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Abstract

Chromatin immunoprecipitation followed by high throughput sequencing (ChIP-Seq) has been success-
fully used for genome-wide profiling of transcription factor binding sites, histone modifications, and
nucleosome occupancy in many model organisms and humans. Because the compact genomes of prokary-
otes harbor many binding sites separated by only few base pairs, applications of ChIP-Seq in this domain
have not reached their full potential. Applications in prokaryotic genomes are further hampered by the
fact that well studied data analysis methods for ChIP-Seq do not result in a resolution required for de-
ciphering the locations of nearby binding events. We generated single-end tag (SET) and paired-end tag
(PET) ChIP-Seq data for σ70 factor in Escherichia coli (E. coli). Direct comparison of these datasets
revealed that although PET assay enables higher resolution identification of binding events, standard
ChIP-Seq analysis methods are not equipped to utilize PET-specific features of the data. To address
this problem, we developed dPeak as a high resolution binding site identification (deconvolution) al-
gorithm. dPeak implements a probabilistic model that accurately describes ChIP-Seq data generation
process for both the SET and PET assays. For SET data, dPeak outperforms or performs comparably
to the state-of-the-art high-resolution ChIP-Seq peak deconvolution algorithms such as PICS, GPS, and
GEM. When coupled with PET data, dPeak significantly outperforms SET-based analysis with any of
the current state-of-the-art methods. Experimental validations of a subset of dPeak predictions from σ70

PET ChIP-Seq data indicate that dPeak can estimate locations of binding events with as high as 2 to 21bp
resolution. Applications of dPeak to σ70 ChIP-Seq data in E. coli under aerobic and anaerobic conditions
reveal closely located promoters that are differentially occupied and further illustrate the importance of
high resolution analysis of ChIP-Seq data.

Author Summary

Chromatin immunoprecipitation followed by high throughput sequencing (ChIP-Seq) is widely used for
studying in vivo protein-DNA interactions genome-wide. Current state-of-the-art ChIP-Seq protocols
utilize single-end tag (SET) assay which only sequences 5′ ends of DNA fragments in the library. Although
paired-end tag (PET) sequencing is routinely used in other applications of next generation sequencing,
it has not been much adapted to ChIP-Seq. We illustrate both experimentally and computationally that
PET sequencing significantly improves the resolution of ChIP-Seq experiments and enables ChIP-Seq
applications in compact genomes like Escherichia coli (E. coli). To enable efficient identification using
PET ChIP-Seq data, we develop dPeak as a high resolution binding site identification algorithm. dPeak
implements probabilistic models for both SET and PET data and facilitates efficient analysis of both
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data types. Applications of dPeak to deeply sequenced E. coli PET and SET ChIP-Seq data establish
significantly better resolution of PET compared to SET sequencing.

Introduction

Since its introduction, chromatin immunoprecipitation followed by high throughput sequencing (ChIP-
Seq) has revolutionized the study of gene regulation. ChIP-Seq is currently the state-of-the-art method
for studying protein-DNA interactions genome-wide and is widely used [1–5]. ChIP-Seq experiments
capture millions of DNA fragments (150 ∼ 250bp in length) that the protein under study interacts with
using random fragmentation of DNA and a protein-specific antibody. Then, high throughput sequencing
of a small region (25 ∼ 100bp) at the 5′ end or both ends of each fragment generates millions of reads or
tags. Sequencing one end and both ends are referred to as single-end tag (SET) and paired-end tag (PET)
technologies, respectively (Fig. 1A). Standard preprocessing of these data involves mapping reads to a
reference genome and retaining the uniquely mapping ones [6,7]. In PET data, start and end positions of
each DNA fragment can be obtained by connecting positions of paired reads [8]. In contrast, the location
of only the 5′ end of each DNA fragment is known in SET data. The usual practice for SET data is
to either extend each read to its 3′ direction by the average library size which is a parameter set in the
experimental procedure [7] or shift the 5′ end position of each read by an estimate of the library size [9].
Then, genomic regions with large numbers of clustered aligned reads are identified as binding sites using
one or more of the many available statistical approaches [6, 7, 9–11] (the first step in Fig. 1C).

Currently, the SET assay dominates all the ChIP-Seq experiments despite the fact that PET has
several obvious, albeit less studied, advantages over SET. In PET data, paired reads from both ends of
each DNA fragment can reduce the alignment ambiguity, increase precision in assigning the fragment
locations, and improve mapping rates. This is especially advantageous for studying regulatory roles of
repetitive regions of genomes [12,13]. Although many eukaryotic genomes are rich in repetitive elements,
PET technology has not been extensively used with eukaryotic genomes [8,14]. One of the main reasons
for this is that ChIP-Seq data is information rich even when the repetitive regions are not profiled [15]
and that the PET assay costs 1.5 ∼ 2 times more than the SET assay. Put differently, given a fixed cost,
PET sequencing results in a lower sequencing depth compared to SET sequencing.

In contrast to eukaryotic genomes, prokaryotic genomes are highly mappable, e.g., 97.8 % of the Es-
cherichia coli (E. coli) genome is mappable with 32bp reads. This decreases the higher mapping rate
appeal of the PET assay for these genomes. In this paper, we systematically investigate advantages of
the PET assay from a new perspective and demonstrate both experimentally and computationally that
it significantly improves the resolution of protein binding site identification. Improving resolution in
identifying protein-DNA interaction sites is a critical issue in the study of prokaryotic genomes because
prokaryotic transcription factors have closely spaced binding sites, some of which are only 10 to 100bp
apart from each other [16–19]. These closely spaced binding sites are considered to be multiple “switches”
that differentially regulate gene expression under diverse growth conditions [17]. Therefore, identifica-
tion and differentiation of closely spaced binding sites are invaluable for elucidating the transcriptional
networks of prokaryotic genomes.

Although many methods have been proposed to identify peaks from ChIP-Seq data (reviewed in [20]),
such as MACS [9], CisGenome [6], and MOSAiCS [10], these approaches reveal protein binding sites only
in low resolution, i.e., at an interval of hundreds to thousands of base pairs. Furthermore, they report only
one “mode” or “predicted binding location” per peak. More recently, deconvolution algorithms such as
CSDeconv [21], GPS [22] (recently improved as GEM [23]), and PICS [11] have been proposed to identify
binding sites in higher resolution. However, these methods are specific to SET ChIP-Seq data and are not
equipped to utilize the main features of PET ChIP-Seq data. Although a relatively recent method named
SIPeS [24] is specifically designed for PET data and is shown to perform better than MACS paired-end
mode [9], our extensive computational and experimental analysis indicated that this approach is not
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suited for identifying closely located binding events. To address these limitations, we developed dPeak, a
high resolution binding site identification (deconvolution) algorithm that can utilize both PET and SET
ChIP-Seq data. The dPeak algorithm implements a probabilistic model that accurately describes the
ChIP-Seq data generation process and analytically quantifies the differences in resolution between the
PET and SET ChIP-Seq assays. We demonstrate that dPeak outperforms or performs competitively with
the available SET-specific methods such as PICS, GPS, and GEM. More importantly, dPeak coupled with
PET ChIP-Seq data improves the resolution of binding site identification significantly compared to SET-
based analysis with any of the available methods. Generation and analysis of σ70 factor PET and SET
ChIP-Seq data from E. coli grown under aerobic and anaerobic conditions reveals the power of the dPeak
algorithm in identifying closely located binding sites. Our study demonstrates the importance of high
resolution binding site identification when studying the same factor under diverse biological conditions.
We further support our findings by validating a small subset of our closely located binding site predictions
with primer extension experiments.

Results

Deeply sequenced E. coli σ70 SET and PET ChIP-Seq data

The σ70 factor is responsible for transcription initiation at over 80% of the known promoters in E. coli [25].
σ70 combines with RNA polymerase to bind promoter sequences typically containing two consensus
elements located at 35bp and 10bp upstream of the transcription start site [18]; thus a σ70 binding site
spans about 40bp upstream from the transcription start site. Many E. coli genes contain multiple σ70

promoters, and much transcriptional regulation by oxygen as well as by other stimuli occurs by selection
of one or a subset of the possible promoters in concert with binding of activators and repressors (e.g.,
ArcA and FNR for regulation by oxygen [17, 19]). Understanding such regulation requires knowledge
of precisely which promoters are used in a given condition. Therefore, the highest possible accuracy
of ChIP-signal mapping will allow the best determination of promoter binding by σ70-RNA polymerase
holoenzyme.

We generated both PET and SET ChIP-Seq data for σ70 factor from E. coli grown under aerobic
(+O2) and anaerobic (−O2) conditions in glucose minimal media on the HiSeq2000 and Illumina GA IIx
platforms. We used these experimental data for comparisons of PET and SET assays and evaluation of
our high resolution binding site detection method dPeak throughout the paper. Figure 1B displays PET
and SET ChIP-Seq coverage plots for the promoter region of the cydA gene under the aerobic condition.
The height at each position indicates the number of DNA fragments overlapping that position. The cydA
promoter contains five known σ70 binding sites separated by 11 to 84bp [25]. As evidenced in Figure
1B, coverage plots for PET and SET appear almost indistinguishable visually. To further understand
the appearance of peaks that multiple binding events in this region would result in, we simulated PET
and SET data with parameters matching to those of this region. Figures S1A, B, C in Text S1 display
SET and PET coverage plots of this region when it harbors one and three binding events. These plots
support that when binding events are in close proximity with distances less than the average library
size, they appear as uni-modal peaks regardless of the library preparation protocol (Fig. S1C in Text
S1). We next evaluated two peak callers, MACS [11] and MOSAiCS [10], both of which are specifically
developed for SET data, on our SET and PET experimental datasets (Table S1 in Text S1). Both methods
identified broad regions and the median widths of MACS peaks were 5 to 10 times larger than those of
the MOSAiCS peaks. Detailed comparison of the MACS and MOSAiCS peaks revealed that each MACS
peak on average has 1.54 to 2.23 MOSAiCS peaks (Table S2 in Text S1). Next, we evaluated the number
of annotated σ70 binding events from RegulonDB [25] (http://regulondb.ccg.unam.mx/) in each of
the MACS and MOSAiCS peaks and found that MACS peaks, on average, had 1.86 to 2.02 annotated
binding events whereas MOSAiCS peaks had 1.47 to 1.48. Overall, we did not observe any differences
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in the peak widths of the PET and SET assays with MOSAiCS whereas MACS peaks from PET data
tended to be wider than those of the SET data. These findings indicate that the potential advantages of
the PET assay for elucidating closely located binding sites are not simply revealed from visual inspection
and by analysis with methods developed specifically for SET data. Hence, deciphering the advantages of
PET over SET for high resolution binding site identification warrants a statistical assessment. Next, we
developed a generative probabilistic model and an accompanying algorithm, dPeak, that can specifically
utilize local read distributions from SET and PET assays. This algorithm enabled unbiased evaluation
of the SET and PET assays using our E. coli SET and PET ChIP-Seq data.

Analytical framework of the dPeak algorithm

dPeak requires data in the form of genomic coordinates of paired reads (for PET) or genomic coordinates
of reads and their strands (for SET) obtained from mapping to a reference genome. For computational
efficiency, dPeak first identifies candidate regions (i.e., peaks) that contain at least one binding event and
considers each candidate region separately for the prediction of number and locations of binding events
(the first step of Fig. 1C). Either two-sample (using both ChIP and control input samples) or one-sample
(only using ChIP sample when a control sample is lacking) analysis can be used to identify candidate
regions. For this purpose, we utilize the MOSAiCS algorithm [10] which produced narrower peaks than
the MACS [11] algorithm in our ChIP-Seq datasets (Table S1 in Text S1).

In each candidate region, we model read positions as originating from a mixture of multiple binding
events and a background component (the third step of Fig. 1C). dPeak infers the number of binding
events and the read sets corresponding to each binding event within each region. It iterates the following
two steps for each candidate region. First, it assigns each read to a binding event or background, based
on the positions and strengths of the binding events. Then, the position and strength of each binding
event are updated using its assigned reads. In practice, the number of binding events in each candidate
region is unknown a priori. Hence, we consider models with different numbers of binding events and
choose the optimal number using Bayesian information criterion (BIC) [26]. We constructed generative
probabilistic models for binding event components and a background component for each of the PET and
SET data by careful exploratory analyses of multiple experimental ChIP-Seq datasets. Diagnostic plots
of the fitted models (Fig. S3 in Text S1) indicate that the dPeak model fits ChIP-Seq data well.

dPeak has two unique features compared to other peak deconvolution algorithms (Table S3 in Text
S1). First, it accommodates both SET and PET data and explicitly utilizes specific features of both types.
Second, it incorporates a background component that accommodates reads due to non-specific binding.
Consideration of non-specific binding is critical because the degree of non-specific binding becomes more
significant as the sequencing depths get larger. An additional unique feature of dPeak is the treatment of
unknown library size for SET data. As discussed earlier, to account for unknown library size, each read is
either extended to or shifted by an estimate of the library size in most peak calling algorithms [20]. This
estimate is often specified by users [7, 10] or estimated from ChIP-Seq data [9, 11]. Currently available
algorithms with the exception of PICS use only one extension/shift estimate for all the regions in the
genome. However, our exploratory analysis of real ChIP-Seq data and the empirical distribution of the
library size from PET data (Fig. S2A in Text S1) indicate that using single extension/shift length might
be suboptimal for peak calling (data not shown). In order to address this issue, dPeak estimates optimal
extension/shift length for each candidate region. Comparison of empirical distribution of the library size
from PET data with the estimates of the region-specific extension/shift lengths indicates that dPeak
estimation procedure handles the heterogeneity of the peak-specific library sizes well (Figs. S2B, C, D in
Text S1). This advancement ensures that dPeak is well tuned for deconvolving SET peaks, which then
enables an unbiased computational comparison between the SET and PET assays.
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dPeak outperforms competing methods in discovering closely spaced binding
events from SET ChIP-Seq data

We compared dPeak with two competing algorithms, GPS [22] and PICS [11], for analysis of SET
ChIP-Seq data. We did not include the CSDeconv algorithm [21] in this comparison because it is com-
putationally several orders of magnitude slower than the algorithms considered here. We utilized the
synthetic ChIP-Seq data which was previously used to evaluate deconvolution algorithms [22]. In this
synthetic data, binding events were generated by spiking in reads from predicted CTCF binding events
at predefined intervals [22] without explicitly implanting binding sequence motifs. Therefore, we also
excluded GEM [23], which capitalizes on motif discovery to infer positions of binding events, from this
comparison and used additional computational experiments below to perform comparisons with GEM.
The synthetic data from [22] consisted of 1,000 joint (i.e., close proximity) binding events, each with
two events, and 20,000 single binding events. We assessed performances of algorithms on these two sets
separately.

Figure 2A shows the sensitivity of each algorithm at different distances between the joint binding
events. Here, sensitivity is the proportion of regions for which both of the two true binding events are
correctly identified. dPeak outperforms other methods across all considered distances between the joint
binding events and especially for closely located binding events separated by less than the average library
size of 250bp. When the distance between the joint binding events is about 200bp, dPeak is able to identify
both binding events in 80% of the regions whereas neither PICS nor GPS can detect both binding events
in more than 20%. Further investigation indicates that PICS merges closely spaced binding events into
one event too often (Fig. S4 in Text S1). We also found that GPS estimates the peak shape incorrectly
when ChIP-Seq data harbors many closely located binding events (Fig. S5 in Text S1). Furthermore, the
sensitivity of GPS also decreases significantly when the distance between joint binding events increases.
A closer look at the results reveals that GPS filters out too many predictions for joint binding events.

To ensure that increased sensitivity of dPeak is not a result of increased number of false predictions, we
evaluated positive predictive value (fraction of predictions that are correct) of each method. Specifically,
we plotted the number of binding events predicted by each algorithm at different distances between the
joint binding events in Figure 2B. Since there are two true binding events in each region, two predictions
at every distance correspond to perfect positive predicted value. dPeak on average generates more than
one prediction and does not over-estimate the number of binding events when the distance between joint
events is less than the average library size. This result confirms that the higher sensitivity of dPeak in
Figure 2A is not due to increased number of predictions. In contrast, PICS and GPS on average generate
only one prediction for closely located binding events, which recapitulates the conclusions from Figure
2A. In summary, dPeak outperforms state-of-the-art deconvolution methods across different distances
between joint binding events, especially when the distance between the binding events is less than the
average library size.

Next, we evaluated the sensitivity and positive predicted value of the three methods on 20, 000 can-
didate regions with a single binding event using the additional synthetic data from [22] (Table S4 in
Text S1). Average number of predictions per region with at least one predicted binding event and the
corresponding standard errors are as follows: dPeak 1.16 (0.42), PICS 1.02 (0.16), GPS 2.72 (1.69).
Overall, dPeak slightly over-estimates the number of binding events for regions with a single binding
event, and hence PICS is slightly better than dPeak in positive predicted value for these regions. How-
ever, as revealed by our joint event analysis, this conservative approach of PICS severely under-estimates
the number of binding events when multiple events reside closely. In contrast, GPS significantly under-
estimates the number of binding events for the regions with a single binding event since it filters out too
many predictions and does not result in a prediction for 82% of the regions. In addition, it over-estimates
the number of binding events across regions for which it produces at least one prediction. Comparisons
in these two scenarios with and without joint binding events indicate that dPeak strikes a good balance
between sensitivity and positive predicted value for both cases.
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PET is more powerful than SET for resolving closely spaced binding events

Once we developed dPeak as a high resolution peak detection method for both SET and PET data, we
implemented simulation studies to evaluate the PET and SET assays for resolving closely spaced binding
events in an unbiased manner. Although SIPeS [24] supports PET ChIP-Seq data, we excluded it from
the comparison of PET and SET ChIP-Seq datasets due to its poor performance (Section 16 of Text S1).
We generated 100 simulated PET and SET ChIP-Seq data with two closely spaced binding events and
evaluated the predictions of these two data types with dPeak (Section 11 of Text S1; Fig. S7 in Text S1).

Figure 2C plots the sensitivity of dPeak as a function of distance between the joint binding events
and number of reads for both the PET and SET settings. Note that we evaluated sensitivity up to
the distance of 50bp because we used 20bp windows to determine whether a binding event is correctly
identified and as a result, results for the distance less than 50bp could be misleading. When the distance
between the events is at least as large as the average library size ( ≥ 150bp), the sensitivity using PET
and SET data are comparable. However, as the distance between joint binding events decreases, the
sensitivity using SET data decreases significantly. In contrast, PET ChIP-Seq retains its high sensitivity
even for binding events that are located as close as 50bp. As the number of reads decreases, sensitivity for
both PET and SET data decreases. When there are only 20 DNA fragments (i.e., 40 reads) per binding
event, sensitivity for PET data also decreases as the distance between joint binding events decreases.
However, even in this case, sensitivity of PET data is still significantly higher than that of SET data
with much higher number of reads. Figure 2D displays the number of binding events predicted by dPeak
at different distances between joint binding events when 40 reads correspond to each binding event for
both PET and SET data and evaluates positive predicted value. Results are similar for higher number
of reads (data not shown). With PET ChIP-Seq, dPeak accurately chooses the number of binding events
by BIC out of a maximum of five binding events at any distance between the joint binding events. In
contrast, SET ChIP-Seq predicts less than two binding events when the distance between the events is
less than 150bp.

We present additional simulation results in Section 10 of Text S1 (Fig. S6 in Text S1). These
simulations reveal that even for cases with single binding events, PET has a slight advantage over SET
because it predicts the location of the binding event more accurately. Specifically, PET data always
provides higher resolution compared to SET data regardless of the strength of the binding event, which
we measure by the number of DNA fragments associated with the event. For example, for a binding
event with 300 DNA fragments, the average distance between the predicted and true binding events is
0.6bp with a standard deviation of 0.8bp in the PET data whereas it is 7.6bp with a standard deviation
of 11.8bp in the SET data. Note that although this simulation procedure is based on the assumptions of
dPeak model for PET data, our exploratory analysis and goodness of fit (Fig. S3A in Text S1) show that
these assumptions hold well in the real PET ChIP-Seq data and therefore, these results have significant
practical implications for real ChIP-Seq data.

Analytical investigation with the dPeak generative model explains the differ-
ence in sensitivity between PET and SET data

Lower sensitivity of the SET compared to PET data is mainly driven by the loss of information due to
unknown library size. We describe this information loss by two concepts named invasion and truncation
(Fig. 3A). Top diagram of Figure 3A depicts two closely spaced binding events and a DNA fragment that
is informative for the first binding event (in red) in the PET data. Invasion refers to over-estimation
of the library size and extension of the read to a length longer than the true one. Equivalently, in the
shifting procedure, this corresponds to shifting the read more than necessary. As a result, the read
extended to the estimated library size covers both of the closely spaced binding events in the SET data
and becomes uninformative or less informative for the binding event it corresponds to. Bottom diagram
of Figure 3A also depicts two closely spaced binding events and illustrates truncation which we define as
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under-estimation of the library size. In this case, the displayed DNA fragment is long and spans both
binding events (in red). Therefore, it contributes to estimation of both binding events in the PET data.
In contrast, the read extended to estimated library size only covers the first binding event in the SET
data and, as a result, its contribution to the first binding event is overestimated whereas its contribution
to the second binding event is underestimated. We evaluated the frequency by which fragments with
invasion and truncation arise in SET data with a simulation study. Our results (Table S5 in Text S1)
indicate that as high as 76.8% and 25.5% of the fragments for a typical peak region can be subject to
invasion and truncation with the SET assay.

Figures 3B, C display the probabilities of invasion and truncation, respectively, of a DNA fragment
as a function of the distance between binding events and the variance of the library size. The analytical
calculations are based on the dPeak generative model (Section 12 of Text S1). Probabilities of invasion
and truncation are higher for closely spaced binding events, especially when the library size is shorter
than the estimated library size (150bp in this case). In Figure 3B, the probability of invasion decreases
for very closely spaced binding events, i.e., when the distance between two binding events is less than
75bp. As the distance between the binding events decreases, most DNA fragments cover both binding
events and the configuration in the first diagram of Figure 3A is unlikely to occur. Hence, there is already
insufficient information to predict two binding events even in PET data and relative loss of information
(i.e., invasion) in SET data is insignificant. These concepts describe how information on binding events
can be lost or distorted by the incorrect estimation of the library size in the SET data. Analytical
calculations based on the dPeak generative model show that invasion and truncation influence closely
located binding events the most, especially when the library size is not tightly controlled, i.e., exhibit
large variation (Figs. 3B, C).

dPeak analysis of σ70 PET ChIP-Seq data identifies significantly more Regu-
lonDB supported σ70 binding events than the analysis of SET ChIP-Seq data

We compared the performance of PET and SET sequencing for σ70 factor under the aerobic condition
by generating a ‘quasi-SET data’ by randomly sampling one of the two ends of each paired reads in
PET data and comparing binding events identified from both sets. In order to match number of reads
with SET data for fair comparison, only the half number of paired reads was used to construct PET
data. Comparison with the quasi-SET data controlled for the differences in the sequencing depths of the
original PET and SET samples in addition to the biological variation of the replicates. We then evaluated
the dPeak predictions from the PET and SET analyses using the σ70 factor binding site annotations in
the RegulonDB database as a gold standard. Because a significant number of promoter regions lack
RegulonDB annotations, we evaluated the sensitivity based on the regions that contain at least one
annotated binding site. This corresponds to 539 binding sites in 363 candidate regions that MOSAiCS
identified. Of these 363 regions, 240 harbor only a single annotated binding event. For the regions with
more than one annotated binding event, the average distance between binding events is 126bp. dPeak
analysis of the SET data identifies only 38% of the 539 annotated binding events. In contrast, analysis of
PET data with dPeak detects 66% of the annotated binding sites. Figure 4A displays average sensitivity
as a function of the average distance between annotated binding events for the regions with at least two
RegulonDB annotations. A linear line is superimposed to capture the trend for both data types. Notably,
the lower sensitivity of SET compared to PET is mainly due to closely located binding events.

We also compared prediction accuracies of the PET and SET assays for the 240 regions that harbor
a single annotated binding event. Figure 4B displays resolutions, which we define as the minimum of
distances between predicted and annotated positions of binding events, achieved by the PET and SET
assays. Median resolutions are 11bp (IQR = 16.25bp) and 28.5bp (IQR = 45.25bp) for PET and SET,
respectively. This result indicates that positions of binding events can be more accurately predicted with
the PET assay compared to SET even for regions with a single binding event.
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To further examine the accuracy of the σ70 dPeak predictions, primer extension analysis was performed
to map the transcription start site for eight genes (Figs. S10-13 in Text S1; Table S7 in Text S1). dPeak
analysis of the PET ChIP-Seq data predicts two closely spaced σ70 binding sites in the upstream of
each of these eight genes with the distance between predictions ranging 34bp to 177bp. Seven of these
predictions are not annotated in RegulonDB and thus represent potential novel transcription start sites.
A transcription start site was detected within 21bp of 14 (87.5%) of these σ70 binding site predictions
(Fig. 5A and Table 1), further supporting the accuracy of the dPeak PET predictions.

We treated these 14 validated sites as a gold standard and evaluated the performance of each de-
convolution algorithm for these regions. Figure 5B depicts that dPeak with PET ChIP-Seq data attains
significantly higher resolution compared to SET-based analysis regardless of the deconvolution algorithm
used (p-values of paired t-tests between dPeak using PET data and each of the other methods using
SET data are < 0.01). dPeak with SET ChIP-Seq data has a resolution comparable to or better than
those of the competing algorithms. GPS is not included in this plot because it provides significantly
worse resolution compared to other methods (Fig. S9C in Text S1). Genome-wide comparisons using
the RegulonDB transcription start site annotations as a gold standard also lead to a similar conclusion,
supporting the notion that PET-analysis with dPeak provides the best resolution (Figs. S9A, B in Text
S1).

Figures 4C and 4D display two representative peak regions from these analyses. Figure 4C illustrates
two binding events in the promoter regions of sibD and sibE genes separated by 375bp. In this case, two
peaks are easily distinguishable just by visual inspection and the predictions using both PET and SET
data are comparably accurate. Note that although these two binding events are visually distinguishable,
standard applications of MACS and MOSAiCS identify this region as a single peak. Widths of MOSAiCS
and MACS peaks for this region are 900bp and 2, 042bp, respectively. MACS identifies the position of the
right binding event as the “summit” of this region (position 3,193,216). Figure 4D displays the promoter
region of yejG gene, where the distance between the two experimentally validated binding events is only
122bp. In this case, dPeak application to PET data correctly predicts the number of binding events as
two and identifies the locations of these events within 12bp of the validated sites. In contrast, all of
the SET-based analyses with the deconvolution algorithms (PICS, GPS, GEM) incorrectly predict one
binding event located in the middle of the two experimentally validated binding sites.

dPeak analysis of E. coli σ70 PET ChIP-Seq data identifies closely located
binding sites that are differentially occupied between aerobic and anaerobic
conditions

High resolution identification of binding sites is especially important for differential occupancy analysis
where a protein of interest is profiled under different conditions. Given the high agreement between the
dPeak algorithm and experimentally validated transcription start sites at a subset of promoter regions,
we set out to identify differential promoter usage between the aerobic and anearobic growth conditions by
profiling the E. coli σ70 factor. Results from the dPeak analysis of the aerobic and anaerobic PET data are
summarized in Figure 5C both in the region (i.e., peak) and binding event levels. We identified 868 peaks
and 967 dPeak binding events that were common between the +O2 and −O2 conditions. Interestingly,
only 82 peaks were unique to the +O2 condition but dPeak analysis identified 247 +O2-specific binding
events. Similarly, we identified 130 peaks unique to the −O2 condition while dPeak analysis resulted in
268 −O2-specific binding events. We used the SET ChIP-Seq data from additional biological replicates
under both conditions as independent validation of the results. This independent validation using SET
data identified 40-60% of the binding events identified by dPeak using PET ChIP-Seq data (56.1% of the
common events, 41.3% of the +O2-specific binding events and 42.5% of the −O2-specific binding events).
Table S8 in Text S1 further summarizes these results by cross-tabulating the number of predicted binding
events in each peak across the two conditions. It illustrates that there are indeed many peaks with at least
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one binding event in each condition and different number of binding events across the two conditions.
Figure S14 in Text S1 displays an example of closely located binding sites that are differentially occupied
between aerobic and anaerobic conditions in σ70 PET ChIP-Seq data. These results suggest that dPeak
analysis identified many unique σ70 binding events that could not be differentiated in the peak-level
analysis.

Discussion

High resolution identification of binding sites with ChIP-Seq has profound effects for studying protein-
DNA interactions in prokaryotic genomes and differential occupancy. We evaluated PET and SET ChIP-
Seq assays and illustrated that PET has considerably more power for deciphering locations of closely
spaced binding events. Our data-driven computational experiments indicate that when the distance
between binding events gets smaller than the average library size, SET analysis have notably less power
than the PET analysis. Furthermore, PET provides better resolution than SET even when a region
harbors a single binding event. We developed and evaluated the dPeak algorithm, a model-based approach
to identify protein binding sites in high resolution, with data-driven computational experiments and
experimental validation. dPeak is currently the only algorithm that can utilize both PET and SET ChIP-
Seq data and can accommodate high levels of non-specific binding apparent in deeply sequenced ChIP
samples (Table S3 in Text S1). Our data-driven computational experiments and computational analysis of
experimentally validated σ70 binding sites indicate that it significantly outperforms the currently available
PET ChIP-Seq peak finder SIPeS [24]. Application of dPeak to E. coli σ70 ChIP-Seq data under aerobic
and anaerobic conditions revealed that although many peaks identified by standard application of popular
peak finders might appear as common between the two conditions, a considerable percentage of these
may harbor condition-specific binding events. The high-resolution σ70 binding sites identified by dPeak
could be combined with start-site mapping or consensus-sequence identification to assign transcriptional
orientation to the σ70 binding sites.

The advantages of using the dPeak algorithm are not limited to the study of prokaryotic genomes.
Applications in eukaryotic genomes include identification of the exact locations of binding motifs when
multiple closely located consensus sequences reside in a peak region, studies of cis regulatory modules
(CRM), and refining consensus sequences. Figure S16 in Text S1 displays an example application of
dPeak for differentiating among multiple closely located GATA1 binding sites with consensus WGATAR
within a ChIP-Seq peak region critical for erythroid differentiation in mouse embryonic stem cells (data
from [27]). CRM studies investigate relationships between spatial configurations of binding sites of
multiple transcription factors and gene expression. Relative orders, positions, and distances of binding
sites of multiple factors and their relative strengths are key factors in CRM studies [28]. Because dPeak
facilitates identification of binding sites of transcription factors in high resolution from ChIP-Seq data,
it can enable construction of complex interaction networks among diverse factors across multiple growth
conditions.

We evaluated the performance of dPeak on eukaryotic genome ChIP-Seq data that GPS and PICS
were optimized for. Figure S17 in Text S1 shows the performance comparison results for transcription
factor GABPA profiled in GM12878 cell line from the ENCODE database. It indicates that dPeak
performs comparable to or outperforms GPS and PICS. In the case of sequence-specific factors with well-
conserved motifs such as the GABPA factor, we observed that dPeak prediction can be further improved
in a straightforward way by incorporating sequence information. Figure S17 in Text S1 illustrates that
dPeak with incorporated sequence information performs comparable to GEM and identifies the GABPA
binding sites with high accuracy.

Recently, ChIP-exo assay [29], a modified ChIP-Seq protocol using exonuclease, has been proposed
as a way of experimentally attaining higher resolution in protein binding site identification. Because the
ChIP-exo protocol is new and relatively laborious, there are not yet many publicly available ChIP-exo
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datasets. We utilized ChIP-exo of CTCF factor in human HeLa-S3 cell line [29] and compared their
binding event predictions with dPeak predictions on SET ChIP-Seq data of CTCF in the same cell line.
Figure S18 in Text S1 illustrates that dPeak using SET ChIP-Seq data provides higher resolution than
ChIP-exo data and that dPeak can be readily utilized for ChIP-exo analysis. Furthermore, it also indicates
that dPeak performs comparable to or outperforms currently available methods such as GPS and GEM
for both ChIP-exo and SET ChIP-Seq data. Although the real power of the ChIP-exo technique will be
revealed as more ChIP-exo datasets are produced and compared with ChIP-Seq datasets, our results with
the currently available data suggest that analyzing ChIP-Seq data with powerful deconvolution methods
such as dPeak might perform as well as ChIP-exo.

We implemented dPeak as an R package named dPeak. dPeak utilizes the fast estimation algorithm
we developed and parallel computing. Analysis of the σ70 data (∼ 1, 000 candidate regions, each with
∼ 2, 300 reads on average) using our current sub-optimal implementation of dPeak takes about 5 minutes
using 20 CPUs (2.2 Ghz) when up to 5 binding events are allowed in each candidate region, while
it takes about 20 minutes to run PICS and GPS (also using 20 CPUs). Similarly, analysis of human
ENCODE POL2-H1ESC data (∼ 14, 000 candidate regions, each with ∼ 140 reads on average) takes
about 10 minutes for dPeak, while it takes 100 and 30 minutes for GPS and PICS, respectively. dPeak is
currently available at http://www.stat.wisc.edu/~chungdon/dpeak/ and will be contributed to public
repositories such as Bioconductor [30] and Galaxy Tool Shed [31] upon publication.
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Materials and Methods

Growth conditions.

All strains were grown in MOPS minimal medium supplemented with 0.2% glucose [32] at 37◦C and
sparged with a gas mix of 95% N2 and 5% CO2 (anaerobic) or 70% N2, 5% CO2, and 25% O2 (aerobic).
Cells were harvested during mid-log growth (OD600 of ∼ 0.3 using a Perkin Elmer Lambda 25 UV/Vis
Spectrophotometer). WT E. coli K-12 MG1655 (F−, λ−, rph− 1) was used for the experiments (Kiley
lab stock).

ChIP experiments.

ChIP assays were performed as previously described [33], except that the glycine, the formaldehyde, and
the sodium phosphate mix were sparged with argon gas for 20 minutes before use to maintain anaerobic
conditions when required. Samples were immunoprecipitated using 2µL of RNA Polymerase σ70 antibody
from NeoClone (W0004).

Library preparation, sequencing, and mapping of sequencing reads.

For ChIP-Seq experiments, 10ng of immunoprecipitated and purified DNA fragments from the aerobic
and anaerobic σ70 samples (one biological sample for both aerobic and anaerobic growth conditions),
along with 10ng of input control (two biological replicates for anaerobic Input and one biological sample
for aerobic Input), were submitted to the University of Wisconsin-Madison DNA Sequencing Facility
for ChIP-Seq library preparation. Samples were sheared to 200 − 500nt during the IP process to fa-
cilitate library preparation. All libraries were generated using reagents from the Illumina Paired End
Sample Preparation Kit (Illumina) and the Illumina protocol “Preparing Samples for ChIP Sequenc-
ing of DNA” (Illumina part # 11257047 RevA) as per the manufacturer’s instructions, except products
of the ligation reaction were purified by gel electrophoresis using 2% SizeSelect agarose gels (Invitro-
gen) targeting 275bp fragments. After library construction and amplification, quality and quantity were
assessed using an Agilent DNA 1000 series chip assay (Agilent) and QuantIT PicoGreen dsDNA Kit
(Invitrogen), respectively, and libraries were standardized to 10µM . For PET ChIP-Seq data, clus-
ter generation was performed using an Illumina cBot Paired End Cluster Generation Kit (v3). Paired
reads, 36bp run was performed for each end, using 200bp v3 SBS reagents and CASAVA (the Illumina
pipeline) v 1.8.2, on the HiSeq2000. For SET ChIP-Seq data, cluster generation was performed using
an Illumina cBot Single Read Cluster Generation Kit (v4) and placed on the Illumina cBot. A single
read, 32bp run was performed, using standard 36bp SBS kits (v4) and SCS 2.6 on an Illumina Genome
Analyzer IIx. Base calling was performed using the standard Illumina Pipeline version 1.6. Sequence
reads were aligned to the published E. coli K-12 MG1655 genome (U00096.2) using the software pack-
ages SOAP [34] and ELAND (within the Illumina Genome Analyzer Pipeline Software), allowing at
most two mismatches. PET experiments yielded 13.8 million (M) and 22.3M mappable paired 36mer
reads and SET yielded 7.4M and 11.5M mappable 32mer reads for aerobic and anaerobic conditions,
respectively. Control input experiments, generated with SET sequencing, resulted in 4.6M and 10.2M
mappable 32mer reads for the aerobic and anaerobic conditions, respectively. Raw and aligned data files
are available at ftp://ftp.cs.wisc.edu/pub/users/keles/dPeak and are being processed by GEO for
accession number assignment.

dPeak model.

For PET data, if a DNA fragment (paired reads) belongs to g-th binding event, we model its leftmost
position conditional on its length Li as Uniform distribution between µg − Li + 1 and µg, where µg
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is the position of g-th binding event. Lengths of DNA fragments, Li, are modeled using the empirical
distribution obtained from actual PET data. For SET data, if a read belongs to g-th binding event, we
model its 5′ end position conditional on its strand as Normal distribution. Specifically, if a read is in
the forward strand, its 5′ end position is modeled as Normal distribution with mean µg − δ and variance
σ2. 5′ end positions for reverse strand reads are modeled similarly with Normal distribution with mean
µg + δ and variance σ2. Parameters δ and σ2 are common to all binding event components in each
candidate region. Strands of reads are modeled as Binomial distribution. Background reads are assumed
to be uniformly distributed over the candidate region that they belong to. Parameters are estimated
via the Expectation-Maximization (EM) algorithm [35]. Additional details on the dPeak model and the
estimation algorithm for the PET and SET settings are available in Sections 2 and 3 of Text S1.

Method comparison for SET ChIP-Seq data.

We compared the sensitivity and the number of predictions of dPeak with those of PICS [11], GPS [22],
and GEM [23]. Sensitivity is the proportion of regions for which both of the two true binding events
are correctly identified. A binding event is considered as ‘identified’ if the distance between the actual
binding event and the predicted position is less than 20bp. Note that we chose a more stringent criteria
than the 100bp used by GPS for defining true positives because 100bp is not high enough resolution for
prokaryotic genomes. For the PICS algorithm, we used the R package PICS version 1.10, which is available
from Bioconductor (http://www.bioconductor.org/packages/2.10/bioc/html/PICS.html). For the
GPS algorithm, we used its Java implementation version 1.1 from http://cgs.csail.mit.edu/gps/. In
the performance comparisons using σ70 ChIP-Seq data, we also incorporated GEM, a recently modified
and extended version of GPS, which incorporates genome sequence of the peaks to improve binding
event identification. For the GEM algorithm, we used its Java implementation version 0.9 from http:

//cgs.csail.mit.edu/gem/. We downloaded the synthetic data used for the method comparisons from
http://cgs.csail.mit.edu/gps/ and its description is provided in Supplementary information of the
GPS paper [22]. This synthetic data consists of “chrA” with 1,000 regions that harbor two closely spaced
binding events and “chrB” to “chrK” with a total of 20,000 regions with a single binding event. We
evaluated performances of the methods on joint and single binding event regions separately so that we
could assess sensitivity and specificity for each of these cases. dPeak identified candidate regions using
the conditional binomial test [6] with a false discovery rate of 0.05 by applying the Benjamini-Hochberg
correction [36]. These regions from dPeak were also explicitly provided to the GPS and GEM algorithms
as candidate regions. Candidate regions for PICS were identified using the function segmentReads() in
the PICS R package (default parameters). Default tuning parameters were used during model fitting for
all the methods.

Simulation studies to compare PET and SET ChIP-Seq data.

We considered distances between binding sites ranging from 50bp to 200bp which characterize the typical
binding event spacing in E. coli. We generated and assigned 300 DNA fragments to each of two binding
events as follows. For each DNA fragment, we drew the length (Li) from the distribution of library
size, P (L), estimated empirically from the actual σ70 PET ChIP-Seq data and group index (Zi) from
multinomial distribution with parameters (0.5, 0.5). Then, for given a library size and group index
(Zi = g), leftmost position of the paired reads (Si) was generated from Uniform distribution between
µg − Li + 1 and µg, where µg is the position of g-th binding event. Rightmost position was assigned as
Ei = Si+Li−1. SET data was generated by randomly sampling one of two ends from each of these paired
reads. For the SET analysis, average library size was assumed to be 150bp. Then, only half of the total
number of paired reads was used to construct PET data, in order to match number of reads with SET
data for fair comparison. In addition, we randomly assigned 10 DNA fragments to arbitrary positions
within the candidate region to generate non-specific binding (background) reads. The sensitivity and
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the number of predictions were summarized over 100 simulated datasets generated by this procedure. A
binding event was considered as ’identified’ if the distance between the binding event and the predicted
position is less than 20bp. We repeated these PET versus SET analyses by comparing all the PET data
with SET data constructed from selecting one of two ends of each read pair and obtained little or no
change in the results (data not shown).

dPeak analysis of σ70 PET and SET ChIP-Seq data.

We identified candidate regions, i.e., peaks with at least one binding event, using the MOSAiCS algorithm
[10] (two-sample analysis with a false discovery rate of 0.001). In each candidate region, we fitted the
dPeak model, which is a mixture of g∗ binding event components and one background component (Fig.
1C). In the current analysis, up to five binding event components (gmax = 5) were considered. The
optimal number of binding events was chosen with BIC for each candidate region. We utilized top 50% of
the predicted binding events from each condition for the comparison between the aerobic and anaerobic
conditions. Overall conclusions remained the same when the full set of predicted binding events are
considered.

Primer extension experiments.

Total RNA was isolated as previously described [37]. Oligonucleotide primers (Table S7 in Text S1)
were labeled at the 5′ end using [γ-32P]ATP (3,000 Ci/mmol) and T4 polynucleotide kinase (Promega)
followed by purification with a G25 Sephadex Quick Spin Column (GE). Labeled primer (0.2 pmol)
was annealed with 7-30 µg total RNA in 20 µl and extended with avian myeloblastosis virus reverse
transcriptase (Promega) as described by the manufacturer, except that actinomycin D was present at 100
ug/ml [38]. Primer extension experiments were implemented for spr (8 µg +O2 RNA), dcuA (8 µg −O2

RNA), serC (8 µg +O2 RNA), aroL (30 µg and 15 µg −O2 RNA for P1 and P2, respectively), yejG (30
µg +O2 RNA), hybO (30 µg −O2 RNA), ybgI (9 µg +O2 RNA), and ptsG (9 µg +O2 RNA). A dideoxy
sequencing ladder was electrophoresed in parallel with the primer extension products on a 8% (wt/vol)
polyacrylamide gel containing 7 M urea. In cases where the transcription start site could be assigned to
one of two nucleotides, preference was given to the purine nucleotide.

Software availability.

The dPeak algorithm is implemented as an R package named dpeak and is freely available from http://

www.stat.wisc.edu/~chungdon/dpeak/. We will commit dpeak to Bioconductor (http://www.bioconductor.
org) and Galaxy Tool Shed (http://toolshed.g2.bx.psu.edu) upon publication.
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Figure Legends

Figure 1. SET and PET ChIP-Seq data structure and the dPeak algorithm. (A)
Description of paired-end tag (PET) and single-end tag (SET) ChIP-Seq data. Directions
of arrows indicate strands of reads. (B) Promoter region of the cydA gene contains five
closely spaced σ70 binding sites. Blue solid and red dotted curves indicate the number of
extended reads mapping to each genomic coordinate in σ70 PET and SET ChIP-Seq data,
respectively. Black vertical lines mark σ70 binding sites annotated in the RegulonDB
database. (C) Pictorial depiction of the dPeak algorithm.

Figure 2. Sensitivity and positive predicted value comparisons of high resolution binding
site identification algorithms and dPeak performance on PET vs. SET data. (A, B)
Comparison of dPeak with PICS and GPS in computational experiments designed for the
GPS algorithm. (A) dPeak has higher sensitivity than both PICS and GPS for SET
ChIP-Seq data, especially when the distance between binding events is less than the
library size. (B) When there are two true binding events in each region, dPeak on average
generates more than one prediction and results in a comparable positive predictive value
to those of PICS and GPS. PICS and GPS on average generate only one prediction.
Shaded areas around each line indicate confidence intervals. (C, D) Comparison of PET
and SET assays with dPeak. (C) For SET ChIP-Seq data, the sensitivity of dPeak
significantly decreases as the distance between the locations of the events decreases. In
contrast, sensitivity from PET ChIP-Seq data is robust to the distance between closely
located binding events. The sensitivity for both PET and SET data also decreases as
number of reads decreases. (D) dPeak on average predicts two binding events with PET
ChIP-Seq data at any distance between the two joint binding events and results in
excellent positive predicted value. SET ChIP-Seq data predicts significantly fewer number
of binding events as the distance between binding sites decreases. In (C) and (D), n
indicates number of reads corresponding to each binding event and n/2 DNA fragments
are used for PET data to match the number of reads between PET and SET data. (D)
shows the case that 40 reads correspond to each binding event and results are similar for
other number of reads. Shaded areas around each line indicate confidence intervals.
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Figure 3. Illustration of loss of information in SET assay compared to PET assay. (A)
Concepts of invasion (top diagram) and truncation (bottom diagram). In each diagram,
the first and second lines indicate PET and SET ChIP-Seq data, respectively. Red
horizontal line depicts estimated library size in the SET data. Red circles denote the
protein binding event that the read corresponds to. In the case of invasion, this read
becomes uninformative regarding the protein binding event whereas with truncation, the
read provides incorrect information about the protein binding event. (B) Probability of
invasion as a function of distance between binding sites based on the dPeak generative
model. (C) Probability of truncation as a function of distance between binding sites based
on the dPeak generative model. In (B) and (C), sigma(L) refers to estimated standard
deviation of the library size distribution in σ70 PET ChIP-Seq data and sigma(L) * a
indicates that the simulation uses standard deviation of sigma(L) * a to generate library
size. Unshaded areas depict typical range of library sizes.

Figure 4. dPeak analyses and evaluations of σ70 PET and SET ChIP-Seq data based on
RegulonDB annotated σ70 factor binding sites. (A) The numbers of correctly identified
binding sites are plotted as a function of the distances between the RegulonDB reported
binding events. Linear lines (solid for PET, dashed for SET) through the data points
depict general trends. (B) Resolution comparisons of the predictions for the regions with
a single annotated binding event. (C, D) PET (blue) and SET (red) coverage plots for
representative examples of predicted σ70 binding sites. Blue and red dotted vertical lines
indicate predictions using PET and SET data, respectively. Black solid vertical lines
indicate the annotated binding sites in (C) and experimentally validated binding sites in
(D).

Figure 5. Experimental validation and analysis of differential occupancy using dPeak. (A)
Validation of a subset of transcription start site predictions using primer extension.
Primers (Table S7 in Text S1) complementary to the mRNA sequence ∼ 30 − 50bp
downstream of each predicted start site were 5′ end labeled with 32P and 0.2 pmol was
used for each 20 µl assay. RNA was isolated from either aerobic (+O2) or anaerobic (−O2)
conditions. The sequencing ladders (G, A, T and C) were generated by dideoxy
sequencing. Small arrows and filled circles depict the primer extension products. In
addition to dcuA T2, a second, less abundant primer extension product (*) was identified
with dcuA P2. Since this product was not identified with dcuA P1, it is possible that it
corresponds to the start site of an sRNA which terminates upstream of the priming
location of P1. (B) Resolution comparison of the high resolution binding site identification
algorithms, using experimentally validated sites as a gold standard (extended version in
Figure S9C in Text S1). (C) Summary of the analyses of +O2 and −O2 PET ChIP-Seq
data. The 82, 868, and 130 candidate regions (the first diagram) cover 1%, 11%, and 1%
of the E. coli genome, respectively. In the bottom diagram, the numbers in parentheses
depict the set of binding events that were independently validated with predictions from
the analysis of biological replicate SET ChIP-Seq.
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Tables

Table 1. Experimental validation of the binding events predicted by dPeak analysis of σ70

PET ChIP-Seq data.

Gene a Predicted position True position b Distance Primer b Condition c

yejG 2,276,288 2,276,299 11 P1 Aerobic
yejG 2,276,432 2,276,419 13 P2 Aerobic
spr 2,267,945 2,267,942 3 P1 Aerobic
spr 2,267,825 2,267,833 8 P2 Aerobic
dcuA 4,364,876 4,364,866 10 P1 Anaerobic
dcuA 4,364,975 4,364,974 1 P2 Anaerobic
aroL 405,583 405,579 4 P1 Anaerobic
aroL 405,489 405,504 15 P2 Anaerobic
serC 956,823 956,802 21 P1 Aerobic
serC 956,789 (Not validated) N/A Aerobic
hybO 3,144,382 3,144,385 3 P1 Anaerobic
hybO 3,144,438 (Not validated) N/A Anaerobic
ybgI 742,036 742,030 6 P1 Aerobic
ybgI 741,859 741,874 d 15 P1 Aerobic
ptsG 1,157,005 1,156,989 16 P1 Aerobic
ptsG 1,156,866 1,156,849 d 17 P1 Aerobic

(a) The genes with promoters harboring the predicted binding events. (b) The true positions were
determined by primer extension experiments (Fig. 5A). (c) The conditions under which binding events
are validated. (d) We report results based on the RegulonDB annotations for ybgI and ptsG genes as the
primer extension products for these genes were too large to accurately map with the sequencing ladder.
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1 Analysis of the E. coli σ70 PET and SET ChIP-

Seq Data from Aerobic and Anaerobic Condi-

tions by MACS and MOSAiCS

Using MACS (version 1.3.4) and MOSAiCS (version 1.4.0), we performed two sample
analysis of the E.coli σ70 PET and SET ChIP-Seq data (Table S1). For PET
ChIP-Seq data, MACS first finds the best pairs of 5′ and 3′ reads from multiple
alignment results. Then, only the 5′ read position is kept for every pair and shifted
to its 3′ direction by 100bp without estimation of the shift parameter. Then, the
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standard MACS analysis [1] is applied to the processed data. In MOSAiCS, when
bin-level data are constructed, each read pair is connected and this connected read
pair contributes to all the bins it overlaps. The standard MOSAiCS analysis [2] is
applied to this bin-level data. Detailed comparison of the MACS and MOSAiCS
peaks reveal that each MACS peak on average has 1.54 to 2.23 MOSAiCS peaks
(Table S2).

Experiment PET SET
MACS MOSAiCS MACS MOSAiCS

+O2 270/3202/22 950/450/11.3 534/2550/34 1023/450/11.3
−O2 132/4327/14 993/450/11.8 469/2890/34 1014/450/11.4

Table S1: Analysis of the PET and SET data with MACS and MOSAiCS. Reported
numbers a/b/c refer to a: number of peaks; b: median peak width; c: percent
genome coverage.

Experiment Mean (Std)
PET, +O2 1.82 (0.93)
PET, −O2 2.23 (1.10)
SET, +O2 1.54 (0.80)
SET, −O2 1.65 (0.93)

Table S2: Mean number of MOSAiCS peaks overlapping each MACS peak.
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Figure S1: Coverage plots of simulated read data generated based on cydA pro-
moter parameters estimated by dPeak: (a) single binding event; (b, c) three bind-
ing events. dPeak analysis of PET data under aerobic conditions generated three
binding event predictions for the cydA promoter region. Consecutive distances be-
tween these binding events are 110bp and 120bp, respectively. The numbers of DNA
fragments corresponding to each event are 180, 1035, and 180 (total of 1395), re-
spectively. (a) One simulated binding event (depicted with the black vertical line)
with 1395 reads. (b) Three simulated binding events at locations 250, 510, and 750,
and with numbers of reads 180, 1035, and 180. (b) Three simulated binding events
at locations 400, 510, and 630, and with numbers of reads 180, 1035, and 180.
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2 The dPeak Model

Consider a peak with n reads (DNA fragments) and let 1 and m denote the start
and end positions of the peak region, respectively. Let g∗ denote the number of
binding events within the region and µg be the position of g-th binding event, g =
1, 2, · · · , g∗. Without loss of generality, assume that 1 ≤ µ1 < µ2 < · · · < µg∗ ≤ m
for identifiability. In both PET and SET data, a fraction of reads will denote
background noise. We assume that background reads are uniformly distributed over
the whole candidate region and denote the background component as g = 0.

Let πg denote the strength of g-th binding event, g = 0, 1, 2, · · · , g∗. π0 indicates
degree of non-specific binding in the candidate region. Let Zi be the group index
of i-th DNA fragment and Zi ∈ {0, 1, 2, · · · , g∗}. For notational convenience, we
denote Zig = 1 {Zi = g}, where 1 {A} is an indicator function of event A. We

assume that P (Zi = g) = P (Zig = 1) = πg, g = 0, 1, 2, · · · , g∗ and
∑g∗

g=0 πg = 1.
Note that the dPeak model allows each DNA fragment to overlap with multiple
binding events. The unobserved Zi variable ensures that each fragment that is not
part of the background overlaps with at least one binding event.

2.1 Generative model for paired-end tag (PET) data

Let Si and Li be the start position and length of i-th DNA fragment, respectively.
If we denote end position of i-th fragment as Ei, then Ei = Si+Li−1 by definition.
In the PET data, we directly observe Si and Ei (equivalently, Si and Li) for each
DNA fragment. Moreover, distribution of library size, P (L), can be empirically
estimated from the PET data and hence, we treat P (L) as known. We denote the
whole candidate region as C = {2− Li ≤ Si ≤ m} and the region corresponding to
g-th binding event as Bg = {µg − Li + 1 ≤ Si ≤ µg}. If i-th fragment is generated
from g-th binding event (Zi = g), then for given Li, we assume that Si is generated
from the following Uniform-like distribution:

P (s|l;µg, γ) =

[
(1− γ)

l

]1{s∈Bg} [ γ

m− 1

]1{s∈C\Bg}

,

where γ denotes the weight assigned to the area outside of the region corresponding
to g-th binding event.

The main purpose to using P (s|l;µg, γ) is to make it easier to escape from local
maxima during the early iterations of EM algorithm, by making boundaries of Bg

“softer” than Uniform distribution. As shown in Section 3.1, γ estimate is essentially
obtained as the proportion of DNA fragments that belong to one of the binding
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events (i.e., not correspond to background) but do not overlap positions of binding
events (µg). As iterations progress in the EM algorithm, estimates of µg improve
and number of such DNA fragments decreases. As a result, in the later iterations
of EM algorithm, γ estimate becomes close to zero and P (s|l;µg; γ) converges to
uniform distribution.

We summarize the fragment generating process as follows:

1. Draw group index of the DNA fragment, (Zi0, Zi1, Zi2, · · · , Zig∗), from
Multinomial(1, (π0, π1, π2, · · · , πg∗)).

2. Draw library size, Li, from known distribution P (L).

3. Draw start position of the DNA fragment, Si, conditional on Zi and Li:

(a) If the DNA fragment belongs to g-th binding event (Zig = 1, 1 ≤ g ≤ g∗),
draw start position of the fragment, Si, from P (S|L;µg, γ).

(b) If the DNA fragment is from background (Zi0 = 1), draw Si from Uniform(1−
Li + 1,m).

2.2 Generative model for single-end tag (SET) data

In the SET data, one of two ends of each DNA fragment is randomly selected and
sequenced. Hence, Li for each fragment is not observable; however, positions and
strands of the reads corresponding to the sequenced ends are known (denoted by Ri

and Di, respectively). We assume that Di follows Bernoulli distribution with known
parameter pD.

Exploratory analysis indicates that these read distributions can be well approx-
imated with Normal distribution. Specifically, we assume that

(R|Z = g,D = 1;µg, δ, σ
2) ∼ N(µg − δ, σ2),

and

(R|Z = g,D = 0;µg, δ, σ
2) ∼ N(µg + δ, σ2).

Note that δ corresponds to the half of the distance between modes of the bind-
ing event reads in forward and backward strands. We summarize the SET read
generating process as follows:

1. Draw group index of the read, (Zi0, Zi1, Zi2, · · · , Zig∗), from
Multinomial(1, (π0, π1, π2, · · · , πg∗)).
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2. Draw strand of the read, Di, from Bernoulli(pD).

3. Draw position of the read, Ri, conditional on Zi and Di:

(a) If the read belongs to g-th binding event (Zig = 1, 1 ≤ g ≤ g∗) and it
is in the forward strand (Di = 1), draw position of the read, Ri, from
Normal(µg − δ, σ2).

(b) If the read belongs to g-th binding event (Zig = 1, 1 ≤ g ≤ g∗) and
it in the reverse strand (Di = 0), draw position of the read, Ri, from
Normal(µg + δ, σ2).

(c) If the read is from background (Zi0 = 1) and it is in the forward strand
(Di = 1), draw position of the read, Ri, from Uniform(1− β + 1,m).

(d) If the read is from background (Zi0 = 1) and it is in the reverse strand
(Di = 0), draw position of the read, Ri, from Uniform(1,m+ β − 1).
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3 The dPeak Algorithm

We estimate parameters of the models for PET and SET data using the Expectation-
Maximization (EM) algorithm [3]. We do not have explicit solutions in the M-step
for the PET model. Maximization with respect to (µ1, µ2, · · · , µg∗) requires search-
ing over g∗-dimensional space and O(mg∗) operations, which is computationally
prohibitive. In order to boost up computation and stabilize estimation, we em-
ploy the Expectation-Conditional-Maximization (ECM) algorithm [4]. The ECM
algorithm requires only searching over one-dimensional space, [1,m], for the max-
imization with respect to each µg while keeping the other parameters fixed. This
reduces the computation time to O(mg∗) operations. Our simulation studies show
that this approach is computationally efficient and provides fast convergence with
accurate and stable estimation (data not shown). We have explicit solutions in the
M-step for the SET model.

Although the EM algorithm has desirable convergence properties, it does not
guarantee convergence to the global maximum when there are multiple maxima. As
a result, the final estimates depend upon the initial values [5, 6]. In order to address
this issue, we consider the stochastic EM algorithm [7], which is a special case of
Monte Carlo EM [5, 6], for the first half of iterations. The stochastic EM algorithm
allows a chance of escaping from a current path of convergence to a local maximizer
to other paths [5]. After certain number of iterations, we switch to the ordinary
version of our EM algorithm because the stochastic EM is not desirable when the
process is near to convergence to a suitable local maximizer [5].

In the EM implementation, non-identifiability due to overfitting (fitting too many
components in the model) is problematic and should be avoided [8, 5]. We address
this issue in the during the EM iterations as follows. If the distance between two
binding events is shorter than the size of the binding site (defined by the length
of the known or predicted consensus motif), we combine these two components
and consider it as one component during the remaining iterations. For the σ70

application, we set this parameter to 20bp since σ70 binds to −35bp and −10bp
from transcription start site. Moreover, if the strength of a binding event is too
weak (πg < 0.01), this component is also removed from further consideration in the
remaining iterations.
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3.1 The dPeak algorithm for PET data

Given the generative model for PET data described in Section 2.1, we have the
following complete likelihood:

LC =
∏n

i=1 PL(Li)

{
π0

1 {1− Li + 1 ≤ Si ≤ m}
m+ Li − 1

}Zi0

g∗∏
g=1

{
πg

[
(1− γ)

Li

]1{Si∈Bg} [ γ

m− 1

]1{Si∈C\Bg}
}Zig

Let S = (S1, S2, · · · , Sn), L = (L1, L2, · · · , Ln), and

Θ(t) =
(
π
(t)
0 , π

(t)
1 , π

(t)
2 , · · · , π(t)

g∗ , µ
(t)
1 , µ

(t)
2 , · · · , µ

(t)
g∗ , γ(t)

)
. Then, the EM algorithm for

the PET data is obtained as follows:

E-step:
For g = 1, 2, · · · , g∗,

z
(t)
ig = E

(
Zig|S,L,Θ(t)

)
=

π
(t)
g

A

[
(1− γ(t))

Li

]1{Si∈B
(t)
g

} [
γ(t)

m− 1

]1{Si∈C\B
(t)
g

}
,

and for g = 0,

z
(t)
i0 = E

(
Zi0|S,L,Θ(t)

)
=

π
(t)
0

A(m+ Li − 1)
,

where A is an appropriate normalizing constant.

M-step:
For g = 1, 2, · · · , g∗, we obtain

µ(t+1)
g = argmaxµg

n∑
i=1

z
(t)
ig

[
1 {Si ∈ Bg} log

(1− γ(t))
Li

+ 1 {Si ∈ C\Bg} log
γ(t)

m− 1

]
.

and

π(t+1)
g =

1

n

n∑
i=1

z
(t)
ig .
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Similarly,

π
(t+1)
0 =

1

n

n∑
i=1

z
(t)
i0 .

Moreover,

γ(t+1) =
1

n

n∑
i=1

g∗∑
g=1

z
(t)
ig 1
{
Si ∈ C\B(t+1)

g

}
.

This algorithm has the following intuitive interpretation. In the E step, each frag-
ment is allocated to a binding event or background component based on whether or
not the fragment overlaps the actual binding events. When the fragment overlaps
with more than one binding events, it is assigned to each of these events in a frac-
tional manner. The fractions are proportional to relative strengths of the binding
events (πg). In the M step, location of each binding event (µg) is essentially up-
dated to the position with the largest number of aligning fragments. In this step,
fragments with shorter library size (Li) have more voting power. This is intuitive
from the experimental procedure point of view because it is easier to identify the
actual position of a binding event with shorter fragments.

3.2 The dPeak algorithm for SET data

Given the generative model for SET data described in Section 2.2, we have the
following complete likelihood:

LC =
∏n

i=1 {π0
[
pD

1 {1− β + 1 ≤ Ri ≤ m}
m+ β − 1

]1{Di=1}

[
(1− pD)

1 {1 ≤ Ri ≤ m+ β − 1}
m+ β − 1

]1{Di=0}

}Zi0

∏g∗
g=1 {πg

1√
2π(σ2)

[
pD exp

{
− 1

2(σ2)
(Ri − (µg − δ))2

}]1{Di=1}

[
(1− pD) exp

{
− 1

2(σ2)
(Ri − (µg + δ))2

}]1{Di=0}

}Zig

Let R = (R1, R2, · · · , Rn), D = (D1, D2, · · · , Dn), and
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Θ(t) =
(
π
(t)
0 , π

(t)
1 , π

(t)
2 , · · · , π(t)

g∗ , µ
(t)
1 , µ

(t)
2 , · · · , µ

(t)
g∗ , δ(t), (σ2)(t)

)
. Then, the EM algo-

rithm for the SET data is obtained as follows:

E-step:
For g = 1, 2, · · · , g∗,

z
(t)
ig = E(Zig|R,D,Θ(t))

=
π
(t)
g

A
√

2π(σ2)(t)

[
pD exp

{
− 1

2(σ2)(t)
(Ri − (µ(t)

g − δ(t)))2
}]1{Di=1}

[
(1− pD) exp

{
− 1

2(σ2)(t)
(Ri − (µ(t)

g + δ(t)))2
}]1{Di=0}

,

and for g = 0,

z
(t)
i0 = E

(
Zi0|R,D,Θ(t)

)
=

π
(t)
0 p

1{Di=1}
D (1− pD)1{Di=0}

A(m+ β − 1)
,

where A is an appropriate normalizing constant.

M-step:
For g = 1, 2, · · · , g∗, we obtain

µ(t+1)
g =

1∑n
i=1 z

(t)
ig

n∑
i=1

z
(t)
ig

[
(Ri + δ(t))1 {Di = 1}+ (Ri − δ(t))1 {Di = 0}

]
,

and

π(t+1)
g =

1

n

n∑
i=1

z
(t)
ig .

Similarly,

π
(t+1)
0 =

1

n

n∑
i=1

z
(t)
i0 .

Moreover,

δ(t+1) =
1

n

n∑
i=1

g∗∑
g=1

z
(t)
ig

[
(µ(t+1)

g −Ri)1 {Di = 1}+ (Ri − µ(t+1)
g )1 {Di = 0}

]
,
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and

(σ2)(t+1) =
1

n

n∑
i=1

g∗∑
g=1

z
(t)
ig [(Ri − (µ(t+1)

g − δ(t+1)))21 {Di = 1}+

(Ri − (µ(t+1)
g + δ(t+1)))21 {Di = 0}].

This algorithm has the following intuitive interpretation. In the E step, each
read is allocated to a binding event or background component based on the distance
between the binding events and the read shifted by δ towards its 3′ direction. Both
the peak shape (pD, δ, and σ2) and the relative strengths of the binding events (πg)
are considered in this allocation. In the M step, location of each binding event (µg) is
updated to the averaged position of reads corresponding to the binding event, after
they are shifted by δ towards their 3′ direction. One peak shape is estimated for each
candidate region through δ and σ2. Optimal shift of reads from their corresponding
binding events, δ, is updated to the averaged distance between the location of each
binding event and the positions of the reads corresponding to this binding event,
averaged over binding events in the region. Dispersion of the reads around their
corresponding binding events, σ2, is updated to the variance of the position of reads
corresponding to the binding event around location of each binding event (µg), after
they are shifted by δ to their 3′ direction, averaged over binding events in the region.

3.3 Model selection.

In practice, determining the optimal number of binding events, g∗ in each candidate
region can be cast as a model selection problem. Model selection based on the
Bayesian Information Criterion (BIC) [9] is a popular choice in mixture modeling
and has shown superior performance in diverse applications [10, 11]. Therefore,
for pre-specified gmax, we fit models for each of g∗ = 1, 2, · · · , gmax binding event
components and choose the model with the BIC value corresponding to the first
local minimum, as the final model.

Choice of gmax is an important issue in model selection. gmax should be large
enough so that all binding events in each candidate region can be considered. On
the other hand, setting gmax larger than necessary should also be avoided in order to
prevent choosing a model due to ill-conditioning rather than a genuine indication of
a better model [10, 11]. For appropriate choice of gmax in the current application, we
checked the number of known binding events in each candidate region of σ70 data
from the RegulonDB database[12] (http://regulondb.ccg.unam.mx) and found
that 92% of the peaks have either one or two binding sites within the peak region.

11
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Based on this exploratory analysis, we set gmax = 5 as the default value and use it
for all the analysis described in the manuscript. For other applications, appropriate
choice of gmax might depend on the protein type and experimental conditions.
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4 Estimation of the Optimal Shift in the dPeak

Algorithm

Figure S2a displays the density of library size in the σ70 PET ChIP-Seq data. The
corresponding mean and standard deviations are 192.01bp and 26.90bp, respectively.
Figure S2b shows the estimated density of 2δ in the σ70 quasi-SET ChIP-Seq data,
where δ is the half of the distance between modes of forward and reverse strand
reads belonging to each binding event in the candidate region. Mean and standard
deviation of 2δ are 187.36bp and 9.04bp, respectively. Figure S2c depicts the scatter
plot of library size vs. estimated 2δ and it indicates that, overall, we have larger
2δ estimates for the candidate regions with larger average library sizes. We observe
the same pattern in Figure S2d, which displays a similar plot for PET and SET
simulation data.
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Figure S2: (a) Empirical density of the library size in the σ70 PET ChIP-Seq data.
(b) Density of estimated 2δ in the σ70 quasi-SET ChIP-Seq data. (c) Scatter plot
of library size vs. estimated 2δ in the σ70 PET and quasi-SET ChIP-Seq data. (d)
Scatter plot of library size vs. estimated 2δ in PET and SET simulation data. In
(c) and (d), the solid line and shades indicate a robust linear model (RLM) fit and
the corresponding confidence intervals, respectively.
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5 Diagnostics of the dPeak Model

Figures S3a, b display the goodness of fit (GOF) plots of the analysis displayed
in Figure 4C for the PET and quasi-SET ChIP-Seq data, respectively. GOF plots
compare the empirical distribution of the read positions with that obtained by sim-
ulating from estimated model parameters. These GOF plots are representative of
the GOF plots for other candidate regions and they indicate that the dPeak models
fit the data well.
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Figure S3: Goodness of fit (GOF) plot of the analysis displayed in Figure 4C, for
(a) the PET and (b) the quasi-SET ChIP-Seq data, respectively.
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6 Comparison of deconvolution algorithms
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7 Effects of Merging the Step in PICS for Closely

Spaced Binding Events

PICS [13] generates initial predictions for locations of protein binding events and
then merges initial predictions that have overlapping “binding event neighborhoods”.
A binding event neighborhood is defined as the predicted location of a binding event
extended by three standard errors of the shift parameter estimate to both sides. In
order to evaluate the effect of merging on PICS binding event predictions, we re-
generated results in Figures 2A, B without the merging step for PICS. Figures S4a,
b show that PICS without merging step performs comparable to dPeak for SET
ChIP-Seq data and the merging step of PICS results in loss of resolution for closely
spaced binding events. Although it might be possible to tune the merging step,
PICS currently does not provide this functionality.
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Figure S4: Sensitivity (a) and positive predicted value (b) comparisons of high res-
olution binding site identification methods in computational experiments designed
for the GPS algorithm. In these evaluations, the merging step is skipped in PICS as
opposed to the evaluations obtained by default parameters of PICS in Figures 2A,
B of the main text.
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8 Peak Shape Estimation of GPS for Closely Spaced

Binding Events

Figure S5a displays the peak shape estimated by the GPS algorithm [14] for synthetic
ChIP-Seq data when there is only one binding event in each candidate region. It
depicts density of forward strand reads with respect to the distance from the location
of binding event (corresponding to zero in the x axis). This same peak shape is
used genome-wide for modeling of reads in both forward and reverse strands. When
there is single binding event, peak shape is correctly estimated as uni-modal. Figure
S5b displays the peak shape when the distance between two binding sites in each
candidate region is set to 450bp. The peak shape is still correctly estimated as uni-
modal and it looks similar to the peak shape estimated for single binding events.
Moreover, in these two cases, the estimated peak shapes are similar to their initial
shapes. Figure S5c shows the estimated peak shape when the distance between two
binding sites in each candidate region is set to 140bp. In this case, both of the two
closely spaced binding events affect peak shape estimation of the GPS algorithm.
As a result, the peak shape is estimated bi-modal, which in turn leads to predicting
the two binding events as a single event after a few rounds of the GPS iterations.
We note that this problem typically occurs for nonparametric mixture models when
the distances between mixture components are relatively short compared to the
bandwidth.
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Figure S5: Peak shapes estimated by the GPS algorithm for synthetic ChIP-Seq
data: (a) when there is a single binding event; (b, c) when the distance between
joint binding events is set to 450bp (b) and 140bp (c). ”Round” denotes the iteration
number in the algorithm and ”Round 0” depicts the initiation.
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9 Evaluations on Synthetic Data from [14] with a

Single Binding Event

# of predicted events 0 1 > 1 Average # of events
dPeak 0% 86 % 14% 1.16 (0.42)
PICS 1% 97% 2% 1.02 (0.16)
GPS 82% 6% 12% 2.72 (1.69)

Table S4: Prediction accuracy for 20, 000 candidate regions with single binding
event. Columns 2-4 report percentages of candidate regions with various numbers
of predicted binding events. Column 5 reports the average number of binding events
across regions with at least one predicted binding event.
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10 Evaluations on Simulation Data with Single

Binding Events
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Figure S6: Resolution of predictions as a function of number of DNA fragments in
PET and SET simulated data with a single binding event. Resolution is defined as
the absolute distance between the predicted and true binding event positions. Black
solid and red dotted curves indicate averaged resolutions for each number of DNA
fragments in PET and SET data, respectively. Gray and pink shades indicate their
confidence intervals in PET and SET data, respectively.

22



11 Evaluations on Simulation Data based on Dif-

ferent Data Generation Process

When comparing PET and SET data with simulations (Figs. 2C, D and Fig. S6),
we first generated PET data and then obtained corresponding SET data by ran-
domly sampling one of two ends of each resulting DNA fragment. Although such a
data generation process closely mimics the process for generating real SET ChIP-
Seq data, dPeak model for SET ChIP-Seq data capitulates this process by a Normal
approximation of the density of each of forward and reverse strand reads. In order to
assure that our evaluation using random sampling does not give unwarranted advan-
tages to PET data, we generated SET data with read positions directly originating
from Normal distribution and repeated the analysis in Figures 2C, D. Figures S7a,
b, c confirm that the comparisons between PET and SET data remain the same
regardless of how SET data is simulated.
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Figure S7: Sensitivity (a), positive predicted value (b), and resolution (c) compar-
isons of dPeak performance on PET vs. SET data when SET read density is directly
generated from Normal distribution. n indicates number of reads corresponding to
each binding event and n/2 DNA fragments are used for PET data to match the
number of reads between PET and SET data. Shaded areas around each line indi-
cate confidence intervals. Results are similar to those in Figures 2C, D, and Figure
S6, where SET data is generated by random sampling of one of the two ends from
each DNA fragment in PET data. 24



12 Analytical Calculations for Invasion and Trun-

cation

Consider a region with two closely located binding events. Processing of DNA
fragments generated from this region will lead to classification of the fragments in
one of the following four categories:

Category I: Fragments overlapping a single true binding event.

Category II: Fragments overlapping both binding events.

Category III: Fragments overlapping only the false binding event.

Category IV: Fragments not overlapping any binding events.

Only fragments in category I are truly informative. Fragments in category II are
less informative than fragments in category I. They could potentially contribute
to both binding events, possibly through proportional allocation based on relative
distances from each binding event. However, ambiguity in prediction increases as the
number of fragments in category II increases. Fragments in category III introduce
noise to binding event estimation since they are associated with the wrong binding
event. Fragments in category IV are uninformative. In summary, invasion refers to
increased number of category II fragments in SET data compared to PET data and
truncation refers to increased number of category III and IV fragments in SET data
compared to PET data.

Table S5 displays the number of fragments in each category from one simulated
dataset where we set the distance between the two binding events as 50bp. Average
library size is 139bp in the PET data. The estimated library size used with SET
analysis are reported in parentheses in the first column. In the corresponding SET
data, even when extension is relatively accurate (extension = 150bp), numbers of
fragments in categories II to IV increase significantly compared to PET data. When
the library size is under-estimated as 100bp, we have significantly more fragments in
categories III and IV (truncation; Fig. S8b). In contrast, when it is over-estimated
as 200bp, we have significantly more fragments in category II (invasion; Fig. S8a).

We used the dPeak generative model and calculated the probability of invasion
and truncation (Fig. S8) as follows. As in the previous sections, let S and L be start
position of DNA fragment and its length, respectively, in PET ChIP-Seq data. Let l∗

denote the fixed library size used in the analysis of SET ChIP-Seq data. Z indicates
group index of the DNA fragment where Z = 1 and Z = 2 indicates correspondence
to the first and second binding events, respectively. Let µ1 and µ2 be positions of
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Category I II III IV
Informative Less informative
Overlapping Overlapping Overlapping Not
only true both only false overlapping any
binding events binding events binding event binding event

PET 225 375 0 0
SET (150) 174 391 19 16
SET (100) 232 215 89 64
SET (200) 133 461 3 3

Table S5: Classification of 600 DNA fragments from one simulated dataset with
two binding events separated by 50bp.

first and second binding events, respectively, and assume that µ1 < µ2. Probability
of invasion (Fig. S8a) is obtained as:

P (Invasion) = EL[P (S < µ1 < S + L < µ2 < S + l∗|Z = 1)]

=
∑
L=l

P (L = l)P (S < µ1 < S + l < µ2 < S + l∗|Z = 1, L = l)

=
∑
L=l

P (L = l)min {l, µ2 − µ1, l
∗ − l, l∗ − (µ2 − µ1)} /l.

As illustrated in Figure S8b, for truncation, we consider the case that the original
DNA fragment covers both binding events in PET data. The corresponding prob-
ability can be calculated by defining the truncation event with the use of the Z
variable:

P (Truncation) = EL[P (S + l∗ < µ2, S < µ1 < µ2 < S + L|Z = 2)]

=
∑
L=l

P (L = l)P (S + l∗ < µ2, S < µ1 < µ2 < S + l|Z = 2, L = l)

=
∑
L=l

P (L = l)min {l − l∗, l − (µ2 − µ1)} /l.
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Figure S8: Concepts of (a) invasion and (b) truncation. In each diagram, the first
and second lines indicate PET and SET ChIP-Seq data, respectively. Red horizontal
line depicts estimated library size in the SET data. Red circles denote the protein
binding event that the read corresponds to.
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13 Evaluations on σ70 PET and SET ChIP-Seq

Data Using RegulonDB and Experimentally

Validated Sites as a Gold Standard

We compared performances of deconvolution algorithms dPeak, PICS, GPS, and
GEM using σ70 PET and quasi-SET ChIP-Seq data by considering RegulonDB
annotated binding sites as a gold standard. As discussed in the main text, quasi-SET
ChIP-Seq data obtained by randomly selecting one end of each fragment from PET
data avoided issues like differences in sequencing depths, technical, and biological
variability. We assessed sensitivity of each algorithm using the set of candidate
regions with at least two annotated binding sites and evaluated resolution using the
candidate regions with exactly one annotated binding site.

Table S6 and Figures S9a, b show that dPeak using PET ChIP-Seq data provides
significantly higher sensitivity and resolution than SET ChIP-Seq data regardless of
the deconvolution algorithm used. GPS performs the worst and its poor performance
had recently motivated the development of GEM [15]. Overall, dPeak and GEM
perform similarly and both are slightly better than PICS with SET data in terms
of sensitivity.

We also compared deconvolution algorithms using our small set of experimentally
validated binding sites as a gold standard. This comparison (Fig. S9c) further
confirmed our conclusions from the RegulonDB-based comparisons. The differences
in resolution between dPeak using PET ChIP-Seq data and each of the deconvolution
algorithms using SET ChIP-Seq data are statistically significant with p-values <
0.01.

dPeak (PET) dPeak (SET) PICS GPS GEM
+O2 0.66 0.47 0.39 0.20 0.43
−O2 0.64 0.43 0.41 0.10 0.47

Table S6: Sensitivity comparisons across regions with at least two annotated bind-
ing events for σ70 PET and quasi-SET ChIP-Seq data in aerobic and anaerobic
conditions. RegulonDB annotated binding sites are used as a gold standard. A gold
standard binding event is marked as identified if the distance between the prediction
and the RegulonDB reported location is less than 30bp (overall conclusions remained
the same with other distances).
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Figure S9: Resolutions of predictions for the regions with a single annotated binding
event for σ70 PET and quasi-SET ChIP-Seq data in aerobic (a) and anaerobic (b)
conditions when RegulonDB annotated binding sites are used as a gold standard.
(c) Resolutions of predictions for σ70 PET and quasi-SET ChIP-Seq data using
experimentally validated binding sites as a gold standard.
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14 Experimental Validation of dPeak Predictions

from σ70 PET ChIP-Seq Data

Name DNA sequence
yejGP1 GGACGATTGAGAGTTGTAATG
yejGP2 CCTCTATGGCTCTGATTTAAG
sprP1 GTTTGTTTTCCCTTGAAGTCC
sprP2 CCAAATCTGTGGACTAACGCA
dcuAP1 GCATATTAGCCTTCCTTGTT
dcuAP2 CCCTGTACGATTACTGTTCG
serCP1 TTGAAGATTTGAGCCATTTCC
aroLP1 AAAGAGGTTGTGTCATCGTG
aroLP2 GCGATCATACCATCAAACTAG
hybOP1 CAATAATGCGATCGATGCGCC
ybgIP1 CGTTAATCAGTTGTTCCAGT
ptsGP1 TCCTGAGTATGGGTGCTTT

Table S7: Primers.
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Figure S10: MochiView genome browser [16] screenshots of promoter regions of yejG
(a) and spr (b) genes.
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Figure S11: MochiView genome browser [16] screenshots of promoter regions of
dcuA (a) and aroL (b) genes.
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Figure S12: MochiView genome browser [16] screenshots of promoter regions of serC
(a) and hybO (b) genes.
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Figure S13: MochiView genome browser [16] screenshots of promoter regions of ybgI
(a) and ptsG (b) genes.
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15 Differential occupancy of closely located bind-

ing sites between aerobic and anaerobic con-

ditions in E. coli σ70 PET ChIP-Seq data

Figure 5C elucidates the merit of high resolution analysis in the studies of differ-
ential occupancy. However, if there is no occupancy in one condition at all, such
differential binding could still be identified in the peak-level analysis and high res-
olution analysis might be considered less interesting. High resolution analysis is
perhaps most interesting when the same region is identified as a peak in both condi-
tions but different numbers of binding events are identified between conditions. We
further decomposed the predicted binding events based on the number of predicted
events in the region in each condition. Table S8 shows that although many regions
are occupied in both conditions, the number of predicted binding events can dif-
fer significantly. Figure S14 depicts an example of differential occupancy of closely
located binding sites in the promoter region of gltA gene. Specifically, two bind-
ing sites are predicted by dPeak in anaerobic condition while only one of them are
identified in aerobic condition. In contrast, MOSAiCS identified the region covering
both binding sites as a single peak in both aerobic and anaerobic conditions.

Anaerobic condition
Aerobic condition 0 1 2 ≥ 3

0 N/A 60 19 1
1 63 198 74 7
2 16 48 235 34

≥ 3 1 3 24 30

Table S8: Cross tabulation of number of binding events for each peak of σ70 PET
ChIP-Seq data between aerobic and anaerobic conditions.
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Figure S14: MochiView genome browser [16] screenshots of promoter region of gltA
gene. Both gltAp1 and gltAp2 are identified as binding sites in anaerobic condition
using PET ChIP-seq data while only gltAp1 is identified in aerobic condition.
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16 Evaluations of the Algorithms for PET ChIP-

Seq Data

To the best of our knowledge, SIPeS is currently the only algorithm specifically de-
signed for supporting PET ChIP-Seq data and has been shown to attain better res-
olution than a version of MACS that can analyze PET data [17]. We used C imple-
mentation version 2.0 of SIPeS from http://gmdd.shgmo.org/Computational-Biology/

ChIP-Seq/download/SIPeS. In our computational experiments and data analysis,
we both used its default parameters and also considered alternative values for the
parameters that define the range of the dynamic baseline to construct the signal
map. SIPeS constructs signal map by piling up the aligned paired-end reads. [17]
observed that SIPeS was able to attain high resolution for binding event identifica-
tion when used with a wide range of dynamic baseline. Therefore, we investigated
the performance of SIPeS when the DNA fragment pileups corresponding to two
binding events are above (Fig. S15a, b) and within the range of dynamic baseline
(Fig. S15c) in our computational experiments as described in the main manuscript.
We observed that tuning the range of the dynamic baseline is far from trivial. Fur-
thermore, a global value across the whole genome is not likely to perform well. There
are also no guidelines or objective ways of configuring such a range.

Figure S15a shows that SIPeS has low sensitivity when two binding events are
closely spaced. In this case, the value of the DNA fragment pileups between these
two binding events did not belong to the range of dynamic baseline and, as a result,
SIPeS identified the whole region as a single peak. Hence, although two binding
events reside within this peak, SIPeS reported only a single summit. In contrast,
Figure S15b shows that, on average, SIPeS identified more than 10 binding events
when the distance between two binding events is larger than average library size.
For these settings, there were some regions with low DNA fragment pileup within
the range of the dynamic baseline between the two binding events. As a result,
SIPeS essentially identified all local maxima as binding events and this resulted in
low positive predicted value of SIPeS.

When the values of the DNA fragment pileups corresponding to the binding
events are within the range of dynamic baseline, SIPeS is able to identify the two
binding events (Figure S15c). However, SIPeS also identified all other local maxima
as binding events and exhibited significant loss of positive predicted value. We also
note that the SIPeS predictions corresponding to true binding events could not be
distinguished from others, using the other summary statistics such as p-value or
maximum fragment pileup value provided by SIPeS.

Finally, we evaluated SIPeS predictions for the 8 experimentally validated regions
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of σ70 PET ChIP-Seq data. As discussed in the manuscript, these regions harbor a
total of 14 experimentally validated σ70 binding sites. Figure S15d illustrates that
dPeak attains significantly higher resolution compared to SIPeS in these regions (p-
value of the paired t-test between dPeak and SIPeS < 0.01). Furthermore, although
these regions harbor at most two validated σ70 binding sites, SIPeS predicted 2 to 18
binding sites. In summary, SIPeS does not sufficiently leverage PET ChIP-Seq data
to provide high resolution for studying protein-DNA interactions. Furthermore, it is
also highly sensitive to background noise in ChIP-Seq data and requires parameter
tuning. We also note that the analysis of high depth PET ChIP-Seq data, such as
that of σ70, using SIPeS requires using wider ranges of dynamic baseline. This, in
turn, increases the computation time significantly. Overall, it seems computationally
prohibitive to implement a genome-wide analysis of such data using SIPeS, i.e.,
analysis of σ70 required more than 72 hours on a standard 64 bit machine with Intel
Xeon 3.0GHz processor.
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Figure S15: Evaluation of the SIPeS algorithm on PET ChIP-Seq data. Sensitivity
and positive predicted value comparisons of SIPeS and dPeak for the computational
experiments of PET ChIP-Seq data when DNA fragment pileup corresponding to
two binding events is (a, b) and is not (c) within the range of dynamic baseline of
SIPeS. (d) Resolutions of predictions for σ70 PET and quasi-SET ChIP-Seq data
using experimentally validated binding sites as a gold standard.
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17 Application of dPeak to a GATA1 SET ChIP-

Seq Peak

In this section, we discuss an application of dPeak in eukaryotic genomes using the
GATA1 SET ChIP-Seq data from [18]. This dataset has 106,381,508 reads and
measures GATA1 occupancy in G1E-ER4 cells after estradiol treatment. GATA1
is known to bind to short consensus sequence WGATAR (W = A or T, R = A or
G) [19]. A typical GATA1 ChIP-Seq peak on average harbors 2.32 WGATAR sites
in this dataset. Being able to identify which of these are occupied is important
for refining consensus sequences and deriving functional roles of about 7 million
WGATAR sites in the mouse genome. Figure S16 displays coverage plot of the
GATA switch site of the GATA2 locus (-2.8 kb). This region contains four WGATAR
motifs separated by 20bp to 109bp. dPeak predicts that GATA1 factor binds to the
second consensus site.
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Figure S16: Coverage plot and dPeak prediction for the GATA switch site of the
GATA2 locus. Blue curve and blue dotted vertical line indicate the GATA1 SET
ChIP-Seq data from [18] and the prediction using the dPeak algorithm, respec-
tively. Black solid vertical lines indicate positions of the GATA1 consensus se-
quences, [AT]GATA[AG].
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18 Evaluations on Human SET ChIP-Seq Data

We evaluated the performance of dPeak on human SET ChIP-Seq data that GPS and
PICS were optimized for. We considered GABPA SET ChIP-Seq data in GM12878
cell line from the ENCODE database. We identified 2,469 candidate regions using
MOSAiCS (FDR = 1e-20) and these candidate regions were explicitly provided to
the GPS and GEM algorithms as candidate regions. Candidate regions for PICS
were identified using the function segmentReads() in the PICS R package (default
parameters). Default tuning parameters were used during model fitting for all the
methods.

In the case of a sequence-specific factor with well-conserved motif such as the
GABPA factor, we observed that dPeak prediction can be further improved in a
straightforward way by incorporating sequence information. Specifically, after iden-
tifying initial dPeak predictions, we identified a de novo motif using MEME [20]
and detected positions of these consensus sequences using FIMO [21]. Then, we up-
dated the dPeak predictions if the GABPA consensus sequences were found within
the 50bp window around initial dPeak predictions. We call these dPeak predictions
that integrate sequence information as ’dPeak2’.

Figure S17 shows resolution comparison on the GABPA-GM12878 dataset. The
resolution is defined as the absolute distance to the nearest predicted consensus site,
where the prediction utilizes the independent position weight matrix from JASPAR
[22]. The results indicate that dPeak performs comparable to GPS (median resolu-
tion = 18 bp and 19 bp for dPeak and GPS, respectively) and they both significantly
outperform PICS (median resolution = 30 bp). Moreover, dPeak2 performs compa-
rable to GEM and identifies the GABPA binding sites with high accuracy.
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Figure S17: Resolutions of predictions for ENCODE GABPA-GM12878 SET ChIP-
Seq Data, using positions of GABPA consensus sequences as identified by the JAS-
PAR position weight matrix scan as a gold standard.
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19 Comparison of dPeak using SET ChIP-Seq with

ChIP-exo

ChIP-exo [23] is a modified ChIP-Seq protocol that aims to experimentally identify
binding sites at high resolution by employing exonuclease. ChIP-exo protocol is
more laborious compared to ChIP-Seq and there are not many available ChIP-exo
datasets yet. Despite these limitations, we investigated how ChIP-Seq analysis with
dPeak compared to ChIP-exo analysis for identifying binding sites in high resolution.
We evaluated ChIP-exo data measuring binding of CTCF factor in human HeLa-S3
cell line (downloaded from SRA with accession number SRA044886). Although [23]
did not generate ChIP-Seq data in parallel to this ChIP-exo data, we were able
to utilize SET ChIP-Seq data for CTCF factor in human HeLa-S3 cell line from
the ENCODE project (Crawford Lab, Duke University). For both ChIP-exo and
ChIP-Seq data, all the available replicates were combined.

In order to evaluate the performance of ChIP-exo data, we utilized predictions
provided in [23]. These predictions were generated using a combination of an au-
tomated tool for analyzing ChIP-exo data in a strand-specific manner and a set of
manually curated rules by inspection of the data. For comparison, we also generated
predictions of dPeak, GPS, and GEM for CTCF ChIP-exo and SET ChIP-Seq data.
We did not consider PICS because it is not tailored for the ChIP-exo data analysis.
We also generated dPeak2 predictions by utilizing sequence information using the
same procedure as described in Section 18. We utilizes the CTCF position weight
matrix from JASPAR [22], as a gold standard.

Figure S18 shows proportion of CTCF consensus sequences identifed at a given
spatial resolution of each method at given spatial resolution. The results indicate
that dPeak and dPeak2 using ChIP-exo data shows spatial resolution comparable
to or better than predictions of [23], GPS, and GEM, which implies that dPeak can
readily be utilized in ChIP-exo data analysis. It also shows that predictions using
CTCF ChIP-Seq data provide significantly higher spatial resolution compared to
predictions using CTCF ChIP-exo data.
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as developmental drivers. J Biol Chem 285: 31087-31093.

[20] Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximiza-
tion to discover motifs in biopolymers. ISMB94 : 28–36.

[21] Grant CE, Bailey TL, Noble WS (2011) FIMO: Scanning for occurrences of a
given motif. Bioinformatics 27: 1017-1018.

45



[22] Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, et al. (2008) JASPAR,
the open access database of transcription factor-binding profiles: new content
and tools in the 2008 update. Nucleic Acids Res 36: D102–D106.

[23] Rhee HS, Pugh BF (2011) Comprehensive genome-wide protein-DNA interac-
tions detected at single-nucleotide resolution. Cell 147: 1408-1419.

46



1. Identify candidate regions in low resolution, 
using the genome-wide analysis. 
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2. For each candidate region, extract reads 
corresponding to the region. 

 
3. For each candidate region, identify binding 

sites in high resolution, using the dPeak 
model. 
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