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Abstract

The ChIP-seq technique enables genome-wide mapping of in vivo protein-DNA interactions and chromatin

states. As ChIP-seq technology is becoming more economical, generation of multiple ChIP-seq samples to elucidate

contributions of transcription factor binding and epigenome to phenotypic variation is becoming standard. Current

analytical approaches for ChIP-seq analysis are largely geared towards single sample investigations, and therefore

have limited applicability in comparative settings where the aim is to identify combinatorial patterns of enrichment

across multiple datasets. We describe a novel probabilistic method, jMOSAiCS, for jointly analyzing multiple ChIP-

seq datasets. We demonstrate the usefulness of this method with a wide range of data-driven computational

experiments as well as with a case study of four histone modifications on GATA1 occupied segments during

erythroid differentiation. Our analysis revealed a cluster of GATA1 occupied loci with a novel combinatorial

pattern of histone modifications across the two cell lines involved in erythroid differentiation. We corroborated

these data with gene expression data from erythroid differentiation and identified novel GATA1 target genes that

exhibited changing patterns of histone modifications during erythroid differentiation. We validated a subset of

the observed patterns for a number of these GATA1 occupied loci by independent quantitative real time ChIP

analysis. Our results established that jMOSAiCS improves both the sensitivity and the specificity of detecting

combinatorial enrichment patterns across multiple ChIP-seq datasets and is applicable with both transcription
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factor and histone modification ChIP-seq data.

Background

The advent of high throughput next generation sequencing (NGS) technologies have revolutionized the fields

of genetics and genomics by allowing rapid and inexpensive sequencing of billions of bases. Among the NGS

applications, ChIP-seq (chromatin immunoprecipitation followed by NGS) is perhaps the most successful

to date. Initial ChIP-seq studies largely focused on single sample investigations. However, as we begin to

understand the role of epigenomics for biological variation, detailed comparisons of transcription binding (TF)

and epigenomic marks between different tissues/individuals at single or multiple time points or developmental

stages are becoming essential to understand the etiology and progression of many diseases. Therefore,

comparative analysis of multiple ChIP-seq samples to identify combinatorial TF binding or epigenome profiles

are rapidly emerging. Some examples include: (i) identifying differential binding of a TF or modification

of a histone mark across multiple individuals, e.g., [1] studied variation in binding of NF-κB and RNA

polymerase II(Pol II) across 10 individuals; [2] performed a genetic analysis of Ste12 binding in yeast by

studying differential binding across 43 segregants of a cross between two yeast strains; (ii) genome-wide

binding profiles of multiple TFs in a single tissue or cell line, e.g., comparative analysis of 22 C. elegans

TFs [3]; (iii) time course or multiple developmental stage ChIP-seq experiments, e.g., Pol II binding at six

developmental stages of C. elegans [3]; (iv) comparative analysis of binding profiles of one or more TFs with

Pol II or modifications of histone marks, e.g., [4, 5].

Although there are already more than 30 algorithms/methods for ChIP-seq analysis (reviewed in [6]),

all of them are limited to single sample analysis, and lack the ability to simultaneously compare multiple

ChIP samples. Few number of available multi-sample ChIP-seq analysis tools are either specific to ChIP-seq

design (e.g., [7] is specific to identifying chromatin states from ChIP-seq of histone modifications; [8] focuses

on gene-centric analysis, exploratory [9] or difficult to generalize to more than two samples [10–12] due to

computational reasons. This presents challenges for biological interpretation since combining results from

individual analysis of multiple experiments can be a daunting task, especially for systematically enumerating

combinatorial patterns of enrichment, controlling the overall false discovery rate (FDR), and prioritizing

candidate regions for further experimental validation.

We introduce jMOSAiCS, joint Model based One- and Two-Sample Analysis and Inference for ChIP-

Seq, as a probabilistic model for integrating multiple ChIP-seq datasets to identify combinatorial patterns of

enrichment. The key components of jMOSAiCS are base models for the sequencing reads of each individual
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ChIP-seq experiment and a model that governs the relationship of enrichment among different samples.

We choose well-developed models from the ChIP literature for both of these key components. We evaluate

jMOSAiCS with extensive data-driven computational experiments and compare it to both a separate analysis

approach of multiple datasets and chromHMM [7]. We show that jMOSAiCS, which is applicable to both

TF and histone ChIP-seq data, has better power and provides better false discovery rate control than

the separate approach. We present an application of jMOSAiCS to multiple histone modifications during

erythroid differentiation [5]. This analysis identified a cluster of GATA1 occupied loci exhibiting a pattern of

enrichment that is different than that was identified by chromHMM analysis of the same datasets. We support

our computational predictions by experimental validation of the predicted patterns of histone modifications

for a number of selected loci. These results indicate that jMOSAiCS can reveal both global and local

combinatorial enrichment patterns with high sensitivity.

Results
Model description

The most commonly used NGS platform for ChIP-seq is the Illumina platform [4, 13–15], which works

by sequencing 25 to 100 bp from one or both ends of each DNA fragment in the sample of interest and

generates millions of short reads. Standard pre-processing of reads involves mapping to a reference genome

and summarizing total counts in each small non-overlapping interval (referred to as bins). Statistical analysis

to detect enriched regions, i.e., peaks, in a single ChIP-seq sample is based on these counts and is carried

out as a one- or two-sample analysis depending on the availability of a control sample. In contrast, inference

from multiple samples involves classifying regions of genome into patterns of enrichment. For D samples,

we can observe up to 2D different enrichment patterns across genomic regions. For example, for D = 2,

{00, 01, 10, 11} denote the set of possible patterns: 00: not enriched in either of the samples; 10: enriched

only in sample 1; 01: enriched only in sample 2; 11: enriched in both samples.

We consider I genomic regions of possibly different lengths across a reference genome. These initial set

of I regions can be obtained by analyzing each dataset separately with one of the many available ChIP-seq

analysis methods [6] and identifying regions of enrichment at a liberal FDR level. Let unobserved random

variable Eid ∈ {0, 1} denote enrichment for region i in dataset d. The overall enrichment pattern Ei is

defined as the vector of (Ei1, · · · , EiD). Our joint model has three layers depicted in Figure 8. The first

layer, named E-layer, concerns joint modeling of Eid for inferring combinatorial enrichment. This is enabled

by defining a region-level random variable Bi as described below. The second layer, named Y-layer, concerns
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observed read count data for region i across D samples: Yi = (Yi1, · · · , YiD), where Yid = (Yid1, · · · , YidLi
)

and Li denotes the number of bins in region i. In the case of a two-sample problem, Yidj is vector-valued

and denotes both the ChIP and control counts for jth bin of the ith region in dth sample. We assume that

the counts from different samples are independent conditional on the enrichment pattern:

Yid ⊥ Yid′ | Ei, ∀d, d′ = 1, · · · , D, and hence Pr(Yi) =

R∑
r=1

[
D∏

d=1

Pr(Yid | Ei = r)

]
Pr(Ei = r),

where r = 1, · · · , R represents possible enrichment patterns. Note that Pr(Yid | Ei = r) = Pr(Yid | Eid = rd),

rd = 0, 1, and only concerns data for the Li bins from the dth sample. Eid = 0 implies that all the bins in

region i are from the background (unenriched) component in the dth sample. In contrast, if Eid = 1, one or

more bins show enrichment. The third layer, named Z-layer, concerns Zidj which we define as the bin-specific

enrichment variable. If jth bin in ith region is enriched in dataset d, then Zidj = 1 and 0 otherwise. We

assume that Zidj , j = 1, · · · , Li ∀d, i, are independent conditional on the region-specific enrichment indicator

Eid and hence Pr(Zid1, · · · , ZidLi | Eid = rd) =
∏Li

j=1 Pr(Zidj | Eid = rd).

The key to our joint modeling approach are the models we utilize for the E- and Y-layers. For the E-layer,

we adopt the joint ChIP-chip model of JAMIE [16], which facilitates information sharing across experiments

by capturing the correlation among datasets. In this model, the broad dependencies among the D samples

are captured via unobserved variable B, where Bi ∈ {0, 1} denotes whether region i is potentially enriched

and Eid is defined to be 1 if region i is enriched in sample d. We assume that Ei1, · · · , EiD are conditionally

independent given Bi. Let Pr(Bi = 1) = τ1, Pr(Eid = 1 | Bi = 1) = ηd, and Pr(Eid = 1 | Bi = 0) = 0,

i.e., the region cannot be enriched in any dataset if Bi = 0. Then, we have Pr(Eid = rd) = τ1η
rd
d (1 −

ηd)1−rd + (1 − τ1)I(rd = 0). The joint probability of (Ei1, · · · , EiD) is given by Pr(Ei1 = r1, · · · , EiD =

rD) = τ1
∏D

d=1 η
rd
d (1− ηd)1−rd + (1− τ1)I(r1 = 0, · · · , rD = 0).

For theY-layer, we adopt the model-based approach of MOSAiCS [17] since MOSAiCS provides para-

metric models for read counts from both the enriched and unenriched regions in both the one- (without a

control sample) and two-sample (with a control sample) problems. At the bin-level, Yidj | Zidj = 0 ∼ Nidj ,

where Nidj ∼ NegBin (a, a/µidj) represents background read counts. Its mean µidj is parametrized as

logµidj = β0 +β1X
c
idj , where Xidj denotes the bin-level read counts in the control sample and c is a transfor-

mation parameter set data-adaptively. For one-sample analysis without a control sample or for two-sample

analysis with a shallow sequenced control sample, MOSAiCS provides a parametrization of the bin-level

counts that also depends on mappability and GC-content. For the enriched bins, Yidj | Zidj = 1 ∼ Nidj +Sidj ,

where Sidj represents signal due to enrichment, i.e., protein binding or epigenomic marker modification. The
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signal Sidj is modelled either as a single Negative Binomial distribution or a mixture of two Negative Bi-

nomial distributions. This choice is based on model fit and is determined through Bayesian Information

Criterion (BIC) [18] by MOSAiCS. For model fitting, we utilize the fact that MOSAiCS provides fast and

accurate estimates of dataset-specific background and signal distributions. Therefore, as part of model fit-

ting, jMOSAiCS only needs to infer parameters associated with the B and E variables, namely τ1 and ηd,

d = 1, · · · , D. In addition, jMOSAiCS provides posterior probabilities of the B and E variables that facilitate

identification of region-specific enrichment patterns across the D datasets. We implemented jMOSAiCS as

an R package and it is available from www.stat.wisc.edu/∼keles (will be contributed to Bioconductor [19]

and Galaxy [20] upon publication).

Data-driven computational experiments

We evaluated jMOSAiCS with data-driven computational experiments by simulating multiple ChIP-seq

datasets based on model fits on actual datasets. We utilized ChIP-Seq experiments of STAT1 binding

in interferon-γ-stimulated HeLa S3 cells by [21], H3K9me3 (repression mark) modification in peripheral

blood mononuclear cells (PBMCs) from two unrelated individuals (Bresnick Lab, UW Madison), and methyl

CpG binding protein MeCP2 in mouse cortex (Chang Lab, UW Madison). The model fits were obtained by

MOSAiCS and the goodness-of-fit plots indicated satisfactory fits as discussed in [17]. We simulated multiple

ChIP-seq datasets by using parameters that matched observed values in the STAT1, H3K9me3, and MeCP2

ChIP-seq experiments. The density plots of the read counts from the actual and sample simulated data

are provided in Supplementary Figure S1 and indicate that the simulated data mimics the actual data

well. In what follows, we first compared jMOSAiCs with a commonly practised separate analysis scheme

where each ChIP-seq dataset is analyzed individually and the enrichment patterns are generated post-hoc

analysis. Then, we compared jMOSAiCS to chromHMM [7] which is currently the state-of-the-art approach

for discovering combinatorial patterns of chromatin states from multiple ChIP-seq data.

jMOSAiCS improves on separate analysis of multiple ChIP-seq datasets

Comparisons based-on data-driven STAT1 experiments: Analysis of multiple ChIP-seq datasets of two or

more TFs under similar biological conditions

Data for this experiment uses the actual input experiment as the control sample and emulates ChIP-seq of

multiple transcription factors in a single biological condition. Since we repeated each simulation experiment

multiple times to assess variability, we restricted our data generation process to chromosome 12 of the human
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genome to reduce computational time. We considered two settings with D = 2 and D = 3 datasets. The

actual parameter values for each setting are summarized in Supplementary Table S1. For both settings,

jMOSAiCS and the separate analysis approach, which identified enrichment for each individual dataset

separately by MOSAiCS, are employed. Typical output from a ChIP-seq analysis is a ranked list of enriched

regions. The length of the list can be based on a FDR cut-off, other types of Type-I error rate control, or

the investigators may choose to consider certain number of high ranking regions. We evaluated the joint

and the separate analysis approaches by taking this variation in reporting of the results into consideration.

Specifically, we considered: (i) accuracy by plotting the proportion of correctly detected enriched regions

obtained by the B variable and also correctly detected enrichments obtained by dataset-specific E variables

as a function of top ranking enrichment regions; (ii) sensitivity by plotting the proportion of true set of

enrichments that are detected as a function of nominal false discovery rate (reported are the total number of

detected true enrichments identified at different FDR cut-offs divided by the total number true enrichments);

(iii) false discovery rate control by plotting observed FDR as a function of target nominal FDR. Ranking of

regions and FDR control for jMOSAiCS relied on the posterior inference with the B variable which captures

whether or not any given region is enriched in any of the datasets and the E variables which infer whether

or not the regions are enriched in specific datasets. We generated similar variables for the separate analysis

in a post-hoc fashion after individual samples were analyzed with MOSAiCS.

Figure 9 summarizes these results for the D = 2 setting across 20 simulation runs (results for D = 3 are

available in Supplementary Figure S2). This setting, on average, has 85, 000 enriched regions. Figure 9(a),

which displays proportion of top ranking enriched regions that are true positives, indicates that jMOSAiCS

and the separate analysis exhibit similar accuracy for the top 36% of the enriched regions; however, jMO-

SAiCS outperforms the separate approach significantly as we go down the list of top ranking regions. The

differences in performances are significant both at the region-level (B-level, based on the B variable) for

detecting whether or not there is any enrichment in a region in any of the D datasets and also at the indi-

vidual dataset-level (E1- and E2-levels, based on the E variables). Beyond the 68% of the top enrichment

regions (≥ 58000), the improvement in accuracy due to the joint analysis is about 10% at the individual

dataset-level. In addition, jMOSAiCS exhibits much smaller variation in accuracy compared to the separate

analysis as the number of top ranking regions considered increases. Since this setting had similar signal

strengths for both datasets, dataset-specific accuracy improvements over the separate analysis captured by

the E1 and E2 variables are similar.

Figure 9(b) evaluates the two approaches in terms of sensitivity and illustrates that jMOSAiCS has
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better sensitivity than the separate approach at every nominal FDR level. Overall, jMOSAiCS identifies

larger number of enriched regions and captures significantly higher proportion of the true set of enrichments

compared to the separate approach at the same FDR level. When FDR is 0.01, the improvement in sensitivity

is 9% at the B-level and more than 15% at the E-level. At the same FDR cutoff, jMOSAiCS identifies more

true enrichments than the separate analysis. Next, we check how well the FDR is controlled by the two

approaches in Figure 9(c), which depicts observed FDR across 20 simulations for different levels of nominal

FDR. Overall, we observe that jMOSAiCS provides better FDR control than the separate approach and

its FDR estimates at the E-level are more accurate. For the B-level, we observe some over-estimation

of FDR by jMOSAiCS; however, this is still significant improvement over the separate analysis. Overall

conclusions based on the H3K9me3 simulations which emulate data for a single epigenetic mark in two

different conditions (two different individuals) agree with those of STAT1 results and the detailed results are

provided in Supplementary Figure S3.

Comparisons based-on data-driven MeCP2 experiments: Joint analysis of replicate ChIP-seq experiments

ChIP-seq experiments are often carried out with at least two biological replicates to allow assessment

of variability. Prior research suggests that non-specific biases such as GC content can vary significantly

between biological replicates [17,22]. As a result, it is not often clear whether or not data can be pooled at

the biological replicate-level for the purpose of identifying enrichment. We studied a joint analysis strategy

of multiple replicates with jMOSAiCS with a computational experiment based on MeCP2 binding in mouse.

The data consisted of two biological replicates with 5 and 6 lanes of sequencing reads, respectively. The

number of usable reads within a lane varied between 6.8 and 19.7 million reads. MOSAiCS provided adequate

fits on each data set and the simulation parameters were set according to estimates from the MOSAiCS fits.

Details on the parameter settings are available in Supplementary Table S1. Within this simulation, we

varied the sequencing depth of one of the replicates (replicate 2) at 1, 3, and 6 lanes while keeping the other

replicate at 5 lanes. One and three lane scenarios emulate the cases where one of the replicates has much

lower sequencing depth than the other. This setting can arise in a variety of contexts, for example, when

multiple samples are multiplexed together in one lane or when replicates are generated at different times.

Figures 10, 11, and 12 summarize the results for these experiments. Figure 10(a) illustrates that, for lower

depth scenarios of replicate 2, jMOSAiCS has significantly higher accuracy than the separate analysis at the

B-level when inferring whether the regions are enriched in any of the replicate datasets. E-level comparisons

of accuracy for replicate 2 (Figure 12(a)) reveal a consistent 15% difference in accuracy between jMOSAiCS

and the separate approach. When both replicates have high sequencing depths, jMOSAiCS provides a
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small but significant improvement over the separate analysis (jMOSAiCS (5-6) vs. Separate (5-6) across

Figures 10(a), 11(a), and 12(a)). The differences in the sensitivities of the two approaches vary significantly

with the number of lanes of replicate 2 (Figures 10(b), 11(b), and 12(b)). Overall, jMOSAiCS consistently

identifies 10-15% more of the true enrichments when replicate 2 has lower depth. In Figure 11, as expected,

the sensitivity of enrichment detection in replicate 1 is not affected by the number of lanes of replicate 2

in the separate analysis. However, jMOSAiCS also improves on this replicate as the number of lanes for

the other replicate increases by sharing information across the two replicates through the B variable. The

largest improvement due to jMOSAiCS is in the detection of enriched regions in the low depth replicate

when it has only one lane of data (Figure 12(b)). In this setting, jMOSAiCS identifies 50% more of the true

enrichment regions across all the nominal FDR levels. In Figures 10(c), 11(c), and 12(c), we observe that

jMOSAiCS generally has more variable but accurate FDR estimation for both the B and E-levels. When

replicate 1 has five lanes and replicate 2 only one lane, FDR controls by jMOSAiCS for the B- and E2-levels

are less accurate; however, the overall accuracy of jMOSAiCS is significantly better when fixed number of

top ranking regions are considered (Figures 10(a) and 12(a)).

We also carried out a variation of this experimental setting by lowering the sequencing depths of both of

the replicates to 1 and 3 lanes. The results are reported in Supplementary Figures S4, S5, and S6 and agree

well with the overall conclusions reported here.

Comparison with chromHMM

chromHMM [7] is a hidden Markov model-based approach for partitioning a reference genome into multiple

chromatin states based on multiple histone modification ChIP-seq datasets. The software accepts as input

either aligned read files or enrichment/peak calls for each dataset. When provided with the aligned reads,

it partitions the genome into 200 bps intervals and assigns each interval a 1 or 0 based on a local Poisson

background distribution to depict enrichment. chromHMM aims to identify global patterns of enrichment

and hence it approximates the space of 2D enrichment patterns with a much smaller number as it is com-

putationally prohibitive to consider the full state space with this model. As output, it reports the specific

combination of epigenomic marks (enrichment patterns) associated with each chromatin state and the fre-

quencies between 0 and 1 with which they occur. We compared jMOSAiCS and chromHMM in three settings

using the data-driven experiments of STAT1 ChIP-seq data in HeLa cells. Although these initial parameters

are derived from TF ChIP-seq data, they are able to generate ChIP-seq data with marginal density similar

to those of histone data. The specific simulation settings are as follows:
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SE1 Same as the STAT1 simulation described in the earlier section.

SE2 Lowered η2 from 0.9 to 0.5 to increase the number of regions with 10 pattern.

SE3 Strengthened the ChIP signal by substituting b1 and b2 with 2× b1 and 2× b2.

One of the major differences between chromHMM and jMOSAiCS is that chromHMM models binary

enrichment indicators as the observable data whereas jMOSAiCS models the actual read counts (Y -layer).

In addition, jMOSAiCS can capture all possible enrichment patterns even for large number of datasets

(D) because the joint distribution of the enrichment variables is governed by the univariate B variable.

To investigate the effect of the binarization in chromHMM, we considered three versions of chromHMM:

(i) original chromHMM; (ii) chromHMM coupled with true binarization; (iii) chromHMM where bin-level

binarization is based on peak calling with MOSAiCS at nominal FDR levels of 0.05 and 0.2. Detailed results

for setting SE2 are provided in Figure 13. Figure 13(a) summarizes enrichment pattern identification results

for the 11 and 10 patterns based on the genome annotations obtained by jMOSAiCS and variations of

chromHMM. The results for the 01 pattern are not displayed because there are very few regions with this

pattern and they are mostly misannotated by chromHMM. Overall, these results illustrate that jMOSAiCS

outperforms the 4-state chromHMM in this setting. When coupled with true binary data, chromHMM

annotated all chromatin states accurately. Using peaks called by MOSAiCS increased the accuracy compared

to original 4-state chromHMM but identified fewer correct regions in the 10 state. Figure 13(b) provides

detailed comparison of jMOSAiCS with the 2-state chromHMM where chromHMM approximates the full

state space of dimension 4 by only 2 states. A similar comparison between jMOSAiCS and the 4-state

chromHMM is provided in Supplementary Figure S7. We observe that approximating the state space of

dimension of 4 by 2 dimensions leads to significant loss in accuracy for chromHMM. At the individual

dataset-level, the difference in accuracy between the 2-state chromHMM and jMOSAiCS can be as large as

20% (comparing jMOSAiCS-E2 with chromHMM-E2 in Figure 13(b)). The results for simulation settings

SE1 and SE3 are similar and provided as Supplementary Figures S8 and S9.

Application to mouse ENCODE data of multiple histone modifications during erythroid differentiation

We applied jMOSAiCS to ChIP-seq data with antibodies specific to the histone modifications H3K4me3,

H3K4me1, H3K27me3, and H3K9me3 in the G1E and G1E-ER4+E2 cells [5]. These data were generated as

part of the mouse ENCODE project and analyzed by chromHMM to segment the mouse erythroid genome

based on chromatin modifications in [5]. The original analysis by [5] focused on segmentation of GATA1
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occupied segments since G1E cells are a GATA-(null) cell line derived from targeted disruption of GATA1

in embryonic stem cells whereas G1E-ER4 cells are G1E cells engineered to express a conditionally active

estrogen receptor (ER) ligand binding domain fusion to GATA1 (ER-GATA1). When estradiol is added

to the culture medium (G1E-ER4+E2), the ER-GATA1 fusion protein gets activated and binds to GATA1

specific sites. chromHMM analysis approximated 24 = 16 dimensional state space with only 6 states. Our

jMOSAiCS application explored the full state space and, in addition to the 6 states identified by chromHMM,

identified 5 more states to which significant number of GATA1 occupied segments were assigned. Figure 14(a)

enumerates the state space for jMOSAiCS and Figure 14(b) lists the number of GATA1 occupied segments

for each state in the G1E and G1E-ER4+E2 cells. Overall, we observe that chromHMM captures broad

dominating patterns and jMOSAiCS improves resolution for identifying local structures. In Figure 14(c),

we provide normalized read data for the 316 GATA1 occupied peaks (with width less than 1400 bps out

of a total of 371) identified to switch from state 1101 in G1E to state 1111 in G1E-ER4+E2. We note

that chromHMM output does not include the 1101 or the 1111 pattern and distributes these loci over the

6 patterns it utilizes. However, as evidenced from the heatmaps, these GATA1 occupied segments lack the

repressive mark H3K27me3 in G1E cells and exhibit the mark upon activation of GATA1 in G1E-ER4+E2.

We annotated these GATA1 occupied segments with respect to gene locations and identified that a large

subset of them (48%) map to immediate 5′ or 3′-end, or within introns of known genes. We studied expres-

sion profiling data from GATA1-null erthyroid precursor cells that stably express a conditionally active allele

of GATA1 fused to the estrogen receptor ligand binding domain (G1E-ER-GATA-1). Differential expres-

sion analysis of uninduced and beta-estradiol-induced G1E-ER-GATA-1 cells [23] identified Elf1, Atp6v1e1,

Cmas, Ech1, Extl3, Rab4a, Casc3, and Lrrf1p2 as significantly induced upon GATA1 activation with beta-

estradiol treatment for 24 hours (FDR adjusted p-value ≤ 0.05). Although H3K27me3 is conventionally

viewed as inhibitory to transcription, [24] recently identified an enrichment profile of H3K27me3 in the pro-

moter of genes associated with active transcription. The genes we identified constitute further examples

of this class. Several of these significantly expressed genes have established functions in stem cell biology

and hematopoiesis. For example, Elf1 is an Ets transcription factor involved in the control of hematopoiesis

through participating in the transcriptional activation of the Stem Cell Leukemia (SCL)/T-cell Acute Lym-

phocytic Leukmia-1 (TAL1) gene [25, 26]. We performed quantitative ChIP analysis of these four loci and

validated the H3K4me1, H3K4me3, H3K27me3, and H3K9me3 marks at these loci in beta-estradiol-induced

G1E-ER-GATA-1 cells (Supplementary Table S2). We provide detailed read coverage plots of these re-

gions in Supplementary Figures S10-S13 along with their chromHMM annotations to further support their
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jMOSAiCS annotation.

Discussion

Integrative analysis of multiple ChIP-seq datasets for enumerating enrichment patterns is an emerging need.

We have introduced jMOSAiCS to enable efficient one- or two-sample integrative analysis of multiple ChIP-

seq datasets. jMOSAiCS capitalizes on the dataset-specific accurate model fits by MOSAiCS and efficient

encoding of the joint distribution of the enrichment across multiple datasets by the JAMIE approach of [16].

Diagnostics is an important component of probabilistic model-based approaches. jMOSAiCS inherits the

goodness-of-fit plots provided by MOSAiCS for model checking and diagnostics. In contrast to some of the

few available joint analysis methods for multiple ChIP-seq data (e.g., [10]), jMOSAiCS can efficiently handle

multiple datasets and is accurate at both obtaining global and local structures. A comparison of jMOSAiCS

with chromHMM reveals that jMOSAiCS is better at identifying local structures since it can capture any

specific enrichment pattern and does not rely on approximating the number of states with a smaller number

of patterns. This observation is further supported by identification of a considerable number of GATA1

occupied segments in a different state than that was identified by chromHMM.

Our analyses illustrate that jMOSAiCS is powerful in analyzing biological replicates simultaneously when

it is not appropriate to pool them due to non-specific sequencing biases such as the GC-content. When one

or more of the replicates is shallowly sequenced compared to others, jMOSAiCS boosts the power for these

replicates. Another particularly attractive use for jMOSAiCS is when the TF of interest interacts with

reference genome through another DNA binding protein. For example, virus-host interactions are typically

facilitated by virus proteins interacting with the host DNA via host proteins. Joint analysis of ChIP-seq

data for the host and virus proteins has the potential to boost power for detecting regions enriched for the

virus protein (e.g., [27]).

Meta-analysis of multiple samples is another integrative approach to multiple ChIP-seq samples. However,

the focus of such meta approaches (e.g., MM-ChIP [28], ChIPMeta [29]) is the analysis of ChIP (-chip or -seq)

data of the same protein under similar biological conditions but by different platforms or laboratories for the

purpose of boosting power of peak detection. The focus in jMOSAiCS is combinatorial pattern detection

across multiple datasets (same TF in different biological conditions or different TFs or epigenomic marks in

the same biological conditions). Therefore, our computational experiments focused on comparing jMOSAiCS

with chromHMM which is suitable for the latter task. jMOSAiCS can handle multiple ChIP-seq datasets

with varying experimental parameters such library size and read length because marginal distributions of
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read counts in each dataset are modelled in a dataset-specific manner.

jMOSAiCS currently implements a naive Bayes model for the joint distribution of the dataset-specific

enrichment indicators. This model captures broad dependencies among the samples via an unobserved

variable. A potential improvement is to consider how enrichment of a region in a sample depends on its

enrichment in other samples. A general way to induce such a structure is by Bayesian Networks, where

a directed acyclic graph represents the dependencies. Trees, which generalize first order Markov chains,

and mixtures of trees for which efficient structure learning algorithms exist [30] are two appealing, flexible

candidates that can encode for increasingly complex dependencies. Furthermore, they can be tailored for

specific characteristics of analyzed samples, e.g., a Markov structure for time course ChIP-seq experiments.

Conclusion

jMOSAiCS facilitates joint analysis of multiple ChIP-seq datasets for both identifying enrichment patterns

of a single TF across multiple conditions and characterizing enrichment patterns of multiple epigenomic

marks in one or more conditions. Given model fits from the peak/enrichment caller MOSAiCS, a typical

jMOSAiCS run takes about 30 minutes to identify combinatorial patterns of four datasets across the whole

mouse genome with a single CPU on a 64 bit machine with Intel Xeon 3.0GHz processor.

Materials and Methods
Model fitting and parameter estimation in jMOSAiCS

Let f0d and f1d denote read count distributions for unenriched and enriched bins in dataset d. We will

denote estimates of these by MOSAiCS with f̂0d and f̂1d. When a region is not enriched in dataset d, data

for all the bins within that region are generated from f0d. Hence,

p0id ≡ Pr(Yid|Eid = 0) =

Li∏
l=1

f0d(Yidl).

If region i is enriched in dataset d, then read counts for one or more consecutive bins within region i are

generated from f1d. This enforces local spatial coherence and is motivated by the wide range of enriched

region widths observed in ChIP-seq data of histone modifications. Note that this kind of spatial dependence is

also capture by the chromHMM model. Let Vid denote the the number of enriched bins and Sid ∈ {1, · · · , Li}

the starting position of the set of enriched bins in region i. Then, we have

p1id ≡ Pr(Yid|Eid = 1)

12



=

Li∑
v=1

Pr(Yid|Eid = 1, Bi = 1, Vid = v)Pr(Vi = v|Eid = 1, Bi = 1)

=

Li∑
v=1

(
Li−v+1∑

s=1

Pr(Yid|Eid = 1, Bi = 1, Vid = v, Sid = s)Pr(Sid = s|Eid = 1, Bi = 1, Vid = v)
1

Li

)

=

Li∑
v=1

(
Li−v+1∑

s=1

Pr(Yid|Sid = s, Vid = v,Eid = 1, Bi = 1)
1

Li − v + 1

1

Li

)

=

Li∑
v=1

Li−v+1∑
s=1

(
1

Li

1

Li − v + 1

s−1∏
l=1

f0d(Yidl)

Li∏
l=s+v

f0d(Yidl)

s+v−1∏
l=s

f1d(Yidl)

)
,

where we assume that the run of enriched bins can start anywhere within the region with equal probability

of 1/Li and the length of the run has a uniform discrete distribution, i.e., Pr(Sid = s|Eid = 1, Bi = 1, Vid =

v) = 1/(Li − v + 1), s = 1, · · · , Li − v + 1. The likelihood of full data is a product over I regions:

Pr(Y,E,B) =

I∏
i=1

Pr(Yi, Ei, Bi)

=

I∏
i=1

Pr(Yi|Ei, Bi)P (Ei|Bi)P (Bi)

=

I∏
i=1

[(1− τ1)

D∏
d=1

(1− Eid)p0id

]1−Bi [
τ1

D∏
d=1

((1− ηd)p0id)1−Eid(ηdp1id)Eid

]Bi
 . (1)

We estimate f0d and f1d for each individual dataset separately using the MOSAiCS algorithm. Therefore,

the quantities p0id and p1id, i = 1, · · · , I, d = 1, · · · , D are fixed given f̂0d and f̂1d. Because B, E, S and V are

unobserved variables, we derive an Expectation-Maximization [31] algorithm to obtain maximum likelihood

estimators of τ1 and η = (η1, · · · , ηd) based on the likelihood in (1). The full data log likelihood can be

written as:

L(τ1, η) =

I∑
i=1

[(1−Bi) log(1− τ1) +Bi log τ1]

+

I∑
i=1

D∑
d=1

[Bi(1− Eid) log(1− ηd) +BiEid log(ηd) + C] ,

where C is a constant that does not contain the parameters to be estimated and can be computed given f̂0d

and f̂1d. Taking expectation of the full data likelihood conditional on observed read counts Y , we obtain

the following E- and M-steps, where τ t1, ηt denote parameter estimates from the t-th iteration:

E-step:

a
(t+1)
i ≡ E(Bi|Y, τ t1, ηt)

=
Pr(Yi|Bi = 1, τ t1, η

t)τ t1
Pr(Yi|Bi = 1, τ t1, η

t)τ t1 + Pr(Yi|Bi = 0, τ t1, η
t)(1− τ t1)

13



=
τ t1
∏D

d=1[ηtdp1id + (1− ηtd)p0id]

τ t1
∏D

d=1[ηtdp1id + (1− ηtd)p0id] + (1− τ t1)
∏D

d=1 p0id
,

b
(t+1)
id ≡ E(BiEid|Y, τ t1, ηt)

=
ηtdp1ida

(t+1)
i

ηtdp1id + (1− ηtd)p0id
.

M-step:

τ
(t+1)
1 =

∑I
i=1 a

(t+1)
i

I
,

η
(t+1)
d =

∑I
i=1 b

(t+1)
id∑I

i=1 a
(t+1)
i

, d = 1, · · · , D.

This EM algorithm converged within 100 iterations in both the computational experiments and the anal-

ysis of ChIP-seq data of histone modifications used in the case study. We used the posterior probabilities

Pr(Bi|Yi, τ̂1, η̂) and Pr(Eid|Yi, τ̂1, η̂) for false discovery rate control with a direct posterior probability ap-

proach [32] in the computational experiments.

Computational experiments

All the computational experiments were based on the following procedure. The reference genome (human for

STAT1 and H3K9me3 or mouse for MeCP2) was divided into bins (50 bp for STAT1, 250 bp for H3K9me3,

and 200 bp for MeCP2) based on average fragment size in the actual experiment. Every consecutive n ∈ {3, 5}

bins were organized into non-overlapping regions to facilitate B-level data generation. For each region i,

i = · · · , I, the Bi variable was set to 1 with probability τ1. If Bi = 0, then all the Eid and Zidj variables were

set to 0 for that region, indicating no enrichment for all the bins in the region across all the datasets. For

regions with Bi = 1, E variable was simulated at the dataset-level, e.g., Eid was set to 1 with probability

ηd. The bin-level Z variables were generated based on Eid. For Eid = 1, the region i should have at least

one enriched bin in dataset d. To ensure this, we selected the bin that the enrichment starts within a region

at random and allowed the number of consecutive bins with enrichment to vary within each region. For

non-enriched bins, the Zidj was set to 0 and the corresponding Y-layer data (read counts) were generated

from the background distribution. For enriched bins, Zidj was set to 1 or 2 with probabilities p1 and 1− p1,

and denoted the components of the mixture distribution for the signal. Specifically, Zidj = 1 implied that

Yidj ∼ Nidj + NegBin(b1, c1/(1 + c1)), whereas Zidj = 2 referred to Yidj ∼ Nidj + NegBin(b2, c2/(1 + c2)).

We generated multiple ChIP-seq datasets by varying the signal component parameters b1, b2, c1, c2, and p1

of this procedure according to the parameters estimated from the actual ChIP-seq studies (Supplementary

Table S1).
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Separate analysis of multiple ChIP-seq datasets and annotation of genomes into combinatorial patterns
in the computational experiments

In the separate analysis, we analyzed each dataset by MOSAiCS [17]. This allowed us to quantify the gain

due to the joint modeling approach rather than differences in modelling of the read count data by different

ChIP-seq analysis methods. MOSAiCS reports bin-level posterior probabilities of enrichment (posterior

probabilities at the Z-layer). For the sensitivity and empirical FDR calculations, enriched bins were identified

at the various levels of nominal FDR using a direct posterior probability approach [32]. Then, dataset-

specific E variables were set to 1 if there was at least one enriched bin in a region. Similarly, region-specific

B variables were set to 1 if at least one of the E variables for a given region was set to 1. The accuracy

calculations required ranking of regions based on the B and E variables. For this purpose, we followed a

meta-analytic approach and used the maximum of bin-level posterior probabilities of enrichment within each

region for inference at the E-level and the maximum within each region across D datasets for inference at the

B-level. Then, these posterior probabilities were used for ranking the regions in the accuracy plots. We also

considered FDR control over these meta-analytically defined B and E variables as an alternative to the above

approach for identifying set of enriched regions in the separate analysis; however this modification yielded

similar results and did not change the overall conclusions. Ranking for the joint analysis in the accuracy

plots utilized posterior inferences for the B and E variables based on the jMOSAiCS model. Accuracy

as a function of top number of detected enriched regions required ranking of regions by chromHMM. For

each region, we summed over chromHMM estimated pattern probability times the pattern-specific emission

probability of each bin within the region and generated pattern-specific posterior probabilities for ranking.

Comparison of chromHMM and jMOSAiCS required annotation of genome into TF binding/chromatin

states based on the jMOSAiCS fit. We calculated the joint posterior probability of the E variables Pr(Ei1 =

r1, · · · , EiD = rD | Yi, τ1, η) for each combination of r1, · · · , rD, where ri = 0, 1. The enrichment pattern (or

state) of each region is assigned as the one with the maximum joint posterior probability.

jMOSAiCS analysis of multiple histone modification ChIP-seq datasets from [5]

We partitioned the mouse genome into 200 bp intervals and applied jMOSAiCS to data from the G1E and

G1E-ER4+E2 cells separately. Enriched regions were identified by controlling the FDR at 0.01 through the

E-variable. In the downstream analysis, we focused on 11485 GATA1 occupied segments defined by [5] and

enumerated H3K4me3, H3K4me1, H3K27me3, and H3K9me3 modification patterns of these regions across

the two cell types. The size of the GATA1 occupied segments ranged from 400 bp to 36000 bp with a median
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width of 800 bp.

Quantitative ChIP assay

Quantitative ChIP analysis was conducted with two independent biological replicates of beta-estradiol-

induced G1E-ER-GATA-1 cells using control and specific antibodies as described in [33]. The relative levels

of the specific histone marks are indicated in the Supplementary Table S2. The PCR primers used to analyze

the four loci are provided in Supplementary Table S3.
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Figures

Figure 1: Pictorial depiction of the jMOSAiCS model for a region across two ChIP-seq datasets. Region i
consists of three bins. The B variable governs whether or not the region is enriched in any of the two samples.
E variables denote sample-specific enrichments and are conditionally independent given the B variable. Z
variables depict enrichment at the bin-level and are conditionally independent given the sample-specific E
variables. When Eid = 1, one or more consecutive Z variables are set to 1 to capture enrichment. Observed
read count Y can be scalar or vector-valued depending on the availability of a control input sample. Data
fits at the Y -layer are obtained by MOSAiCS [17] on individual samples and evaluated by the goodness-of-fit
(GOF) plots.

Figure 2: Computational experiments comparing jMOSAiCS with the separate analysis approach on data
simulated from the STAT1 ChIP-seq experiment. ’jMOSAiCS-B’, ’jMOSAiCS-E1’, and ’jMOSAiCS-E2’
represent results derived from posterior probability inferences of the B, E1, and E2 variables. ’Separate-B’,
’Separate-E1’, and ’Separate-E2’ represent results derived from separate analysis of each dataset.

Figure 3: Computational experiments comparing jMOSAiCS with the separate analysis approach on data
simulated from the MeCP2 ChIP-seq experiment. Comparisons of region-level (B) results of jMOSAiCS and
separate analysis. ’jMOSAiCS (x-y)’ and ’Separate (x-y)’ refer to jMOSAiCS and separate analysis of x
lanes of replicate 1 with y lanes of replicate 2.
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Figure 4: Computational experiments comparing jMOSAiCS with the separate analysis approach on data
simulated from the MeCP2 ChIP-seq experiment. Comparison of dataset-specific region-level enrichment
detection (E1) results of jMOSAiCS and separate analysis on replicate 1. ’jMOSAiCS (x-y)’ and ’Separate
(x-y)’ refer to jMOSAiCS and separate analysis of x lanes of replicate 1 with y lanes of replicate 2.

Figure 5: Computational experiments comparing jMOSAiCS with the separate analysis approach on data
simulated from MeCP2 ChIP-seq data. Comparison of dataset-specific region-level enrichment detection
(E2) results of jMOSAiCS and separate analysis on replicate 2 for which the number of data lanes varies.
’jMOSAiCS (x-y)’ and ’Separate (x-y)’ refer to jMOSAiCS and separate analysis of x lanes of replicate 1
with y lanes of replicate 2.

Figure 6: Comparisons between jMOSAiCS and chromHMM based on data simulated from ChIP-seq experi-
ment of STAT1 in HeLa3 cells (Setting SE2). (a) Identification of combinatorial patterns: ’11’: enriched in
both samples; ’10’: enriched only in sample 1. ’True’: number of enriched regions; ’chromHMM’: results by
original 4-state chromHMM; ’chromHMM-true’: 4-state chromHMM coupled with true binary data for the
bins; ’chromHMM-0.05’: 4-sate chromHMM coupled with MOSAiCS binarization of the bins at an FDR of
0.05; ’chromHMM-0.2’: 4-state chromHMM coupled with MOSAiCS binarization of the bins at an FDR of
0.2. TP and FP denote true and false positives, respectively. (b) Accuracy of enrichment detection at the
region (B) and dataset-specific region (E1 and E2) levels by jMOSAiCS and 2-state chromHMM.

Figure 7: Analysis of mouse ENCODE histone ChIP-seq datasets. (a) List of combinatorial patterns
identified by jMOSAiCS. Patterns 1-6 are also identified by chromHMM. (b) Changes in chromatin states
between G1E and G1E-ER4+E2 cells for DNA segments occupied by GATA1 in the latter cells. (c) Heatmap
of normalized raw data for a group of 316 GATA1 occupied segments identified to switch from ’1101’ in G1E
cells to ’1111’ in G1E-ER4+E2 cells by jMOSAiCS. Enriched regions (excluding segments longer than 1400
bp in size) identified across different marks are aligned and depicted in between the dashed lines.
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Figure 8: Pictorial depiction of the jMOSAiCS model for a region across two ChIP-seq datasets. Region i
consists of three bins. The B variable governs whether or not the region is enriched in any of the two samples.
E variables denote sample-specific enrichments and are conditionally independent given the B variable. Z
variables depict enrichment at the bin-level and are conditionally independent given the sample-specific E
variables. When Eid = 1, one or more consecutive Z variables are set to 1 to capture enrichment. Observed
read count Y can be scalar or vector-valued depending on the availability of a control input sample. Data
fits at the Y -layer are obtained by MOSAiCS [17] on individual samples and evaluated by the goodness-of-fit
(GOF) plots.
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Figure 9: Computational experiments comparing jMOSAiCS with the separate analysis approach on data
simulated from the STAT1 ChIP-seq experiment. ’jMOSAiCS-B’, ’jMOSAiCS-E1’, and ’jMOSAiCS-E2’
represent results derived from posterior probability inferences of the B, E1, and E2 variables. ’Separate-B’,
’Separate-E1’, and ’Separate-E2’ represent results derived from separate analysis of each dataset.
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Figure 10: Computational experiments comparing jMOSAiCS with the separate analysis approach on data
simulated from the MeCP2 ChIP-seq experiment. Comparisons of region-level (B) results of jMOSAiCS and
separate analysis. ’jMOSAiCS (x-y)’ and ’Separate (x-y)’ refer to jMOSAiCS and separate analysis of x
lanes of replicate 1 with y lanes of replicate 2.
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Figure 11: Computational experiments comparing jMOSAiCS with the separate analysis approach on data
simulated from the MeCP2 ChIP-seq experiment. Comparison of dataset-specific region-level enrichment
detection (E1) results of jMOSAiCS and separate analysis on replicate 1. ’jMOSAiCS (x-y)’ and ’Separate
(x-y)’ refer to jMOSAiCS and separate analysis of x lanes of replicate 1 with y lanes of replicate 2.
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Figure 12: Computational experiments comparing jMOSAiCS with the separate analysis approach on data
simulated from MeCP2 ChIP-seq data. Comparison of dataset-specific region-level enrichment detection
(E2) results of jMOSAiCS and separate analysis on replicate 2 for which the number of data lanes varies.
’jMOSAiCS (x-y)’ and ’Separate (x-y)’ refer to jMOSAiCS and separate analysis of x lanes of replicate 1
with y lanes of replicate 2.
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Figure 13: Comparisons between jMOSAiCS and chromHMM based on data simulated from ChIP-seq exper-
iment of STAT1 in HeLa3 cells (Setting SE2). (a) Identification of combinatorial patterns: ’11’: enriched in
both samples; ’10’: enriched only in sample 1. ’True’: number of enriched regions; ’chromHMM’: results by
original 4-state chromHMM; ’chromHMM-true’: 4-state chromHMM coupled with true binary data for the
bins; ’chromHMM-0.05’: 4-sate chromHMM coupled with MOSAiCS binarization of the bins at an FDR of
0.05; ’chromHMM-0.2’: 4-state chromHMM coupled with MOSAiCS binarization of the bins at an FDR of
0.2. TP and FP denote true and false positives, respectively. (b) Accuracy of enrichment detection at the
region (B) and dataset-specific region (E1 and E2) levels by jMOSAiCS and 2-state chromHMM.
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State  H3K4me1 H3K4me3 H3k27me3 H3K9me3 
1 Active 1 1 0 0 
2 Active 1 0 0 0 
3 Inactive 1 0 1 0 
4 Inactive 0 0 1 0 
5 Inactive 0 0 0 1 
6 Inactive 0 0 0 0 
7  Inactive 0 0 1 1 
8  Active 0 1 0 0 
9 Bivalent 0 1 0 1 
10 Inactive 0 1 1 0 
11 Bivalent 0 1 1 1 
12 Bivalent 1 0 0 1 
13 Bivalent 1 1 0 1 
14 Active 1 1 1 0 
15 Bivalent 1 1 1 1 

 Inactive or Bivalent to Active  No Change Active to Inactive or Bivalent  

Number of 
GATA1 OSs 

Chromatin state in G1E-ER4+E2 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 7416 256 10 0 1 3 0 152 1 6 3 20  325 91 
2 186 77 3 0 0 2 0 0 0 0 0 11 14 14 3 
3 16 1 1 0 0 0 1 0 0 0 0 1 2 7 3 
4 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 
5 8 1 0 0 3 0 0 0 0 0 1 2 5 0 0 

  6 96 41 6 0 7 11 1 3 0 1 1 5 5 13 3 
  7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  8 51 6 2 0 0 4 1 53 2 9 3 2 7 29 7 
 9 11 0 0 0 0 0 1 0 27 2 23 0 12 6 19 
10 4 0 0 0 0 0 0 0 0 2 0 0 0 15 4 
11 1 0 0 0 0 0 0 0 0 0 1 0 0 0 5 
12 2 3 0 0 1 0 0 0 0 0 0 2 9 1 1 
13 169 6 0 0 0 0 0 0 31 2 73 19 296 29 371 
14 288 6 1 0 0 0 0 1 0 5 1 1 21 370 107 

 
 
 
 
 
 
 

Chromatin 
state 

in 
G1E 

15 22 0 0 0 0 0 0 0 0 0 4 0 21 26 120 

(c)

G1E	   G1E-‐ER4+E2	  

Figure 14: Analysis of mouse ENCODE histone ChIP-seq datasets. (a) List of combinatorial patterns
identified by jMOSAiCS. Patterns 1-6 are also identified by chromHMM. (b) Changes in chromatin states
between G1E and G1E-ER4+E2 cells for DNA segments occupied by GATA1 in the latter cells. (c) Heatmap
of normalized raw data for a group of 316 GATA1 occupied segments identified to switch from ’1101’ in G1E
cells to ’1111’ in G1E-ER4+E2 cells by jMOSAiCS. Enriched regions (excluding segments longer than 1400
bp in size) identified across different marks are aligned and depicted in between the dashed lines.



Additional Files
Additional file 1: Supplementary Materials

This file contains further details on and additional results from the computational experiments presented as

supplementary text and figures.

Additional file 2: An initial implementation of the R package for jMOSAiCS
Additional file 3: Vignette for the R package jmosaics
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Supplementary Materials
Density plots for experimental and simulated data

(a) STAT1 - experimental data (b) H3K9me3 - experimental data
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(c) STAT1 - simulated data (d) H3K9me3 - simulated data
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Figure S1. Density plots for experimental and sample simulated data.
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Supplementary figure for the STAT1 simulation with D = 3.

Supplementary Figure S2 reports the STAT1 simulation results for the setting with three ChIP-seq samples.

2
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Figure S2: Computational experiments comparing jMOSAiCS with the separate analysis approach on data
simulated from the STAT1 ChIP-seq experiment (D = 3). ’jMOSAiCS-B’, ’jMOSAiCS-E1’, and ’jMOSAiCS-
E2’ represent results derived from posterior probability inferences of the B, E1, and E2 variables. ’Separate-
B’, ’Separate-E1’, and ’Separate-E2’ represent results derived from separate analysis of each dataset. Results
for the third dataset based on E3 are not depicted since they are similar to those of E1 and E2.
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Supplementary figure for the H3K9me3 ChIP-seq simulation.

Supplementary Figure S3 reports accuracy, sensitivity, and FDR control results from simulation experiments

with parameters matching to ChIP-seq data of H3K9me3 modification in peripheral blood mononuclear cells

(PBMCs) from two individuals. One of the datasets, hence the data simulated from its parameters, has much

lower signal strength. As a result, both the accuracy and sensitivity results captured by the E1 variable for

this sample is much lower compared to the other sample. Furthermore, the FDR control with the separate

analysis is very conservative owing to the low signal strength.
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Figure S3: Computational experiments comparing jMOSAiCS with the separate analysis approach on data
simulated from H3K9me3 ChIP-seq experiments in PBMCs of two individuals. ’jMOSAiCS-B’, ’jMOSAiCS-
E1’, and ’jMOSAiCS-E2’ represent results derived from posterior probability inferences of the B, E1, and E2

variables. jMOSAiCS-E2 corresponds to the analysis of the lower signal dataset. ’Separate-B’, ’Separate-E1’
and ’Separate-E2’ represent results derived from separate analysis of each dataset.
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Supplementary figures for the MeCP2 ChIP-seq simulation.

Supplementary Figures S4, S5, and S6 report results for the setting that lowers sequencing depths of both of

the MeCP2 replicates. When both replicates have one lane of data, the signal to noise ratios of the samples

are very low and, as a result, jMOSAiCS has poor FDR control at the region-level as depicted by the box

plots labelled with jMOSAiCS (1-1) in Supplementary Figures S4(c), S5(c), and S6(c)). However, at the

dataset-specific region-level, jMOSAiCS improves both accuracy and sensitivity while providing better FDR

control than the separate analysis.
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Figure S4: Computational experiments comparing jMOSAiCS with a separate analysis approach on data
simulated from MeCP2 ChIP-seq experiment. Comparisons of region-level (B) results of jMOSAiCS and
separate analysis. ’jMOSAiCS (x-y)’ and ’Separate (x-y)’ refer to jMOSAiCS and separate analysis of x
lanes of replicate 1 with y lanes of replicate 2.
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Figure S5: Computational experiments comparing jMOSAiCS with a separate analysis approach on data
simulated from the MeCP2 ChIP-seq experiment. Comparison of dataset-specific region-level enrichment
detection (E1) results of jMOSAiCS and separate analysis on replicate 1. ’jMOSAiCS (x-y)’ and ’Separate
(x-y)’ refer to jMOSAiCS and separate analysis of x lanes of replicate 1 with y lanes of replicate 2.
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Figure S6: Computational experiments comparing jMOSAiCS with a separate analysis approach on data
simulated from the MeCP2 ChIP-seq experiment. Comparison of dataset-specific region-level enrichment
detection (E2) results of jMOSAiCS and separate analysis on replicate 2. ’Joint (x-y)’ and ’Separate (x-y)’
refer to jMOSAiCS and separate analysis of x lanes of replicate 1 with y lanes of replicate 2.
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Supplementary figures for comparisons with chromHMM

Supplementary Figure S7 compares jMOSAiCS with the 4-state chromHMM in terms of accuracy in setting

SE2 and Supplementary Figures S8 and S9 present results for the 2-state and 4-state chromHMM in the

first (SE1) and third simulation (SE3) settings. For the first simulation setting, the numbers of regions in

states 10 and 01 are much smaller compared to state 11. As a result, the enrichment detection accuracies of

the 2-state chromHMM and 4-state chromHMM do not differ significantly (Figures S8(b) vs. S8(c)). This

agrees well with the many successful uses of chromHMM for identifying global patterns of epigenetic marks by

approximating the size of the state space. jMOSAiCS exhibits best accuracy since it outperforms chromHMM

among regions in state 11. In the third setting (SE3), when the signal strength is increased, the numbers of

correctly identified regions in the 10 state increase for both the 4-state chromHMM and jMOSAiCS compared

to the second simulation setting SE2 (Figure S7(a)). In addition, enrichment detection accuracy of 4-state

chromHMM is much higher and less variable than that of the 2-state chromHMM (Figures S9(b) and S9(c)).
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Figure S7: Comparisons between jMOSAiCS and chromHMM based on data simulated from ChIP-seq exper-
iment of STAT1 in HeLa3 cells. Accuracy of enrichment detection at the region (B) and dataset-specific
region (E1 and E2) levels by jMOSAiCS and 4-state chromHMM.
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Figure S8: Comparisons between jMOSAiCS and chromHMM based on data simulated from ChIP-seq exper-
iment of STAT1 in HeLa3 cells (Setting: SE1). (a) Identification of combinatorial patterns: ’11’: enriched
in both samples; ’10’: enriched only in sample 1. ’True’: number of enriched regions; ’Joint’: results by
jMOSAiCS; ’chromHMM’: results by original chromHMM; ’chromHMM-true’: chromHMM coupled with
true binarization of the bins; ’chromHMM-0.05’: chromHMM coupled with MOSAiCS labelling of the bins
at an FDR of 0.05;’chromHMM-0.2’: chromHMM coupled with MOSAiCS labelling of the bins at an FDR
of 0:05. TP and FP denote true and false positives, respectively. (b)-(c) Accuracy of enrichment detection
at the region (B) and dataset-specific region (E1 and E2) levels by jMOSAiCS, 2-state chromHMM (b), and
4-state chromHMM (c).
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Figure S9: Comparisons between jMOSAiCS and chromHMM based on data simulated from ChIP-seq exper-
iment of STAT1 in HeLa3 cells (Setting: SE3). (a) Identification of combinatorial patterns: ’11’: enriched
in both samples; ’10’: enriched only in sample 1. ’True’: number of enriched regions; ’Joint’: results by
jMOSAiCS; ’chromHMM’: results by original chromHMM; ’chromHMM-true’: chromHMM coupled with
true binarization of the bins; ’chromHMM-0.05’: chromHMM coupled with MOSAiCS labelling of the bins
at a FDR of 0.05;’chromHMM-0.2’: chromHMM coupled with MOSAiCS labelling of the bins at an FDR of
0:05. TP and FP denote true and false positives, respectively. (b)-(c) Accuracy of enrichment detection at
the region (B) and dataset-specific region (E1 and E2) levels by jMOSAiCS, 2-state chromHMM (b), and
4-state chromHMM (c).

12



Parameter settings for the data-driven computational experiments

b1 c1 b2 c2 τ1 p∗1 η1 η2
STAT1 (D=2, D=3) 0.3388 0.0373 1.3769 0.0077 0.1619 0.9826 0.9 0.9
H3K9me3 (D = 2, sample 1) 0.5000 0.0600 0.4700 0.0060 0.1900 0.995 0.9 0.9
H3K9me3 (D = 2, sample 2) 0.5800 0.0600 10.01 0.0200 0.1900 0.999 0.9 0.9
MeCP2 replicate 1 (1 lane) 0.0028 0.0013 0.6621 0.6588 0.2306 0.0303 0.9 0.9
MeCP2 replicate 1 (3 lanes) 1.3620 0.3127 0.0031 0.0004 0.2306 0.9905 0.9 0.9
MeCP2 replicate 1 (5 lanes) 0.0010 0.0003 1.8577 0.1760 0.2306 0.0226 0.9 0.9
MeCP2 replicate 2 (1 lane) 0.0023 0.0013 0.8255 0.6237 0.2306 0.0291 0.9 0.9
MeCP2 replicate 2 (3 lanes) 0.0009 0.0004 1.7181 0.2289 0.2306 0.0268 0.9 0.9
MeCP2 replicate 2 (6 lanes) 0.0009 0.0002 1.9469 0.1456 0.2306 0.0238 0.9 0.9

Table S1: Parameters used for the computational experiments. ∗ mixing proportion for the components of
the two component Negative Binomial signal distribution. The I genomic regions consisted of 5, 3, and 3
bins for the STAT1, H3K9me3, and MeCP2 simulations, respectively. Multiple samples of D = 2 and D = 3
settings in the STAT1 experiments are generated by adding small random perturbations to the parameters
presented in the first row.
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Quantitative ChIP results for the G1E-ER4+E2 cells

Mark Atp6v1e Elf1 Extl3 Cmas
H3K4me1 0.228 1.444 0.198 0.378
H3K4me3 0.075 0.254 0.082 0.293
K27me3 0.107 0.122 0.182 0.103
K9me3 0.103 0.142 0.103 0.086
PI 0.004 0.003 0.008 0.003

Table S2: Relative levels of the specific histone marks from quantitative ChIP analysis averaged over two
independent biological replicates of beta-estradiol-induced G1E-ER-GATA-1 cells. Pre-immune denotes
negative control.

Extl3 F TCTCATTACAGGTGGTTGTGAGC
Extl3 R GTGTTGGCTGGTGAGATGGCT
Elf1 F GCCACCATGCCCGGC
Elf1 R TTCACCTTTTCAGCTTTGAGG
Atp6v1e F GAACTGAATGGACAAACCAGGG
Atp6v1e R TCTTCTGCCCATACCTCACACCT
Cmas F GGGAGGTGTGCATATAGAACA
Cmas R CCTCCCAGCTCATCG

Table S3: Primer sets used in the quantitative ChIP assays.
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Coverage plots for the loci with validated patterns
Coverage plots display the total number of reads mapping to each nucleotide separated by strand (forward:
black, backward: red). Each read only contributes to the nucleotide that its 5′ end maps to. Coordinates
in Figures S10 to S13 are based on mouse genome version mm8. jMOSAiCS identified ”1101” for G1E and
”1111” for G1E-ER4+E2 as patterns of these GATA1 occupied loci. Control input values of these regions
are much lower than the displayed ChIP values even after adjusting for the sequencing depths (data not
shown). The dashed lines denote the boundaries of the GATA1 occupied loci.

15



G1E G1E-ER4+E2
H3K4me1

0
10

20
30

40
50

60
70

chr6: 120766600−120767399
R

ea
d 

C
ov

er
ag

e

0
50

10
0

15
0

20
0

25
0

30
0

35
0 chr6: 120766600−120767399

R
ea

d 
C

ov
er

ag
e

H3K4me3

0
10

20
30

40
50

60
R

ea
d 

C
ov

er
ag

e

0
20

40
60

80
10

0
12

0
R

ea
d 

C
ov

er
ag

e

H3K27me3

0
2

4
6

8
10

R
ea

d 
C

ov
er

ag
e

0
10

20
30

40
50

R
ea

d 
C

ov
er

ag
e

H3K9me3

120766600 120767400

0
10

20
30

40
50

Genomic coordinates

R
ea

d 
C

ov
er

ag
e

120766600 120767400

0
10

20
30

40

Genomic coordinates

R
ea

d 
C

ov
er

ag
e

Figure S10: Coverage plot for the Atp6v1e1 locus. ChromHMM patterns: G1E: State 2 (”1000”); G1E-
ER4+E2: State 2 (”1000”).
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Figure S11: Coverage plot for the Elf1 locus. ChromHMM patterns: G1E: State 6 (”0000”); G1E-ER4+E2:
State 6 (”0000”).
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Figure S12: Coverage plot for the Extl3 locus. ChromHMM patterns: G1E: State 6 (”0000”); G1E-ER4+E2:
State 4 (”0010”).
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Figure S13: Coverage plot for the Cmas locus. ChromHMM patterns: G1E: State 2 (”1000”); G1E-ER4+E2:
State 1 (”1100”).
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