γ(a)

exp(−bλ2)λ
a−1
2 ba

Γ(a)
I(λ1 < λ1).

Let ω1 = λ1DX , ω2 = λ2DY . Then

f2(ω1, ω2) = f1

(
ω1

DX

,
ω2

DY

)
1

DXDY

=
2 exp(−bω1/DX)ωa−1

1 ba

Γ(a)Da
X

exp(−bω2/DY )ωa−1
2 ba

Γ(a)Da
Y

I(ω1DY < ω2DX).

Now let

u = ω1 + ω2,

v =
ω2

ω1 + ω2

,

⇒ ω1 = u(1− v), ω2 = uv.

The Jacobian is u.

f3(u, v) =
2 exp(− b

DX
u(1− v))ua−1(1− v)a−1ba

Γ(a)Da
X

exp(− b
DY

uv)ua−1va−1ba

Γ(a)Da
Y

I(u(1− v)DY < uvDX)u

=
2b2a exp(−u[ b

DY
v + b

DX
(1− v)])u2a−1va−1(1− v)a−1

Da
XDa

Y Γ(a)2
I(v >

DY

DX + DY

).
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Back to deriving P (Y |X + Y, Z = 1):

P (Y |X + Y, Z = 1)

=

∫ ∫
P (Y |X + Y, λ1, λ2)f(λ1, λ2|X + Y )dλ1dλ2

=

∫ ∫ (
X + Y

Y

)(
λ2DY

λ1DX + λ2DY

)Y (
λ1DX

λ1DX + λ2DY

)X

f(λ1, λ2|X + Y )dλ1dλ2

=

∫ ∫ (
X + Y

Y

)
vY (1− v)Xf(u, v|X + Y )dvdu.

Now

f(u, v|X + Y ) = f(X + Y |u)f(u, v)/f(X + Y ),

since X + Y ∼ Po(u).

f(X + Y )

=

∫ ∞

0

∫ 1

DY
DX+DY

f(X + Y |u)f(u, v)dvdu

=

∫ ∞

0

∫ 1

DY
DX+DY

exp(−u)uX+Y

(X + Y )!

2b2a exp(−u[ b
DY

v + b
DX

(1− v)])u2a−1va−1(1− v)a−1

Da
XDa

Y Γ(a)2
dvdu

=
2b2a

(X + Y )!Da
XDa

Y Γ(a)2

∫ ∞

0

∫ 1

DY
DX+DY

exp

(
−u

[
1 +

b

DY

v +
b

DX

(1− v)

])
uX+Y +2a−1

va−1(1− v)a−1dvdu

= C1

∫ 1

DY
DX+DY

va−1(1− v)a−1Γ(X + Y + 2a)[
1 + b

DY
v + b

DX
(1− v)

]X+Y +2a
dv,

where C1 = 2b2a

(X+Y )!Da
XDa

Y Γ(a)2
.

Next
∫ ∫ (

X + Y
Y

)
vY (1− v)Xf(X + Y |u)f(u, v)dvdu

=

(
X + Y

Y

)
C1

∫ 1

DY
DX+DY

vY +a−1(1− v)X+a−1Γ(X + Y + 2a)[
1 + b

DY
v + b

DX
(1− v)

]X+Y +2a
dv.

Thus

P (Y |X + Y, Z = 1) =

(
X + Y

Y

)
∫ 1

DY
DX+DY

vY +a−1(1−v)X+a−1

h
1+ b

DY
v+ b

DX
(1−v)

iX+Y +2a dv

∫ 1
DY

DX+DY

va−1(1−v)a−1h
1+ b

DY
v+ b

DX
(1−v)

i
)X+Y +2a

dv
.
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A.3 Re-estimation for two sample problem

A.3.1 Simplified re-estimation for two sample problem

We consider the following approximate re-estimation procedure for two sample problem. We
use the data from X to estimate a and b via EM algorithm with latent variable Bj1 ∼
Bernoulli(ω1) where ω1 = 1/(β1 + 1). The E-step of the k iteration involves calculating

P (Bj1 = 1|X)(k) =
P (Xj|Bj1 = 1)ω

(k)
1

P (Xj)
,

where P (Xj) = I(Xj = 0)(1− ω
(k)
1 ) + NBXj

(a, b/DX)ω
(k)
1 ,

ω
(k)
1 =

N∑
j=1

P (Bj1 = 1|X)(k−1)/N.

For the M-step, we consider MME for re-estimation of a and b.

a =
µ2

σ2 − µ
, b =

µDX

σ2 − µ
,

where µ =

∑N
j=1 XjP (Bj1 = 1|X)

∑N
j=1 P (Bj1 = 1|X)

, σ2 =

∑N
j=1(Xj − µ)2P (Bj1 = 1|X)

∑N
j=1 P (Bj1 = 1|X)

.

For given a and b, we then estimate ω̃2 from

P (B̃j2 = 1|Y )(k) =
P (Yj|B̃j2 = 1)ω̃

(k)
2

P (Yj)
,

where P (Yj) = I(Yj = 0)(1− ω̃
(k)
2 ) + NBYj

(a, b/DY )ω̃
(k)
2 ,

ω̃
(k)
2 =

N∑
j=1

P (B̃j2 = 1|Y )(k−1)/N.

From the data generating process in Section 2.2, ω2 = ω̃2π0/ω1, where π0 =
∑N

j=1 P (Zj =
0|X,Y ) is from the hidden semi-Markov model.

A.3.2 Complicated direct re-estimation for two sample problem

Let Bj1, Bj2, Zj be the latent variables, Bj1 ∼ Bernoulli(ω1) and Bj2 ∼ Bernoulli(ω2) where
ω1 = 1/(β1 + 1) and ω2 = 1/(β2 + 1). The E-step of the k iteration involves calculating

P (Bj1 = 0, Zj = 0|Y )(k), P (Bj1 = 1, Bj2 = 0, Zj = 0|Y )(k),

P (Bj1 = 1, Bj2 = 1, Zj = 0|Y )(k), P (Bj1 = 0, Zj = 1|Y )(k), P (Bj1 = 1, Zj = 1|Y )(k).
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ω
(k)
1 =

∑N
j=1 P (Bj1 = 1, Bj2 = 0, Zj = 0|Y )(k−1)

N

+

∑N
j=1 P (Bj1 = 1, Bj2 = 1, Zj = 0|Y )(k−1)

N
+

∑N
j=1 P (Bj1 = 1, Zj = 1|Y )(k−1)

N
,

ω
(k)
2 =

∑N
j=1 P (Bj1 = 1, Bj2 = 1, Zj = 0|Y )(k−1)

∑N
j=1 P (Bj1 = 1, Bj2 = 0, Zj = 0|Y )(k−1) + P (Bj1 = 1, Bj2 = 1, Zj = 0|Y )(k−1)

.

In the M-step, for fixed a the partial derivative of the expected complete log likelihood with
respect to b is given by

∂L

∂b
=

N∑
j=1

P (Bj1 = 1, Bj2 = 0, Zj = 0|Y )

(
a

b
− Xj + a

b + DX

)

+
N∑

j=1

P (Bj1 = 1, Bj2 = 1, Zj = 0|Y )

(
a

b
− Xj + Yj + a

b + DX + DY

)

+
N∑

j=1

P (Bj1 = 0, Zj = 1|Y )

(
a

b
− Yj + a

b + DY

)

+
N∑

j=1

P (Bj1 = 1, Zj = 1|Y )

(
2a

b
− Xj + a

b + DX

− Yj + a

b + DY

+
∂

∂b
log P

(
B <

b + DX

2b + DX + DY

))
,

where B ∼ Beta(X + a, Y + a). Now

∂

∂b
log P

(
B <

b + DX

2b + DX + DY

)
=

(b + DX)X+a−1(b + DY )Y +a

(2b + DX + DY )X+Y +2aP
(
B < b+DX

2b+DX+DY

) .

We find the root of the partial derivative ∂L
∂b

for a fixed a, and then use optim function to
find the value of a that maximizes the expected complete log likelihood.

A.4 Initialization of p0

Let q be an estimate of the percentage of enriched region. Let m be the number of distinct
peaks and E(P ) be the expected size of a peak. Then

mE(P )

L
= q,

⇒ m =
qL

E(P )
,

and
m + 1

1− p0

+ mE(P ) = L,

⇒ p0 = 1− m + 1

L−mE(P )
.
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A.5 Dynamic programming and EM algorithm

We introduce the following notations:

Oj(i) := (Xj(i), Yj(i)) (two samples) or Yj(i) (one sample),

Ok(i), ..., Or(i) := Or
k(i),

bz(Oj(i)) := P (Oj(i)|Zj(i) = z).

The latent variables consist of (Tj(i), Vj(i)), where Tj(i) = z denote ‘state z starts at bin j’
and Vj(i) = z denote ‘state z ends at bin j’. For notation brevity, we drop the subscript i
in the following equations. The key quantities for the new algorithm proposed by Guedon
(2003) are:

Fj(z) = P (Vj = z|Oj
1) forward variable,

L1j(z) = P (Vj = z|OL
1 ),

Lj(z) = P (Zj = z|OL
1 ) backward variable.

Define the normalizing factor Nj:

Nj = P (Oj|Oj−1
1 ).

Then

P (Oj
1) =

P (Oj
1)

P (Oj−1
1 )

P (Oj−1
1 )

P (Oj−2
1 )

...
P (O2

1)

P (O1)
P (O1)

=

j∏
s=1

Ns,

where N1 = P (O1) =
∑1

z=0 πzbz(O1). Let dz(w) be the duration density at state z, where
dz(w) > 0 w = mz, ..., Mz.

A.5.1 Forward recursion

Initialization:
For j = 1 and z = 0, 1:

F1(z) = P (V1 = z|O1)

= P (T1 = z, V1 = z|O1)

= πzdz(1)
bz(O1)

N1

.
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Induction:
For j = 2, ..., L− 1 and z = 0, 1:

Fj(z) = P (Vj = z|Oj
1)

= P (T1 = z, Vj = z|Oj
1) +

j∑

k=2

P (Tk = z, Vj = z|Oj
1)

= πzdz(j)

j∏
s=1

bz(Os)

Ns

+

j∑

k=2

{
j∏

s=k

bz(Os)

Ns

}
dz(j − k + 1)Fk−1(1− z),

since

P (T1 = z, Vj = z|Oj
1) =

P (Oj
1|T1 = z, Vj = z)P (Vj = z|T1 = z)P (T1 = z)

P (Oj
1)

= πzdz(j)

∏j
s=1 bz(Os)

P (Oj
1)

= πzdz(j)

j∏
s=1

bz(Os)

Ns

,

and

P (Tk = z, Vj = z|Oj
1) =

P (Ok−1
1 , Tk = z, Oj

k, Vj = z)

P (Oj
1)

=
P (Oj

k|Tk = z, Vj = z)P (Vj = z|Tk = z)P (Tk = z|Ok−1
1 )P (Ok−1

1 )

P (Oj
1)

=

∏j
s=k bz(Os)dz(j − k + 1)P (Vk−1 = 1− z|Ok−1

1 )
∏k−1

s=1 Ns∏j
s=1 Ns

=

j∏

s=k

bz(Os)

Ns

dz(j − k + 1)Fk−1(1− z).

Termination:
For j = L and z = 0, 1:

FL(z) = P (ZL = z|OL
1 )

= P (T1 = z, ZL = z|OL
1 ) +

j∑

k=2

P (Tk = z, ZL = z|OL
1 )

= πzDz(L)
L∏

s=1

bz(Os)

Ns

+
L∑

k=2

{
L∏

s=k

bz(Os)

Ns

}
Dz(L− k + 1)Fk−1(1− z),
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where Dz(L) =
∑

j≥L dz(j).

The normalizing factor Nj is directly obtained during the forward recursion. For j =
1, ..., L:

Nj = P (Oj|Oj−1
1 )

=
1∑

z=0

P (Zj = z, Oj|Oj−1
1 )

=
1∑

z=0

[
P (T1 = z, Zj = z, Oj|Oj−1

1 ) +

j∑

k=2

P (Tk = z, Zj = z, Oj|Oj−1
1 )

]

=
1∑

z=0

[
bz(Oj)πzDz(j)

j−1∏
s=1

bz(Os)

Ns

+

j∑

k=2

bz(Oj)

{
j−1∏

s=k

bz(Os)

Ns

}
Dz(j − k + 1)Fk−1(1− z)

]
.

A.5.2 Backward recursion

Initialization:
For j = L and z = 0, 1:

LL(z) = P (ZL = z|OL
1 )

= FL(z).

Induction:
For j = L− 1, ..., 1 and z = 0, 1:

L1j(z)

= P (Vj = z|OL
1 )

= P (Vj = z, ZL = 1− z|OL
1 ) +

L−1∑

k=j+1

P (Vj = z, Vk = 1− z|OL
1 )

=
L∏

s=j+1

b1−z(Os)

Ns

D1−z(L− j)Fj(z) +
L−1∑

k=j+1

[
L1k(1− z)

Fk(1− z)

{
k∏

s=j+1

b1−z(Os)

Ns

}
d1−z(k − j)Fj(z)

]

=

[
L∏

s=j+1

b1−z(Os)

Ns

D1−z(L− j) +
L−1∑

k=j+1

[
L1k(1− z)

Fk(1− z)

{
k∏

s=j+1

b1−z(Os)

Ns

}
d1−z(k − j)

]]
Fj(z),
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since

P (Vj = z, ZL = 1− z|OL
1 )

=
P (OL

j+1|Tj+1 = 1− z, ZL = 1− z)P (ZL = 1− z|Tj+1 = 1− z)P (Vj = z|Oj
1)P (Oj

1)

P (OL
1 )

=
L∏

s=j+1

b1−z(Os)

Ns

D1−z(L− j)Fj(z),

and

P (Vj = z, Vk = 1− z|OL
1 )

=
1

P (OL
1 )
× P (OL

k+1|Tk+1 = z)× P (Ok
j+1|Tj+1 = 1− z, Vk = 1− z)

× P (Vk = 1− z|Tj+1 = 1− z)P (Vj = z|Oj
1)× P (Oj

1)

=
P (OL

k+1|Tk+1 = z)P (Ok
1)

P (OL
1 )

{
k∏

s=j+1

b1−z(Os)

Ns

}
d1−z(k − j)Fj(z)

=
P (OL

k+1, Vk = 1− z)

P (OL
k+1, Vk = 1− z)

P (OL
k+1|Vk = 1− z)P (Ok

1)

P (OL
1 )

{
k∏

s=j+1

b1−z(Os)

Ns

}
d1−z(k − j)Fj(z)

=
P (Ok

1 , Vk = 1− z)

P (Ok
1 , Vk = 1− z)

P (OL
k+1|Vk = 1− z)P (Ok

1)

P (OL
1 )

{
k∏

s=j+1

b1−z(Os)

Ns

}
d1−z(k − j)Fj(z)

=
P (OL

1 , Vk = 1− z)

P (OL
1 )

P (Ok
1)

P (Ok
1 , Vk = 1− z)

{
k∏

s=j+1

b1−z(Os)

Ns

}
d1−z(k − j)Fj(z)

=
L1k(1− z)

Fk(1− z)

{
k∏

s=j+1

b1−z(Os)

Ns

}
d1−z(k − j)Fj(z).

Thus

Lj(z) = P (Zj = z|OL
1 )

= P (Zj = z, Zj+1 = 1− z|OL
1 ) + P (Zj = z, Zj+1 = z|OL

1 )

= P (Zj = z, Zj+1 = 1− z|OL
1 ) + P (Zj+1 = z|OL

1 )− P (Zj = 1− z, Zj+1 = z|OL
1 )

= P (Vj = z|OL
1 ) + P (Zj+1 = z|OL

1 )− P (Tj+1 = z|OL
1 )

= L1j(z) + Lj+1(z)− L1j(1− z).
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Define the following auxiliary variables:

Gu
j+1(z) =

P (OL
j+1, Vj+u = z|Tj+1 = z)

P (OL
j+1|Oj

1)

=
L1j+u(z)

Fj+u(z)

{
u−1∏
v=0

bz(Oj+u−v)

Nj+u−v

}
dz(u) for u = 1, ..., L− j − 1

GL−j
j+1 (z) =

P (OL
j+1, ZL = z|Tj+1 = z)

P (OL
j+1|Oj

1)

=

{
L−j−1∏

v=0

bz(OL−v)

NL−v

}
Dz(L− j).

Then

Gj+1(z) =
P (OL

j+1|Tj+1 = z)

P (OL
j+1|Oj

1)

=

L−j∑
u=1

Gu
j+1(z),

and

L1j(z) =

L−j∑
u=1

Gu
j+1(1− z)Fj(z)

= Gj+1(1− z)Fj(z).

A.5.3 E-step

Expected complete log likelihood is given by

LEC = E[log P (OL
1 , ZL

1 , TL
1 , V L

1 |θ)] =
1∑

z=0

P (T1 = z|OL
1 , θ) log πz

+
1∑

z=0

L−1∑
j=0

∑
u≥1

P (Tj+1 = z, Vj+u = z|OL
1 , θ) log dz(u)

+
1∑

z=0

L∑
j=1

P (Zj = z|OL
1 , θ) log bz(Oj),

where

P (T1 = z|OL
1 , θ) = L1(z).
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For j = 1, ..., L− 1 and u = 1, ..., L− j − 1 :

P (Tj+1 = z, Vj+u = z|OL
1 , θ) =

P (Tj+1 = z, Vj+u = z, OL
1 |θ)

P (OL
1 |θ)

=
P (OL

j+1, Vj+u = z|Tj+1 = z, θ)P (Tj+1 = z|Oj
1, θ)P (Oj

1, θ)

P (OL
1 |θ)

=
P (OL

j+1, Vj+u = z|Tj+1 = z, θ)P (Vj = 1− z|Oj
1, θ)

P (OL
j+1|Oj

1, θ)

= Gu
j+1(z)Fj(1− z).

For j = 1, ..., L− 1 and u ≥ L− j :

P (Tj+1 = z, Vj+u = z|OL
1 , θ)

=
P (Tj+1 = z, Vj+u = z, OL

1 |θ)
P (OL

1 |θ)

=
P (OL

j+1|Tj+1 = z, Vj+u = z, θ)P (Vj+u = z|Tj+1 = z, θ)P (Vj = 1− z|Oj
1, θ)

P (OL
j+1|Oj

1, θ)

=

{
L−j−1∏

v=0

bz(OL−v)

NL−v

}
dz(u)Fj(1− z).

For j = 0 and u = 1, ..., L− 1:

P (T1 = z, Vu = z|OL
1 , θ)

=
P (T1 = z, Vu = z, OL

1 |θ)
P (OL

1 |θ)
=

P (OL
u+1|Vu = z, θ)P (Vu = z|T1 = z, θ)P (Ou

1 |T1 = z, Vu = z, θ)P (T1 = z|θ)
P (OL

1 |θ)

=
P (Ou

1 , Vu = z|θ)
P (Ou

1 , Vu = z|θ)
P (OL

u+1|Vu = z, θ)P (Ou
1 |θ)

P (OL
1 |θ)

{
u−1∏
v=0

bz(Ou−v)

Nu−v

}
dz(u)πz

=
P (OL

1 , Vu = z|θ)P (Ou
1 |θ)

P (Ou
1 , Vu = z|θ)P (OL

1 |θ)

{
u−1∏
v=0

bz(Ou−v)

Nu−v

}
dz(u)πz

=
P (Vu = z|OL

1 , θ)

P (Vu = z|Ou
1 , θ)

{
u−1∏
v=0

bz(Ou−v)

Nu−v

}
dz(u)πz

=
L1u(z)

Fu(z)

{
u−1∏
v=0

bz(Ou−v)

Nu−v

}
dz(u)πz.

For j = 0 and u ≥ L:

P (T1 = z, Vu = z|OL
1 , θ) =

{
L−1∏
v=0

bz(OL−v)

NL−v

}
dz(u)πz.
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The quantities P (Tj+1 = 1, Vj+u = 1|OL
1 , θ) for j = 0, ..., L − 1 and u = m1, ..., M1 will be

used to infer the most probable boundaries of enriched regions. Finally

P (Zj = z|OL
1 , θ) = Lj(z).

A.5.4 M-step

Maximizing the expected complete likelihood,

maxLEC

s.t

1∑
Z=0

πz = 1

yields

π̂z = P (T1 = z|OL
1 , θ)

p̂0 =

∑L−1
j=0

∑
u≥1 P (Tj+1 = 0, Vj+u = 0|OL

1 , θ)(u− 1)
∑L−1

j=0

∑
u≥1 P (Tj+1 = 0, Vj+u = 0|OL

1 , θ)u

= 1−
∑L−1

j=0

∑
u≥1 P (Tj+1 = 0, Vj+u = 0|OL

1 , θ)
∑L−1

j=0

∑
u≥1 P (Tj+1 = 0, Vj+u = 0|OL

1 , θ)u
,

where

L−1∑
j=0

∑
u≥1

P (Tj+1 = 0, Vj+u = 0|OL
1 , θ) =

L−1∑
j=1

P (Vj = 1|OL
1 , θ) + P (T1 = 0|OL

1 , θ)

=
L−1∑
j=1

L1j(1) + L1(0),
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and

L−1∑
j=0

∑
u≥1

P (Tj+1 = 0, Vj+u = 0|OL
1 , θ)u

=
L−1∑
j=0

∑
r≥j+1

P (Tj+1 = 0, Vr = 0|OL
1 , θ)(r − j)

=
L−1∑
j=0

∑
r≥j+1

rP (Tj+1 = 0, Vr = 0|OL
1 , θ)−

L−1∑
j=0

jP (Tj+1 = 0|OL
1 , θ)

=
∑
r≥1

r
r−1∑
j=0

P (Tj+1 = 0, Vr = 0|OL
1 , θ)−

L−1∑
j=1

jP (Vj = 1|OL
1 , θ)

=
∑
r≥1

rP (Vr = 0|OL
1 , θ)−

L−1∑
j=1

jL1j(1)

=
L−1∑
r=1

rL1r(0) +
∑
r≥L

r

r−1∑
j=0

P (Tj+1 = 0, Vr = 0|OL
1 , θ)−

L−1∑
j=1

jL1j(1).

Note that

∑
r≥L

r
r−1∑
j=0

P (Tj+1 = 0, Vr = 0|OL
1 , θ)

=
∑
r≥L

rP (T1 = 0, Vr = 0|OL
1 , θ) +

∑
r≥L

r
r−1∑
j=1

P (Tj+1 = 0, Vr = 0|OL
1 , θ)

=

[
1

1− pold
0

−
L−1∑
r=1

rd0(r)

][
π0

{
L−1∏
v=0

b0(OL−v)

NL−v

}
+

L−1∑
j=1

{
L−j−1∏

v=0

bz(OL−v)

NL−v

}
Fj(1)

(pold
0 )j

]

=

[
1

1− pold
0

−
L−1∑
r=1

rd0(r)

]
denomL−1

j=0 ,

and

∑
r≥L

rP (T1 = 0, Vr = 0|OL
1 , θ) =

∑
r≥L

π0d0(r)r

{
L−1∏
v=0

b0(OL−v)

NL−v

}

= π0

{
L−1∏
v=0

b0(OL−v)

NL−v

}[
1

1− pold
0

−
L−1∑
r=1

rd0(r)

]
,
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∑
r≥L

r

r−1∑
j=1

P (Tj+1 = 0, Vr = 0|OL
1 , θ)

= L

L−1∑
j=1

P (Tj+1 = 0, VL = 0|OL
1 , θ) +

∑
r≥L+1

r

L−1∑
j=1

P (Tj+1 = 0, Vr = 0|OL
1 , θ)

=
∑
r≥L

r

L−1∑
j=1

{
L−j−1∏

v=0

bz(OL−v)

NL−v

}
d0(r − j)Fj(1)

=
L−1∑
j=1

{
L−j−1∏

v=0

bz(OL−v)

NL−v

}
Fj(1)

(pold
0 )j

∑
r≥L

rd0(r)

=
L−1∑
j=1

{
L−j−1∏

v=0

bz(OL−v)

NL−v

}
Fj(1)

(pold
0 )j

[
1

1− pold
0

−
L−1∑
r=1

rd0(r)

]
.

denom is computed recursively. However, when L is large,

∑
r≥L

r
r−1∑
j=0

P (Tj+1 = 0, Vr = 0|OL
1 , θ) =

[
1

1− pold
0

−
L−1∑
r=1

rd0(r)

]
denomL−1

j=0

≈ 0,

since
∑L−1

r=1 rd0(r) ≈ 1
1−pold

0
. Thus,

p̂0 ≈ 1−
∑L−1

j=1 L1j(1) + L1(0)
∑L−1

r=1 r[L1r(0)− L1r(1)]
.

A.5.5 Viterbi algorithm for hidden semi-Markov model

Define

δj(z) = max
Z1,...,Zj−1

log P (Oj
1, Vj = z|θ).

For j = 1 and z = 0, 1:

δj(z) = log bz(O1) + log dz(1) + log πz.

For j = 2, ..., L− 1 and z = 0, 1:

δj(z)

= log bz(Oj) + max[ max
1≤u≤j−1

[{
u−1∑
v=1

log bz(Oj−v)

}
+ log dz(u) + δj−u(1− z)

]
,

{
j−1∑
v=1

log bz(Oj−v)

}
+ log dz(j) + log πz].
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For j = L and z = 0, 1:

δj(z)

= log bz(OL) + max[ max
1≤u≤L−1

[{
u−1∑
v=1

log bz(OL−v)

}
+ log Dz(u) + δL−u(1− z)

]
,

{
L−1∑
v=1

log bz(OL−v)

}
+ log Dz(L) + log πz].

The likelihood optimal state sequence associated with the observations OL
1 is exp[maxz{δz(L)}].

For backtracking purposes, define

ψj(z)

= argmax[log bz(Oj) + max[ max
1≤u≤j−1

[{
u−1∑
v=1

log bz(Oj−v)

}
+ log dz(u) + δj−u(1− z)

]
,

{
j−1∑
v=1

log bz(Oj−v)

}
+ log dz(j) + log πz]].
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Keleş, S., van der Lann, M., Dudoit, S., and Cawley, S. (2006). Multiple testing methods
for ChIP-chip high density oligonucleotide array data. Journal of Computational Biology
13, 579–613.

Ku, M., Koche, R., Rheinbay, E., Mendenhall, E., Endoh, M., Mikkelsen, T., Presser, A.,
Nusbaum, C., Xie, X., Chi, A., Adli, M., Kasif, S., Ptaszek, L., Cowan, C., Lander, E.,
Koseki, H., and Bernstein, B. (2008). Genomewide analysis of prc1 and prc2 occupancy
identifies two classes of bivalent domains. PLoS Genetics 4,.

Lambert, D. (1992). Zero-inflated poisson regression models with an application to defects
in manufacturing. Technometrics 34, 1–14.

Mikkelsen, T., Ku, M., Jaffe, D., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P.,
Brockman, W., Kim, T., Koche, R. P., Lee, W., Mendenhall, E., O’Donovan, A., Presser,
A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander,
E., and Bernstein, B. (2007). Genome-wide maps of chromatin state in pluripotent and
lineage-committed cells. Nature 448, 653–560.

Newton, M., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene
expression with a semiparametric hierarchical mixture model. Biostatistics 5, 155–176.

Pan, G., Tian, S., Nie, J., Yang, C., Ruotti, V., Wei, H., Jonsdottir, G., Stewart, R.,
and Thomson, J. (2007). Whole-genome analysis of Histone H3 Lysine 4 and Lysine 27
Methylation in human embryonic stem cells. Cell Stem Cell 1, 299–312.

Rabiner, L. (1989). A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE 77, 257–286.

Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G.,
Bernier, B., Varhol, R., Delaney, A., Thiessen, N., Griffith, O., He, A., Marra, M., Snyder,
M., and Jones, S. (2007). Genome-wide profiles of stat1 dna association using chromatin
immunoprecipitation and massively parallel sequencing. Nature Methods .

Ross, S. and Hill, C. (2008). How the smads regulate transcription. Int J Biochem Cell Biol
40, 383–408.

53



Tam, P. and Loebel, D. (2007). Gene function in mouse embryogenesis: get set for gastru-
lation. Nature Reviews Genetics 8, 368–381.

Valouev, A., Ichikawa, J., Tonthat, T., Stuart, J., Ranade, S., Peckham, H., Zeng, K.,
Malek, J., Costa, G., McKernan, K., Sidow, A., Fire, A., and Johnson, S. (2008). A high-
resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-
dictated positioning. Genome Research 18, 1051–1063.

Wei, H., Kuan, P., Tian, S., Yang, C., Nie, J., Sengupta, S., Ruotti, V., Jonsdottir, G.,
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