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Abstract

Model-based clustering is a popular tool for summarizing high-dimensional data.

With the number of high-throughput large-scale gene expression studies still on the

rise, the need for effective data summarizing tools has never been greater. By grouping

genes according to a common experimental expression profile, we can gain new insights

into the biological pathways that steer biological processes of interest. Clustering of

gene profiles can also assist in assigning functions to genes that have not yet been

functionally annotated.
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Model-based clustering has to-date primarily been applied in a ”single-level” set-

ting: that is, a gene profile is defined across all experimental factor levels, regardless

of whether one or more factors are studied. In many experiments, where two or more

experimental factors are considered simultaneously, this can lead to a very inefficient

model representation. For example, consider a two-factor experiment with factors

”time” and ”cell-line”. A set of genes may exhibit a similar time course expression

profile for one cell-line, while exhibiting several different time course profiles for a

second cell-line. In other words, some profiles may coincide between clusters for a

subset of levels of an experimental factor (here: cell-line). In addition, the descrip-

tion of a cluster profile may be significantly simplified with an efficient within-cluster

parametrization. A particular time-course pattern may be common to both cell-lines,

and clusters that define these patterns need only be distinguished by one set of profile

parameters (excluding time/cell-line interactions). Other clusters may exhibit a flat

time-course profile for one or both cell-lines, which yet again requires only a subset of

model parameters to describe.

If a single-level model and full parametrization is enforced, it is possible that we

both overfit and underfit the data; we may overfit by assigning an unnecessary degree

of complexity to some clusters; we may underfit the number of clusters since we spent

our parameter budget inefficiently (e.g. on flat cluster profiles, or clusters that coincide

for a subset of model parameters).

We propose a mixture model with multiple levels, MIXL, that provides sparse rep-

resentations both within and between cluster profiles. We explore various flexible pa-

rameterizations for the cluster profiles, and discuss how an efficient parametrization can

greatly enhance the objective interpretability of the generated clusters. Interpretable

cluster profiles can assist in detecting biologically relevant groups of genes that may be

missed with a less efficient parametrization. We use our multi-level parametrization as

a basis for mining a proliferating cell-line expression data for annotational context and

regulatory motifs. We also investigate the performance of the multi-level clustering

approach on several simulated data sets.
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1 Introduction

Model-based clustering is frequently used to summarize complex high-dimensional gene

expression data. The base model is usually Gaussian, though some alternatives have

been explored to account for outliers that do not group with any other data objects

(Banfield and Raftery; 1993). The multivariate Gaussian mixture allows for clusters

of varying shape, orientation and volume (Fraley and Raftery; 2002, 2004; Raftery

and Dean; 2006). Many non-parametric clustering methodologies and algorithms have

also been proposed for the analyses of genomic data. Non-parametric approaches may

seem to be more flexible, which is indeed a desirable property when little is known at

the onset of the analysis. However, many of the most commonly used non-parametric

schemes are in fact very restrictive in that cluster shapes or volumes restriction are

implicitly defined by the cost function of the clustering algorithms (Jornsten; 2004).

We consider k-means as an example (or any center-based allocation schemes like PAM

and k-median (Kaufman and Rousseeuw; 1990; Jornsten et al.; 2002)). By making

cluster assignment solely dependent on the cluster center, cluster shape is ignored.

Thus, k-means tends to produce spherical and equal size clusters, and is thus more

restrictive than a model-based clustering approach where the cluster covariances are

parameterized.

In this paper we discuss how to generate more interpretable and efficient data

representations using multivariate gaussian mixture models. We address the following

limitations of the current forms of single-level model-based clustering; (1) Model-based

clustering usually treats all experimental conditions interchangeably even in the case of

multi-factor experiments; (2) The literature on subset model selection for model-based

clustering has mainly focused on the problem of identifying the dimensions that are

informative with respect to cluster separation (Law et al.; 2004; Raftery and Dean;
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2006; Tadesse et al.; 2005; Hoff; 2006), not the sparsest parameterized representation

of each cluster mean.

We propose a multi-level mixture modeling approach that generates interpretable

clusters in multiple-factor experiments. In the simplest setting, the first level of the

mixture model clusters on one particular experimental factor (e.g. ”time”), whereas the

second level clusters the levels of the experimental factor of interest (e.g. ”cell-line”).

We let xg and yg denote the measurements for different levels of the factor of interest

for gene g. We will denote the total number of clusters at the 1st level by K, and the

number of second-level (sub)clusters, within each 1st level cluster k, by Lk. Let Rg and

Zg be two gene specific indicators denoting the class label at the 1st and 2nd levels.

Our model assumes that

Pr(xg,yg | Rg = k, Zg = l) ∼MVN(µkl,Σkl),

where µkl and Σkl represent the mean and variance-covariance matrix of the lth sec-

ond level cluster within the k first level cluster. In addition, we parameterize the

(sub)cluster means as µkl = Wβkl = W (βk, βl(k))′, where βk denotes the top-level

cluster specific parameters, and βl(k) the sub-level specific parameters, and W is the

design matrix for the multi-factor experiment. We perform subset selection on the

parameters, not the dimensions. Thus, we always utilize the complete data set to

generate clusters, and obtain cluster means that are directly interpretable in terms

of between-experimental factors, and within-experimental factor expression. We will

discuss specific choices of parameterizations in Section 2. We refer to Figure 1 for an

example. In Figure 1 , βk = (α1, α2, α3) parameterizes the expression profile of cell-

line 1 over time points (t1, t2, t3), and βl(k) = (γ1, γ2, γ3) parameterizes the differential

expression profiles of cell-line 2 compared with 1 over these same set of time points.

Figure 2 (a) illustrates one motivation for introducing a mixture model with multi-

ple levels, MIXL: In some multi-factor experiments, certain effects may dominate the

cluster models. Let’s say that cell-line 1 is associated with larger differential expression
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Figure 1: (a) An illustration of a Mixture Model with 2 levels; Solid line
(black and gray): Two 1st level clusters for cell-line 1. The two sets of dashed
lines (black and gray) represent the corresponding sub-clusters (level 2) for
cell-line 2. Thus, here K = 2, and L1 = 2, L2 = 2. (b) The ”Dynamic DE
(differential expression) parametrization”. The α parameters model the time
course expression profile for cell-line 1, whereas the γ parameters model the
time course of cell-line differential expression.

effects across time, and that these effects dominate the effects seen in cell-line 2. By

treating time and cell-line as a single factor, we may fail to detect the more subtle

patterns in cell-line 2. In addition, if some genes exhibit differential expression profiles

in cell-line 2 but not in cell-line 1, a single-level mixture model is a very inefficient

parametrization, over-fitting the cluster profile models for the cell-line 1 data.

In addition to accounting for dominating effect sizes, multi-level clustering models

have much more general applicability. In experiments involving multiple species, or

studies of gene expression in response to different treatment dosages, it is of interest

to focus particularly on differential effects across levels of an experimental factor of

interest (e.g. species, dose).

A few other schemes with a multi-level flavor have been proposed. Li (Li; 2005)

introduced a layered mixture modeling approach to allow for more flexible within-

cluster structures. Akin to MDA (Hastie and Tibshirani; 1996) for classification, each

cluster (class) is assumed to come from a mixture of normals, and can thus incorporate

more complex cluster (class) shapes. The number of clusters is assumed known, and
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clusters do not share any mixture components with other clusters. Our multi-level

mixture model differs from Li’s approach in that an unknown number of clusters may

share components and model parameters, and that the levels of the mixture relate

to the experimental factors. Yuan and Kendziorski (Yuan and C.Kendziorski; 2006)

recently proposed a multi-level approach to gene clustering and detection of differential

expression. Each cluster is assumed to be generated from a mixture of differential

expression patterns (over-expressed, under-expressed, and no differential expression).

An empirical Bayes strategy is adopted to fit the model. The motivation is that

the clustering induces a regularization of the gene effect estimates, and thus power

of detection of differential expression is increased. Our multi-level approach allows

for a more flexible parametrization of the cluster means across multiple experimental

conditions. We identify differential expression patterns both within and between the

experimental factors through model subset selection.

The paper is structured as follows. In section 2 we introduce our multi-level mixture

model, and the Profile Expectation-Maximization algorithm we derive to fit the model.

We describe our approach to parameterized subset selection, and validation of the

number of clusters. We apply MIXL to a multi-factor gene expression data set of

proliferating cell lines in section 3. We mine the clustering outcome for regulatory

motifs and discuss the biological relevance. In section 4, we illustrate the strengths our

approach on several simulated data sets. We conclude this paper with a discussion.

2 The MIXL model.

We begin by briefly reviewing the ”single-level” model-based clustering method, and

fix the notation for the subsequent discussion. We assume that for each data object

g ∈ {1, · · · , G} we observe a feature vector xg. We denote cluster membership indicators

byRg, where Rg = k if object g belongs to cluster k. We further assume that the objects

are independent given the cluster memberships Rg = k. The most common approach
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is to assume that each cluster or mixture component follows a Gaussian distribution:

Pr(xg | Rg = k) ∼MVN(µk,Σk).

The marginal distribution of the data is

Pr(xg) =
K∑

k=1

πkψ(xg;µk,Σk),

where ψ is the multivariate normal density function. The parameters θ = {θk =

(πk, µk,Σk),∀k} are commonly estimated with the Expectation-Maximization algo-

rithm (Dempster et al.; 1977). Convergence is usually quite fast. To avoid settling

for a local solution, the EM steps are usually re-run from multiple starting points

(McLachlan and Peel.; 2000). It is well established that unconstrained fitting of the

K component mixture model can suffer from singularity problems where a single ob-

ject can form its own cluster with a degenerate distribution. To prevent this, it is

recommended that one employs constrained optimization with respect to the covari-

ance parameters (e.g. Celeux and Govaert (1993)), or that one regularizes the fit by

shrinking toward the global covariance (Fraley and Raftery; 2004).

2.1 A multi-level parametrization for model-based clus-

tering

For the sake of presentation, we will consider an experiment where there are two

populations (e.g. cell lines) of interest, and samples from both of these populations are

collected across T time points. Let xg denote the observations across T time points

for gene g in cell line 1, and similarly yg in cell line 2. The hierarchy we will consider

treats the cell line as the factor interest. We will denote the total number of clusters

at the 1st level by K, and the number of clusters within each 1st level cluster k by Lk.

Let Rg and Zg be two gene specific indicators denoting the class label at the 1st and
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2nd level. Our model assumes that

Pr(xg,yg | Rg = k, Zg = l) ∼MVN(µkl,Σkl),

where µkl and Σkl represent the mean and variance-covariance matrix of the l-th second

level cluster within the k first level cluster. Here, the first T components of the µkl

vector correspond to the mean levels of xg, and will be also referred to as µk. The last

T components correspond to the mean levels of yg, and will be referred to as µl(k).

This multi-level framework allows for various interpretable parameterizations at each

level.

We will be utilizing a data set on proliferating stem cell-lines to demonstrate the

MIXL method. Our task is to identify sets of genes that are differentially regulated

during neurogenesis and gliogenesis, as indicated by different expression levels in two,

divergent neural stem cell (NSC) clones. Upon the withdrawal of a growth factor (FGF)

from the medium, one clone (L2.3) becomes predominately glial-like (expressing glial

markers GFAP, GalC). The other (L2.2) differentiates primarily into cells expressing

neuronal markers (TuJ1) (Goff et al.; 2006). At the starting point (time t=0), the

cell-lines are virtually indistinguishable, and are believed to exist in a state of ”pre-

conditioning” or ”pre-programming”. Thus, sets of neuron-specific and glia-specific

genes are active, and will determine the cell-fate of the clones. The two stem cell-

lines were observed over the course of three days, for a total of T = 3 sample points

(t = (0, 1, 3) days). We denote gene expression in the glial-like population (L2.3) by x,

and in the neuron-like (L2.2) population by y. Among the several scientific questions

of interest given to us by the biologists (Goff et al. (2006)) were; (a) How do the time

course profiles of the glial-like (L2.3) and neuron-like (L2.2) cell-lines differ?; (b) Are

there sets of genes for which the expression converges(diverges) between the glial-like

and neuron-like cell populations?; (c) How dominant is the ”pre-programming” effect?

To address these questions, we consider the following three parameterizations:
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Parametrization I. Mean differential expression.

µk = (µk1, µk2, µk3)′

µkl = (µk1, µk2, µk3, µk1 + ∆k1, µk2 + ∆k2, µk3 + ∆k3)′

Here, the main scientific question addressed is the differential expression between the

cell-lines, at any given time point.

Parametrization II. Dynamical differential expression.

µk = (αk1, αk1 + αk2, αk1 + αk2 + αk3)′

µkl = (αk1, αk1 + αk2, αk1 + αk2 + αk3, αk1 + γkl1, αk1 + αk2 + γkl1 + γkl2,

αk1 + αk2 + αk3 + γkl1 + γkl2 + γkl3)′

In the second parametrization, the time course profile of the glial-like population is

modeled directly, and e.g. flat time profiles are efficiently represented. The γ-vector

represents the time-course of cell-line differential expression (e.g. parallel, divergent

or convergent).

Parametrization III. Pre-programming differential expression.

µk = (αk1, αk1 + αk2, αk1 + αk2 + αk3)′

µkl = (αk1, αk1 + αk2, αk1 + αk2 + αk3, αk1 + γkl1, αk1 + γkl1 + γkl2,

αk1 + γkl1 + γkl2 + γkl3)′

The third parametrization efficiently models each time course-profile, and a main dif-

ferential cell-line effect for time point 0.

Other data sets and experimental structures may require a different set of parame-

terizations. Ultimately, the choice of parametrization should depend on the biological
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context, and the scientific questions of interest.

In all parameterizations, the variance-covariance matrix Σkl also includes parame-

ters specific to the levels of the model:

Σkl =

 ΣX
k ΣXY

kl

ΣY X
kl ΣY

kl

 .
The variance-covariance structure allows for dependencies between gene expression

measurements at all time points and all levels. We further assume that, conditional on

the multi-level cluster assignments, the genes are independent of each other. Therefore,

we have the following complete data likelihood:

Pr(X,Y,R,Z | Ψ) =
G∏

g=1

Pr(xg,yg, Rg, Zg | Ψ)

=
G∏

g=1

K∏
k=1

L∏
l=1

[Pr(xg,yg | Rg = k, Zg = l)πkl]
I(Rg=k,Zg=l) ,

where Ψ represents the overall parameter set of the model. Due to the multi-level

parametrization and the general variance-covariance structure, the standard update

schemes for the Expectation-Maximization algorithm of the mixture models are not

easily adapted. Therefore, we develop a Profile Expectation-Maximization (PEM)

algorithm. In the next section, we outline this algorithm in detail. The algorithm relies

on working with the factorization of the likelihood into the likelihood of the 1st level

of the hierarchy, and the conditional likelihood of the 2nd level of the hierarchy given

the first level. Additionally, each component of the factorized likelihood is maximized

by profiling of the corresponding expected complete data log likelihood.

2.2 Profile Expectation-Maximization (PEM) algorithm

for fitting the multi-level mixture model

We now describe the profile Expectation-Maximization algorithm for fixed K and Lk,

k ∈ {1, · · · ,K}. In what follows, r refers to r-th EM iteration and we suppress the
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dependence of the updates on r to ease the notation.

Initial values. The algorithm requires initial values of πkl and µkl and Σkl. We

will discuss the initialization step at the end of this section.

E-step. This step is a regular E-step in fitting mixture of multivariate normals. We

have posterior class probabilities given by

η
(r)
gkl ≡ η̂gkl = Pr(Rg = k, Zg = l | xg,yg, ψ

(r−1))

=
MVN(xg,yg | µ(r−1)

kl ,Σ(r−1)
kl )π(r−1)

kl

Pr(xg,yg | ψ(r−1))
.

M-step. In the M-step, we are dealing with the following maximization problem

G∑
g=1

K∑
k=1

Lk∑
l=1

(
−1

2
η̂gkl(ug −Wβkl)′Σ−1

kl (ug −Wβkl)−
1
2
η̂gkl log |Σkl|

)
, (1)

where W represents the design matrix corresponding to the parametrization and ug is

the combined vector of xg and yg. For example, for parametrization I:

WI =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1
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with βkl = (µk1, µk2, µk3,∆kl1,∆kl2,∆kl3), and for parameterizations II and III:

WII =



1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

1 0 0 1 0 0

1 1 0 1 1 0

1 1 1 1 1 1



WIII =



1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

1 0 0 1 0 0

1 0 0 1 1 0

1 0 0 1 1 1


with βkl = (αk1, αk2, αk3, γkl1, γkl2, γkl3).

The main reason for a nonstandard mixture model M-step is due to the cross-talk

between the two levels. The first part of the parameter vector βkl is the same for all

l, and similarly the left upper diagonal block ΣX
k of Σkl is common to all l. Hence,

the corresponding estimates need to pool information across all second level clusters

of the kth 1st level cluster. We use a regularized profiling method for maximizing

the expected complete data log likelihood given in equation 1. Our general iterative

scheme is to factorize the joint likelihood of xg and yg as the product of marginal

likelihood of xg, and the conditional likelihood of yg given xg. We first maximize the

marginal likelihood of xg by profiling. Subsequently, given the estimates µk and Σk,

we maximize the conditional likelihood of yg given xg, again by profiling over the mean

and the variance-covariance matrix. Next, we outline these two steps in more detail.

1. M-step-Aggregate. Compute gene specific membership for level 1 by aggregat-
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ing η̂gkl.

τ̂gk =
Lk∑
l=1

η̂gkl.

2. M-step-Profile-1. This step concerns the profiling of the multivariate normal

density for xg.

(a) Considering part of the expected complete data likelihood that involves the

marginal distribution of xg, we have

G∑
g=1

K∑
k=1

Lk∑
l=1

(
−1

2
η̂gkl(xg −WKβk)′Σ−1

k (xg −WKβk)−
1
2
η̂gkl log |ΣX

k |
)

= (2)

G∑
g=1

K∑
k=1

(
−1

2
τ̂gk(xg −WKβk)′Σ−1

k (xg −WKβk)−
1
2
τ̂gk log |ΣX

k |
)
,

whereWK is the upper left diagonal block of design matrixW (corresponding

to the 1st level data).

(b) Given µk, we profile with respect to ΣX
k and get

ΣX(r)

k =
∑G

g=1 τ̂gk(xg − µ
(r)
k )(xg − µ

(r)
k )′∑G

g=1 τ̂gk

.

Then, a regularized version of ΣX
k is obtained by

Σ̃X(r)

k =
∆X

p (ν) + ΣX(r)

k nk

ν + nk
,

where nk =
∑G

g=1 τ̂gk, and ∆X
p =

∑G

g=1
(xg−x̄g)(xg−x̄g))′

GK2/T . The choice of scale

parameter, ν, is discussed in section 2.4 (see also Fraley and Raftery (2004)).

(c) Holding ΣX
k fixed, the maximizer over βk can be obtained via weighted least

squares. In fact, with some simple algebra, one can show that estimate of βk

can be obtained by first performing a weighted least squares fit of the form

xg = WKβgk + ε, where cov(ε) = ΣX
k ,
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and then taking a weighted average of the estimates of βgk as

β
(r)
k ≡ β̂k =

∑G
g=1 τ̂gkβ̂gk∑G

g=1 τ̂gk

.

Finally, we update µk as µ(r)
k = WK β̂k.

3. M-step-Profile-2. Next, we consider profiling the conditional distribution of yg

given xg. The expected complete data likelihood that involves the conditional

distribution of yg given xg is given by

G∑
g=1

K∑
k=1

Lk∑
l=1

(
−1

2
ηgkl(yg − µ

Y |X
kl )′ΣY |X

kl

−1
(yg − µ

Y |X
kl )− 1

2
ηgkl log |ΣY |X

k |
)
,

where

µ
Y |X
kl = ΣXY

kl (ΣX
k )−1(xg − µk),

ΣY |X
kl = ΣY

kl −ΣY X
kl (ΣX

k )−1ΣXY
kl .

(a) The second profiling step starts with updating ΣY X
kl and ΣY

kl as follows.

ΣY X(r)

kl =
∑G

g= η̂gkl(yg − µY (r)

kl )(xg − µX(r)

k )′∑G
g=1 η̂gkl

,

ΣY (r)

kl =
∑G

g= η̂gkl(yg − µY (r)

kl )(yg − µY (r)

kl )′∑G
g=1 η̂gkl

.

The regularized versions of these covariance estimates are

Σ̃Y X(r)

kl =
∆Y X

p (ν) + ΣY X(r)

kl nkl

ν + nkl
,

Σ̃Y (r)

kl =
∆Y

p (ν) + ΣY (r)

kl nkl

ν + nkl
,
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where

∆Y
p =

∑G
i=1(yg − ȳ)(yg − ȳ)

′∑K
k=1 Lk

2/d
,

∆Y X
p =

∑G
i=1(yg − ȳ)(xg − x̄)

′∑K
k=1 Lk

2/d
.

Then, the conditional mean of yg and the covariance matrix are updated as

follows:

µ
Y |X(r)

kl = ΣXY (r)

kl (ΣX(r)

k )−1(xg − µ
(r)
k ),

ΣY |X(r)

kl = ΣY (r)

kl −ΣY X(r)

kl (ΣX(r)

k )−1ΣXY (r)

kl .

(b) Similar to the M-step-Profile-1 step above, for fixed ΣY |X
kl , we have a

weighted least squares formulation given by

y∗
g = WLβgl(k) + ε, cov(ε) = ΣY |X

kl ,

where y∗
g = yg − µ

Y |X(r)

kl −WLK β̂
(r)
k and WL represents the lower diagonal

block of the W matrix corresponding to L-level parameters whereas WLK

represents the lower off-diagonal block of the W matrix.

We then have

β̂l(k) =
∑G

g=1 η̂gklβ̂gl(k)∑G
g=1 η̂gkl

,

and set β̂kl = (β̂k, β̂l(k)) and µ(r)
kl = Wβ̂kl.

Next, we summarize a single step of the PEM algorithm concisely.

Profile EM algorithm

1. E-step. Compute η̂gkl, g = 1, · · · , G, k = 1, · · · ,K and l = 1, · · · , Lk.

2. M-step.

(a) Update π̂kl, k = 1, · · · ,K and l = 1, · · · , Lk.
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(b) M-step-Aggregate. Compute τ̂gk =
∑Lk

l=1 η̂gkl.

(c) M-step-Profile-1.

i. Update ΣX
k .

ii. Update µk by reestimating β̂k with the corresponding weighted least

squares fit.

iii. Iterate (i) and (ii) till convergence.

(d) M-step-Profile-2.

i. Update ΣXY
kl , ΣY X

kl , ΣY
kl and µY |X

kl .

ii. Update µkl by reestimating βl(k) with the corresponding weighted least

squares fit and by setting β̂kl = (β̂k, β̂l(k))′.

iii. Iterate (i) and (ii) till convergence.

Although the profiling steps could in principle benefit from internal iterations ((iii)

above), we noticed in our applications that, in general, it is advantageous to spend the

computing time on the outer EM iterations.

2.3 Model selection

Model selection in multi-level model-based clustering pertains to two components; (1)

selecting the appropriate parametrization for each cluster {k, l}; (2) selecting the num-

ber of clusters K, and LK = {Lk, k = 1, · · · ,K}.

2.3.1 Cluster parameterizations and subset selection

Let us first consider the case with K and LK fixed. We want to select the sparsest

representation of each cluster mean. This will enable us to better interpret the meaning

of each cluster. For example, is a particular cluster model representing (i) a static cell-

line difference, or (ii) a dynamic one, and if so for which time-points do the cell-lines

really differ?
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Recently, several papers have appeared on the topic of variable selection for model

based clustering. These papers focus on the selection of a subset of variables, or

dimensions of the feature vector, that can discriminate between cluster components

(e.g., Friedman and Meulman (2002), Law et al. (2004), Raftery and Dean (2006), Hoff

(2006), Tadesse et al. (2005)).

Raftery et al. (Raftery and Dean; 2006) proposed an iterative algorithm, consider-

ing deletions or additions to the set of discriminative variables. Consider the addition

of a set of variables. The two models that are compared are; (1) a cluster mixture

model for the new set of variables (original set and the set under consideration), and

a cluster independent model of the excluded variables, and (2) a cluster model for the

original set, with a cluster independent model for the set under consideration and the

excluded variables. The decision to accept a new set of variables is made using Bayes

factors.

Hoff (Hoff; 2006) models the cluster means with cluster specific contrasts. Let us

consider a d-dimensional data set with global mean u (d-dimensional) and covariance

Σ. At the cluster level, we define parameters uk = µ+ δk, where δk represents a set of

contrasts between the global mean and the cluster mean. Hoff considers the case where

only a subset of the d-dimensional vector δk are non-zero, and that this subset may

vary across clusters. The model is fit via a hierarchical Bayesian scheme with priors

on the cluster specific subsets of non-zero contrasts.

In our parametrization of the cluster means, as outlined in the section below, we de-

viate from the above approaches. Our parametrization, and the corresponding sparsest

representation we select, allows for cluster specific descriptions of contrasts between

variables within a cluster, as well as between clusters. We model all dimensions within

the clustering model. However, for each cluster we allow for only a subset of parame-

ters to be non-zero. The subset of coefficients that are set to zero do not necessarily

correspond to a dimension that is irrelevant for clustering. Take as an example our

first parametrization (µ,∆). If for a cluster k, the subset of parameters relating to µ

are set to 0, then this dimension is unrelated to the clustering (assuming the data has
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been centered prior to clustering). If however, a subset of parameters related to ∆ is

set to 0, this implies that the cluster consists of a set of genes for which there is no

cell-line difference.

How do we then perform subset selection within each cluster model? Clearly, a full

combinatorial search of all possible subsets is not feasible. For each combination of

subset models, the EM algorithm has to be re-run to adapt to the reduced complexity

of some of the clusters. Object posterior probabilities are affected by the cluster specific

models.

We take a backward selection approach to selecting the optimal subset models. We

begin with the full model at each node {k, l}. We then visit each node, one at a time,

and threshold the posterior probabilities ηgkl to obtain a cluster specific data set of size

nkl (or nk for an internal node k). We perform backward selection at an internal node

k using only the K-level data. We formulate the model selection as a generalized linear

regression problem, where xg = WKβk + ε, ε ∼ N(0,ΣX
K). We hold ΣK fixed during

the model selection, and the estimated covariance matrix is used in the weighted least

squares fit. We use the local BIC to select the optimal cluster specific model. After

backward selection we thus obtain a sparse solution β∗k for each internal node. We

then re-run the EM steps with the sparse restrictions on β (i.e. using a subset of the

columns of matrices WK for each cluster k). Thus we obtain an updated allocation

between all {k, l} nodes given the selected subset model class.

To perform model selection at the {k, l} leaf-nodes we use the profile likelihood,

as was done in the corresponding M-step of the fitting algorithm. For each leaf node

{k, l} we compute the conditional mean µl(k) and covariance ΣY |X
k,l . We can write

the profile likelihood in terms of the L-specific parameters only (βl(k)). We perform

backward selection in a generalized linear regression problem; yg = WLβl(k) + εL,

εL ∼ N(0,ΣY |X
k,l ). We obtain the optimal sparse solution β∗l(k). We then re-run the

EM steps with the sparse restrictions on βl(k) (a subset of columns of WL for each

sub-cluster l(k)). We thus obtain an updated allocation among the internal nodes and

leaf nodes.
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Finally, to reduce the impact of such a greedy and directed search, we re-run the

whole selection strategy from the most recent allocation, starting yet again from the

full model and searching backwards. In practice, we found that iterations of the subset

selection algorithm rarely produced a different final result.

We outline the subset selection algorithm here:

I Initialize with the full model at each node z, where z is one from the set of

internal (k = 1, · · · ,K) or leaf-nodes ({k, l}, k = 1, · · · ,K, l = 1, · · · , Lk).

Set the current design matrix of each node z to the full W ; WK(k) for the

internal nodes, WL(k, l) for the leaf-nodes.

(The number of columns of a design matrix, col(W (z)), corresponds to the

number of non-zero parameters at node z.)

Run the EM-algorithm.

II (a) Visit each internal node k, and perform a hard threshold operation on τgk

to obtain the node specific data.

(b) If W (k) is empty, go to the next node k.

Otherwise, perform backward selection for the weighted least squares fit at

node k. Obtain the sparse solution β∗k via the local BIC, and update the

current design matrix at node k to WK(k) = W ∗
K(k) (i.e. drop the columns

that correspond to β∗k = 0).

(c) Re-run the EM algorithm with the updated WK(k) constraints.

III (a) Visit each leaf node {k, l}, and perform a hard threshold operation on ηgkl

to obtain the node specific data.

(b) If WL(l(k)) is empty, go to the next node {k, l}.

Otherwise, perform backward selection for the weighted least squares fit

at node {k, l} using the profile likelihood. Obtain the sparse solution β∗l(k)

via the local BIC, and update the current design matrix at node {k, l} to
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WL(l(k)) = W ∗
L(l(k)) (i.e. drop the columns that correspond to β∗l(k) = 0).

(c) Re-run the EM algorithm with the WK(k) and updated WL(l(k)) con-

straints.

IV Go to I and iterate until convergence.

2.3.2 Selecting the number of clusters.

The selection of the number of clusters is usually approached as a complexity alloca-

tion problem using criteria such as BIC, CIC or MDL (e.g. Fraley and Raftery (2002),

Raftery and Dean (2006)). Recently, Zhu and Zhang (2004) developed a general statis-

tical hypothesis testing formulation to select the number of clusters. Here we take the

complexity allocation route, using BIC to select the number of clusters. Let us consider

a multi-level parametrization where the dimensionality of the data vectors at level K

is Dim(K), and at level L Dim(L). We denote the model coefficients at the K − level

by βk, k = {1, · · · ,K}, and the model coefficients at the level by βl(k), l = {1, · · · , Lk}

for all k = {1, · · · ,K}. In the previous section we considered subset model selection

for each node {k, l} of the multi-level clustering. Thus, the number of non-zero coeffi-

cients βk 6= 0 may be less than DimK, and similarly for βl(k). We denote the number

of non-zero coefficients at each node {k, l} by (dim(βk),dim(βl(k))) respectively. We

gather all parameters of a multi-level fit into a set Θ(K,LK), where

Θ(K,LK) = {πkl, βk, βl(k),Σkl,∀k = {1, · · · ,K}, l = {1, · · · , Lk}}.

Then the total model complexity is given by

p(Θ(K,LK)) =

 K∑
k=1

dim(βk) +
Lk∑
l=1

dim(βl(k))


(1)

+

+
[
KDim(K)(Dim(K)− 1)

2

]
(2)

+

[
(

K∑
k=1

Lk)− 1

]
(3)
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[(
K∑

k=1

Lk

)(
Dim(K)Dim(L) +

Diml(L)(Dim(L)− 1)
2

)]
(4)

,

where term (1) is the number of mean parameters estimated at the K and L levels,

term (2) is theK-level covariance estimates, term (4) is the L-level covariance estimates

and cross-covariance estimates between the K and L levels, and term (3) is the number

of estimated cluster proportions. For each given K and LK we can compute the log-

likelihood:

l(Θ(K,LK)) =
G∑

g=1

log

 K∑
k=1

Lk∑
l=1

πklφ((xg,yg);Wβkl,Σkl)

 .
We then compute the BIC value as

BIC(K,LK) = −2l(Θ(K,LK)) + p(Θ(K,LK)) log(G).

We explored several different search strategies for identifying the optimal multi-level

model. The best performance was obtained using a backward search. In the flow-chart

below, M refers to the total number of clusters (M =
∑

k Lk).

I Initialize with the null model M = 1, L1 = 0 and set the BIC to an arbitrarily

large value.

II Set M = M + 1.

(a) Outer loop

• Set K = M and LK = {Lk = 1,∀k = {1, · · · ,M}}.

Run the EM algorithm.

Record the corresponding BIC value: BIC(new).

Go to Inner Loop II-b.

(b) Inner Loop

• Set K = K - 1
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For b = {1, · · · , B}

– group the M 1st level parameters from the single-level clustering (II-

a): (µk,Σk) into K groups. The corresponding grouping defines the

set Lb
K(new) = {Lb

k, k = 1, · · · ,K}.

– run the EM algorithm for K and Lb
K(new) and record BICb(K).

• Set b∗ = argminbBIC
b(K), and set BIC(K) = BICb∗(K). Retain

the best multi-level clustering with K 1st level clusters and the corre-

sponding grouping LK(new) = Lb∗
K (new).

(c) • If BIC(K) ≥ BIC(new) go to step III (the optimal number of sub-

clusters has been exceeded).

• If BIC(K) < BIC(new), accept the best multi-level model model K

and the corresponding set LK = LK(new), BIC(new) = BIC(K).

Go to Inner Loop step II-b.

III • If BIC(new) ≥ BIC, STOP (the optimal number of clusters have been

exceeded)

• If BIC(new) < BIC, set BIC = BIC(new) and go to II-a (consider

increasing the total number of clusters).

For both subset selection, and the selection of the number of clusters, we adopt

greedy searches. While it is true that such schemes can converge to local optima, a

fully exhaustive search is computationally prohibitive. A stochastic search may remedy

the problem of local optima. We did not consider stochastic searches here, but do run

the full algorithm several times while initiating from different starting values.
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2.4 Computational details

2.4.1 Regularizing the cluster covariance estimates

In Fraley and Raftery (2004), a regularized estimate of the cluster covariances are

introduces as

Σ̃X(r)

k =
∆X

p (νp + d+ 2) + ΣX(r)

k nk

νp + d+ 2 + nk
.

The motivation for this regularization comes from assuming a conjugate inverse

Wishart prior distribution with scale matrix ∆0 and degrees of freedom νp for ΣX
kl .

Here, ∆0 is estimated by the plug-in estimator

∆X
p =

∑G
i=1(xg − x̄)(xg − x̄)

′

K2/d
,

where x̄ represents the componentwise mean vector over all the G genes. νp is chosen as

max{0, nmin}+d+2, where d is the dimension of the data, and nmin can be interpreted

as the number of observations with variance ∆X
p that are added to the clustered data.

The scaled global covariance matrix is not always a good choice to shrink toward.

Consider a clustering in two dimensions, where K clusters means lie on the 45 degree

line, and the cluster covariance are aligned at 135 degrees (i.e. orthogonal to the line

connecting the cluster means). The global covariance will be aligned with the 45 degree

line. The weighted average between the ∆X
p and ΣX

k can thus produce a very different

cluster shape, even for moderately large clusters. To reduce the impact of ”over-

regularizing” the covariance estimates we take a frequentist approach. We numerically

test the regularized estimates

ΣX(r)

k =
∆X

p (ν) + ΣX(r)

k nk

ν + nk
.

with ν = 0 for singularity problems. We increase ν gradually until the regularized

estimate is functional. Although this regularization no longer follows the Bayesian

framework, we point out that the lack-of-fit of the over-regularized estimate can increase
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the deviance several orders of magnitude for every fixed number of clustersK, compared

with the difference in deviance between different values of K! Thus, an aggressively

regularized covariance estimate favors a small number of clusters K.

2.4.2 Starting values

Mixture model fitting implemented via the EM algorithm is sensitive with respect to

starting values, and MIXL is no exception. We initialize the single-level fit, with M

clusters, using the k-means clustering algorithm. Each single-level fit is initialized from

several k-means clustering outcomes, and the best fit is reported.

As mentioned above, we explored various multi-level initialization schemes (e.g.

forward search, where a 1st level cluster is split in Dim(L), and backward search,

where a cluster is joined to form a 1st level cluster Dim(K)). The best results were

obtained with a backward search strategy. We initialize the multi-level fit with a total

of M clusters. We run the EM algorithm with K = M and Lk = 1,∀k = {1, · · · ,M}.

We then cluster the M cluster means and covariances into K clusters, using only

parameters defined at the 1st level data dimension Dim(K). This identifies clusters

that can potentially form 1st level clusters, with sub-clusters defined over Dim(L). The

k-means clustering of the mean and covariance parameters from the M single-level fit

identifies sub-cluster constellations LK = {Lk, k = 1, · · · ,K}}, where
∑

k Lk = M .

We run the multi-level EM algorithm from this initialization. To avoid convergence to

local optima, we form at least B unique groupings of the M clusters into K 1st level

clusters, and run the multi-level fit from all B initializations. The unique groupings are

obtained by running k-means on the Dim(K) parameter set repeatedly, and through

random perturbations of the cluster allocations. It is absolutely necessary to run the

multi-level clustering from several single-level initializations, and several groupings into

K 1st level clusters, since the best single-level fit is not guaranteed to generate the best

multi-level fit. In practice, we found that B = 10 alternative starting values for the

single-level fit, and groupings into multi-level initializations, were sufficient. Since the

above initialization procedure starts running the multi-level fit with starting values
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obtained from an unconstrained fit, the first iterations of the profile EM (for Lk > 1

for any k, or after subset selection) in general decreases the likelihood. After 1 − 5

iterations, the EM steps reverse direction, and converge toward a constrained solution.

In general, the multi-level fit converged after fewer than 50 iterations, whereas the EM

run after subset selection converged after 25 iterations or less.

3 Application to Data

3.1 The proliferating cell-line data

We apply the MIXL model with subset selection to a data set of proliferating stem

cell lines (Goff et al. (2006)). At the onset of the culture study, the two cell-lines

are virtually identical, and are believed to exist in a state of ”pre-conditioning” or

”pre-programming”. Thus, sets of neuron-specific and glia-specific genes are active,

and will determine the cell-fate of the clones. In this experiment, the differentiation

process of neuron and glia has been accelerated via the withdrawal of a growth factor

(FGF). Each culture was stained for neuron and glia specific markers. Each of three

cultures of each type was followed over 3 days. mRNA was extracted for array analysis

at t = 0, 1 and 3 days after the withdrawal of the growth factor.

The ABI system rat-chips, with 28,000 probes, were used for the array experiments.

Of these probes, we studied a subset of 15,111 probes with complete annotation (a well

known starting point of the coding region, and promoter). Preliminary significance

analysis of the expression data identified 780 genes of the 15,111 as being significantly

differentially expressed between the cell lines and/or time points at FDR 1% (using the

Welch F-test and the Benjamini-Hochberg p-value corrections). For each of the 780

selected genes, we computed the mean gene profile across replicates, and standardized

the mean profiles to have standard deviation 1, with a baseline of expression 0 for t = 0

in the glial like population. The final data set to be analyzed is thus of dimension 780

by 5. We denote gene expression in the glial-like population (L2.3) by x, where Dim(x)
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is 2 (for t = 1 and t = 3). We denote the gene expression in the neuron-like population

by y, where Dim(y) is 3 (t = 0, 1 and t = 3).

3.2 Subset selection of cluster model profiles

We begin by exploring the impact of subset selection and specific parameterizations

on clustering. As stated in the introduction, among the several scientific questions of

interest were given to us by the biologists (Goff et al. (2006)) were; (a) How do the

time course profiles of the glial-like (L2.3) and neuron-like (L2.2) cell-lines differ?; (b)

Are there sets of genes for which the expression converges(diverges) between the glial-

like and neuron-like cell populations?; (c) How dominant is the ”pre-programming”

effect? We introduced parameterizations WI , WII and WIII (section 2) to address

these questions.

K WI :
∑

k 1{βk = 0} WII :
∑

k 1{βk = 0} WIII :
∑

k 1{βk = 0}
5 2 5 7
6 6 4 7
7 4 4 7
8 2 5 5
9 3 6 6
10 5 7 9
11 5 7 7
12 6 8 10

Table 1: Number of coefficients set to 0 by subset selection for the single-level
fits with the three parameterizations.

In Figure 2 (c) we depict the BIC curves obtained for various numbers of clusters

K in a single-level fit. The solid line is the BIC curve obtained without subset selection

(i.e. a standard gaussian mixture model). The dashed and dotted lines are annotated

with ”1”, ”2” and ”3”, referring to the three parameterizations WI ,WII and WIII

respectively. Across all numbers of clusters, the WIII (cell fate pre-programming)

parametrization is the most efficient, as indicated by the lower BIC values. The sparsity

of each model is summarized in Table 1. With an efficient parametrization, both K = 8

and K = 9 are almost equally competitive. The WIII parametrization identifies cluster
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Single-level Multi-level
K

∑
k 1{βk = 0} (M, K)

∑
kl 1{βkl = 0} multi-level constraints

5 7 (5,4) 5 2
6 7 (6,5) 11 2
7 7 (7,6) 2 2
8 5 (8,7) 4 2
9 6 (9,7) 4 4
10 9 (10,8) 4 4
11 7 (11,8) 11 6
12 10 (12,10) 6 4

Table 2: Number of coefficients set to 0 by subset selection for the single- and
multi-level fits using parametrization WIII .

profiles that are static between t = 0 and t = 1, indicating a later developmental

activity in one or both cell lines (e.g. clusters 2, 6) (see Figure 2 (a)).

Ultimately, the choice of parametrization should be guided by the scientific ques-

tions. Here, we had multiple questions to consider, and focus on the most efficient

parametrization in our discussion. A more thorough comparison of the different pa-

rameterizations in a biological context is beyond the scope of this paper, but will be

the focus of our future collaborative research with Professor R. Hart, Department of

Neuroscience and Molecular Cell Biology at Rutgers University.

3.3 Multi-level model-based clustering of the cell-line

study.

In Figure 2 (a) we depict the clustering outcome of a single-level fit using parametriza-

tion WIII (centered on cell fate pre-programming). As can be seen from the figure,

the glial like population exhibits larger time differential effects than the neuron like

population. Furthermore, for some clusters (e.g. 3 and 4), the glial like cluster expres-

sion profiles almost coincide, whereas the neuron cluster profiles differ substantially.

To identify neuron specific variations, we will thus treat the glial like population data

as the 1st level in the MIXL model.

In Figure 2 (d) we show the additional efficiency of parametrization from both
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within-cluster and between-cluster comparisons. With the exception of the case with

5 total clusters, the multi-level fit always produces a lower BIC value. With these

two levels of subset selection (within and between clusters), a total of M = 9 is in

fact selected. That is, by using an efficient parametrization we gain one more cluster.

One can view this as a re-allocation of model complexity. In model selection we aim

to balance the fit and model complexity (number of parameters). By setting some

cluster parameters to 0 (within-cluster subset selection), and letting some cluster share

parameters at the 1st level (between-cluster parameter constraints), we save on com-

plexity and can ”afford” to form another cluster. In Table 2 we summarize the results

on model selection, listing for each cluster the number of parameters set to 0 by a

within-cluster profile subset selection, as well as the number of parameter constraints

by the multi-level fit. For this data set, the larger gains are made when the number of

clusters increase. For example, 11 out of 49 parameters were set to 0 (or constrained)

in the (M = 11,K = 8) multi-level fit.

The cluster profile that is the most unique in the multi-level fit is cluster 9 (Figure

2 (b) compared with (a)), which as we shall see in the discussion below provides some

interesting insight into neuron specific activity. In addition, we have identified two

groups of gene clusters (3 and 4, 5 and 6) for which the glial like population exhibits

identical expression patterns, and a sub-division of genes exhibit radically different

expression patterns in neurons.

3.4 Interpreting the clustering outcome

3.4.1 Examining the gene functional annotation of identified clusters

The efficient model description generated by the MIXL model gained us one extra

cluster compared with the single-level fit. In addition, each cluster profile was described

using a sparse representation if the data supported it. Clusters 3 and 4, as well and

clusters 5 and 6, formed sub-clusters for which the expression pattern coincided in the

glial like population, but differed substantially in the neuron like population. In Tables
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4-5 the top 10 significant GO categories are reported for each of the 9 clusters. The

GO terms were identified using GOstat (Beissbarth and Speed (2004)).

Among all clusters (780 genes), developmental terms and neurogenesis are over-

represented compared with all annotated probes (15.111) on the array (Table 4 top).

Clusters 1 and 2: Cluster 1 corresponds to a set of genes that start out at baseline

for both cell-lines, i.e. there is no pre-programming activity. In the glial like population,

the expression of these genes increase rapidly over the course of the experiment. In

table 4 (middle) we see that these genes are in fact annotated as specific to gliogenesis.

The set of genes in cluster 2 are always overexpressed in the glia population compared

with neurons, and the expression in glia increases over time. Table 4 (bottom) identifies

this set of genes related to astrocyte formation (one type of glia), as well as transporter

activity (of which chloride transport is a glial function).

Clusters 3 and 4: These clusters form a set of sub-clusters with neuron specific

differential expression. To interpret these clusters, we rely on the following fact: it is

known (from staining experiments) that the glial like cultures are heterogeneous. That

is, in the cultures labeled ”glial like” we see a mixture of glia and neurons. In contrast,

the neuron population is largely homogeneous, and almost all cells in these cultures

become neurons.

Cluster 3 represents genes that start off high in neurons, whereas the set of genes

in glia population approach (from below) neuron specific levels of activity. Cluster

3 thus highlights genes that are believed to be specific to neuron formation. These

genes are activated in the glia culture among cells that converge to neurons (Goff

et al. (2006)). Looking in Table 5, GO categories that are overrepresented in cluster 3

correspond to neuron and neurite development, as well as activation of other neuron

maturation processes (e.g. regulated by NFkappa-B). The neuron population has been

’pre-programmed’ to this cell fate, and these genes are thus highly expressed through-

out the experiment for these cultures.

Cluster 4 represent genes that start off more highly expressed in the neuron popula-

tion. In the glial like population we again pick up the gene activity associated with the
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sub-population converging to neurons. For these genes, activity is increasing in both

populations. The GO categories associated with this cluster (Table 5) include growth

cone, cytoskeleton, and microtubule binding, which are associated with dendrite forma-

tion (Charych et al. (2006)). Dendrites are part of the more complex neuron structure

which explains the later activity of these genes compared with the more basic neuronal

developmental processes identified in cluster 3.

Clusters 5 and 6: Clusters 5 and 6 again correspond to sub-clusters that are

specific to activity in the neuron population. Cluster 5 corresponds to an overall higher

activity in neurons compared with glia, and this activity is decreased in both popula-

tions. Cluster 6 corresponds to genes whose activity is always lower in neurons com-

pared with glia, where again the glial activity is decreasing. In cluster 6, the glial gene

expression is converging toward the neuron expression, suggesting that these genes are

(de-)activated in the sub-population of cells in the glial population that form neurons.

Cluster 5 is associated with acid metabolism, whereas cluster 6 is associated with acid

synthesis. Acid metabolism is a process by which neurons generate neurotransmitters.

Glial cells are believed to synthesize some acids that assist in neuron development and

migration. Therefore, one can largely associate genes in cluster 5 with neuron specific

activity, which explains the under expression in glia.

Cluster 7, 8 and 9: Cluster 7 corresponds to a more rapid increase in expression in

the neuron population compared with glia (as indicated by the selected cluster model

with no time effect in neurons between t = 1 and t = 3). This cluster is the most

sparsely populated, with a large cluster variance. The GO terms associated with these

clusters are not easy to interpret, with the exception of ”morphogenensis”. Cluster

8 is associated with expression upregulated in the neuron population compared with

the glial population at the onset. The glial expression is slowly converging toward

the neuron population. The top GO categories associated with cluster 8 are primarily

centered on high level neuron functions (e.g. synaptic transmission). Cluster 9 consists

of genes that are upregulated in neurons compared with glia at all times. The top GO

categories in this cluster are linked to phosphorus binding. Phosphor is an activator of
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BDNF binding, a primary regulator of dendritic branching at the cell body (primary

branching). If we compare clusters 9 and 4, we see that primary branching (cluster

9) is activated early in neurons (t = 0) and then decreasing, whereas genes associated

with dendritic formation and higher levels of branching (cluster 4) is associated with

increasing gene expression over the course of the experiment.

3.4.2 Mining the clustering results

Regulation of gene expression in a condition specific manner heavily relies on the ac-

tivities of the transcription factors, i.e., DNA binding proteins, and mainly on their

recognition of DNA in a sequence specific manner. The sites that the transcription

factors bind to on DNA are usually 5-20 base pairs long and are referred to as DNA

binding motifs or regulatory motifs. Identification of these sites is a challenging and not

completely solved computational biology problem. Recently, several methods (Busse-

maker et al.; 2001; Keleş et al.; 2002; Conlon et al.; 2003) illustrated that addressing

this problem in a feature/variable selection framework is a powerful way of elucidat-

ing experiment/class specific binding sites. In these approaches, the key idea is to

use regulatory motifs as covariates and generally gene expression (expressed versus

not expressed) as an outcome of interest. Then, a linear regression model is typically

built to link the motifs to the outcome. More recently, non-parametric regression ap-

proaches like logic regression (Ruczinski et al.; 2003) and MARS (Friedman; 1991) are

also employed (Keleş et al.; 2004; Das et al.; 2004) instead of linear regression models.

In our analysis, we use the cluster assignment of each gene as a class label and

consider all pairwise comparisons of the clusters in a logistic regression framework.

Covariates in these regression models are based on the transcription factor database

TRANSFAC (Wingender; 1994). For each gene, we construct a set of covariates utiliz-

ing the position specific probability matrix (PSPM) representations of the regulatory

motifs. This representation corresponds to a 4 by length of the motif matrix where

each (i,j)th entry corresponds to the probability of observing the ith nucleotide at the

jth position of the motif (see Stormo (2000) for a comprehensive review of binding site
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representations). In order to construct the covariates, we extract first 1000 base pairs

upstream of the transcription start site, i.e., regulatory region, for each gene. Then,

these regions are scanned by each of the 795 regulatory motif PSPMs from TRANS-

FAC using the PATSER tool (Hertz and Stormo; 1999). As a result, we obtain, for

each subsequence in the upstream sequence, a likelihood ratio score representing the

likelihood of the subsequence under the regulatory motif model as opposed to a back-

ground model that assigns (0.3, 0.2, 0.2, 0.3) probabilities to the nucleotides A, C, G,

and T, respectively.

The score of the best matching subsequence within the regulatory region is used as

a covariate. Due to the high dimensional covariate space, elaborate variable selection

schemes are required to identify the most relevant features.We utilize the recently

developed GLMpath algorithm of (Park and Hastie; 2006). GLMpath fits L1 regularized

generalized linear models by solving the following minimization problem:

β̂(λ) = argmin{− logL(y;β) + λ||β||1},

where λ is the regularization path and L(y;β) represent the logistic regression likeli-

hood parameterized by regression coefficients β in our framework. In our application,

the regularization parameter is based on 5-fold cross-validation.

The number of discriminating position weight matrices identified for each pairwise

comparison ranged from 0 to 9. Since TRANSFAC does not span the space of all posi-

tion weight matrices relevant for rat, we indeed expect some of the pairwise comparisons

not to have any discriminating position weight matrices. It has been previously noticed

that although a linear regression analysis of gene expression as a function of regula-

tory sequences can elucidate major regulatory sequences affecting gene expression, such

an analysis has typically low predictive power (Bussemaker et al.; 2001; Keleş et al.;

2002). Using a summary measure of gene expression, namely the clustering results,

behaves similarly. Although we consider all pairwise comparisons, our main interest

lies in the comparisons between the second level sub-clusters of the multi-level fit. As

32



depicted in Figure 2 (b), sub-clusters 3 and 4 and sub-clusters 5 and 6 are obtained

via a split in the second cell line. Examining the position weight matrices selected for

these comparisons, we note that M00133 matrix which is identified in the comparison

of clusters 3 and 4 corresponds to transcription factor Tst-1. Tst-1 is a member of the

POU domain gene family and is expressed in specific neurons and in myelinating glia in

the mammalian nervous system. This transcription factor, also called MeF2, has been

identified by our collaborators in an independent biochemistry experiment (Goff et al.

(2006)). MeF2 is believed to be a target of a neurogenesis regulating microRNA, and

its association with a neuron specific expression pattern in our study lends support to

this biological hypothesis. Further study of the identified neuron-specific transcription

factors are now underway in collaboration with Professor R. Hart at Rutgers.

4 Simulations studies

The clustering analysis of the proliferating cell-line data was applied to a set of sig-

nificant genes only. In addition, prior to clustering, each gene expression profile was

standardized with a fixed baseline at 0 for the glial-like cell-line at t = 0. The dimen-

sions of the data set that was clustered was thus (780 by 5).

We simulate (780 by 5) multi-variate normal data, from several realistic scenarios.

We use the estimated best single-level (SF) and multi-level (MF) fits (see section 3)

to generate data on which we validate; (a) the selection of the number of clusters at

each level; and (b) the specific subset model for each cluster (the non-zero coefficients).

The best single level model is referred to as Mod(1), and the best multi-level model as

Mod(2).

Mod(1) is a single-level model with K = 8 clusters. The cluster means for this

model are depicted in Figure 2 (a). The cluster means are parameterized with 5 ∗ 8

coefficients, and 5 parameters were eliminated (set to 0) by subset selection. Mod(2)

is the multi-level model with M = 9 clusters total, and K = 7 clusters at the 1st level.

4 parameters were eliminated (set to 0) by the subset selection, and 4 parameters
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eliminated by the multi-level structure of the model. We simulate Mod(1) and Mod(2)

data sets of the same dimensions as the original data set. We then perform single-

and multi-level fits, as well as subset model selection on each of 50 simulated data

sets. For each simulated data set, we record the selected number of clusters. We also

compare the selected subset model (for the true number of clusters) to the true model,

and record the total number of selection errors (the number of coefficients erroneously

set to 0, or non-zero). We also compute the BIC of each fit, before and after subset

selection.

In Figure 4 and Table 3 we summarize the results from the simulations. Figure 4

(a) shows that indeed the BIC is always reduced after model selection, even after the

EM steps are rerun with the selected parameter constraints. Thus, performing subset

selection on a cluster by cluster basis, using the local BIC, always produces a better

model in terms of the BIC validation index. In Figure 4 (b) we depict a histogram of

the total number of selection errors (across all clusters) for the 50 simulated data sets.

In the case of the single level model (Mod(1)) (top panel), the multi-level fit (MF)

generates fewer selection errors than the single-level fit. This is an intriguing result,

given that the multi-level fit for which these errors are compared is constrained to only

have Lk = 1, i.e. no sub-clusters. The reason for the improved selection performance

is that we visit internal (1st level) clusters, and leaf (2nd level) clusters separately,

and are thus performing subset selection on 2 ∗ (K = 8) clusters in the multi-level fit,

compared with K = 8 clusters in the single-level fit.

In Figure 4 (c) and (d) (lower panel), we depict the BIC reduction of the multi-

level fit compared with the single-level fit, before and after the selection of the number

of clusters, as well as after subset selection. In Figure 4 (c) we illustrate the results

for the Mod(1) (single-level fit is correct). We see that before subset selection, the

single- and multi-level fits perform equally well (no difference in BIC value). After

model selection, due to the increased number of clustered considered separately in the

selection procedures (as stated above), the multi-level fit improves on the single-level

fit. In Figure 4 (d), we illustrate the results from the Mod(2) simulation (multi-level
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fit is correct). Here, the multi-level fit improves on the single-level fit both before and

after selection. Occasionally, the multi-level fit will perform worse than the single-level

fit. This is a direct result of the limitations of the simulations study. The multi-level

fits require a more careful exploration across multiple starting values. However, for

ease of computation, the single- and multi-level fits were only run from one starting

value, which favors the single-level fit. Still, with the exception of a few rare cases, the

multi-level fit provides a better solution for Mod(2) data. The histograms in Figure 4

(b) (bottom panel) shows that the total number of selection errors is yet again smaller

for the multi-level fit (MF).

SF(Mod 1) MF(Mod 1)
K=M K=7 K=8 K=9

M=8 44 1 43
M=9 6 0 2 4

SF(Mod 2) MF(Mod 2)
K=M K=6 K=7 K=8 K=9 K=10

M=7 1 1 0
M=8 7 2 3 1
M=9 15 0 7 8 2
M=10 27 0 2 7 11 6

Table 3: Top panel: The selected number of clusters with the single-level
and multi-level fits for the Mod(1) data. The correct K = 8. Both fitting
strategies perform well, and the multi-level fit correctly identifies a single-level
fit (bold face in table) in almost all cases. Lower panel: The selected number of
clusters with the single- and multi-level fits for the Mod(2) data. The correct
M = 9, with 7 1st level clusters (K = 7). In almost all cases, the multi-level
fit correctly identifies a sub-cluster structure (bold face in table), rather than
single-level model.

In Table 3 we present the selected number of cluster for the Mod(1) and Mod(2)

data sets, using the single-level and multi-level fits. In the case of Mod(1) data, the

multi-level fit in almost all cases identifies the single-level fit as the correct model

structure. In the case of Mod(2) data, the multi-level fit in almost all cases identifies a

multi-level fit (with sub-clusters) as the correct model structure. In the case of Mod(2),
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both fitting strategies have trouble identifying the correct total number of clusters. The

reason is the cluster 7 in Mod(2) is sparsely populated. In some simulations, cluster 7

is split into 2 cluster, producing in a total of M = 10 clusters. Sometimes ”genes” in

cluster 7 are simply allocated to nearby clusters, producing a total of M = 8 clusters.

In summary, the multi-level fit can correctly identify a single-level model as well as

a multi-level model. In addition, the BIC is much reduced if the multi-level structure

of the data is accounted for. Subset selection also reduces the BIC, in both single-level

and multi-level models. The multi-level model always produces more accurate selection

results, in part because the subset selection is applied to 1st level and second level

clusters separately. Our simulation illustrates the impact of an efficient representation

of cluster profile models (both within and between clusters) on mixture model fitting.

5 Discussion

We have proposed a mixture model with multiple levels to more efficiently model

multiple-factor experimental data. In addition, we proposed a subset selection method

to generate sparse representations of cluster profiles, under various parameterizations.

We illustrated on real and simulated data that these efficient representations of the

clusters models can have a substantial impact on the fit of the data, significantly

reducing the BIC of the optimal model fits. In addition, we showed that our multi-level

mixture modeling approach with subset selection can correctly identify both single-level

and multi-level data structures. In our simulation setting, the multi-level approach

produced subset selection results closer to the correct subset model, in both the single-

and multi-level setting.

Our multi-level approach identified interesting and biologically relevant groups of

genes in the proliferating cell-line data. A more thorough study of our findings is now

underway in collaboration with biologists at Rutgers university.

Efficient cluster model representations (multiple levels and subset selection) will

have a larger impact in high-dimensional settings, e.g., time-course data with more
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time points. It is in these cases that a multi-level approach with subset selection

has the largest potential in substantially reducing the number of parameters in the

model. In addition, while we did not consider efficient representations of the cluster

covariances, this is another area in which modeling efficiency may be explored. Fraley

and Raftery (2002) compared mixture models with parameterized cluster covariances.

Incorporating covariance parametrization and subset selection into our multi-level ap-

proach is an interesting future research topic.

While we demonstrated our multi-level approach on a proliferating cell-line data,

with a two-level factor of interest, the method can in theory be extended to more fac-

tors, and factors with more levels. However, the profile EM algorithm we proposed may

not be as easily adapted to a more complex data structure. For now, we recommend

a grouping of the factors of interest, creating a baseline factor level for the 1st level of

the model, and modeling contrasts from the baseline at the second level. Our future

research will focus on the development of multi-level models and estimation procedures

with a modeling hierarchy beyond two levels.
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List of Figures and Tables

Figure 1: (a) An illustration of a Mixture Model with 2 levels; Solid line (black

and gray): Two 1st level clusters for cell-line 1. The two sets of dashed lines (black

and gray) represent the corresponding sub-clusters (level 2) for cell-line 2. Thus,

here K = 2, and L1 = 2, L2 = 2. (b) The ”Dynamic DE (differential expression)

parametrization”. The α parameters model the time course expression profile for

cell-line 1, whereas the γ parameters model the time course of cell-line differential

expression.

Figure 2: (a) Cluster mean profiles of the best single-level fit (K = 8). The glial

like population is depicted in the left panel, the neuron like in the right panel

(parametrization WIII) (b) Cluster mean profiles of the best multi-level fit K = 7,

M = 9, with two sets of sub-clusters (parametrization WIII). (c) The BIC curves

obtained using the single-level fit. Solid line: no subset selection. Dashed and dotted

curves annotated with the respective parametrization (WI ,WII ,WIII). The WIII -BIC

curve is the lowest, indicating that the WIII parametrization is the most efficient

for this data set. (d) The BIC curves obtained from the single- and multi-level fits,

using the WIII parametrization. The multi-level fit always gives a lower BIC for

the same total number of clusters (M). The numbers in the figures (M,K) refers

to the total number of clusters, and the number of 1st level clusters respectively.

The best BIC values is obtained with M = 9 clusters total, andK = 7 1st level clusters.

Figure 3: The 9 clusters generated by the best MIXL fit.

Figure 4: (a) The BIC value of the full model minus the BIC value after subset

selection for both simulation settings: (Mod(1),Mod(2)), and both fitting strategies

(single- (SF) and multi-level (MF) fits). The BIC is always smaller after subset

selection. (b) Histograms of the total number of subset selection errors for the Mod(1)
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data (40 parameters total) (top panel) and the Mod(2) data (41 parameters total)

(lower panel). The multi-level fit produce fewer selection errors in both cases. (c)

The BIC of the single-level fit minus the BIC of the multi-level fit for Mod(1) data,

before and after subset selection. After subset selection, the multi-level fit improves

on the single-level fit, even when the single-level model is correct. (d) The BIC of the

single-level fit minus the BIC of the multi-level fit for Mod(2) data, before and after

subset selection. The multi-level fit improves on the single-level fit in almost all cases.

Table 1: Number of coefficients set to 0 by subset selection for the single-level fits

with the three parameterizations.

Table 2: Number of coefficients set to 0 by subset selection for the single- and

multi-level fits using parametrization WIII .

Table 3: Top panel: The selected number of clusters with the single-level and

multi-level fits for the Mod(1) data. The correct K = 8. Both fitting strategies

perform well, and the multi-level fit correctly identifies a single-level fit (bold face

in table) in almost all cases. Lower panel: The selected number of clusters with

the single- and multi-level fits for the Mod(2) data. The correct M = 9, with 7 1st

level clusters (K = 7). In almost all cases, the multi-level fit correctly identifies a

sub-cluster structure (bold face in table), rather than single-level model.

Table 4: Top 10 GO categories of all clusters, and clusters 1 and 2.

Table 5: Top 10 GO categories for clusters 3 and 4.

Table 6: Top 10 GO categories for clusters 5 and 6.

Table 7: Top 10 GO categories for clusters 7, 8 and 9.
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Figure 2: (a) Cluster mean profiles of the best single-level fit (K = 8). The
glial like population is depicted in the left panel, the neuron like in the right
panel (parametrization WIII) (b) Cluster mean profiles of the best multi-level
fit K = 7, M = 9, with two sets of sub-clusters (parametrization WIII). (c)
The BIC curves obtained using the single-level fit. Solid line: no subset selec-
tion. Dashed and dotted curves annotated with the respective parametrization
(WI , WII , WIII). The WIII-BIC curve is the lowest, indicating that the WIII

parametrization is the most efficient for this data set. (d) The BIC curves
obtained from the single- and multi-level fits, using the WIII parametrization.
The multi-level fit always gives a lower BIC for the same total number of clus-
ters (M). The numbers in the figures (M, K) refers to the total number of
clusters, and the number of 1st level clusters respectively. The best BIC values
is obtained with M = 9 clusters total, and K = 7 1st level clusters.
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Figure 3: The 9 clusters generated by the best MIXL fit.
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Figure 4: (a) The BIC value of the full model minus the BIC value after
subset selection for both simulation settings: (Mod(1), Mod(2)), and both
fitting strategies (single- (SF) and multi-level (MF) fits). The BIC is always
smaller after subset selection. (b) Histograms of the total number of subset
selection errors for the Mod(1) data (40 parameters total) (top panel) and the
Mod(2) data (41 parameters total) (lower panel). The multi-level fit produce
fewer selection errors in both cases. (c) The BIC of the single-level fit minus
the BIC of the multi-level fit for Mod(1) data, before and after subset selection.
After subset selection, the multi-level fit improves on the single-level fit, even
when the single-level model is correct. (d) The BIC of the single-level fit
minus the BIC of the multi-level fit for Mod(2) data, before and after subset
selection. The multi-level fit improves on the single-level fit in almost all cases.
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All clusters vs GO data base
GO0048731 ”System development”
GO0007399 ”Nervous system development”
GO0030154 ”Cell differentiation”
GO0006928 ”Cell motility”
GO0051674 ”Location of cell”
GO0040011 ”Locomotion”
GO0022008 ”Neurogenesis”
GO0051606 - ”Detection of stimulus”
GO0009582 - ”Detection of abiotic stimulus”
GO0030182 ”Neuron differentiation”

Cluster 1 vs All clusters
GO0006836 ”Neurotransmitter transport”
GO0042063 ”Gliogenesis”
GO0010001 ”Glial cell differentiation”
GO0007399 ”Nervous system development”
GO0031324 ”Neg. regulation of cell metabolism”
GO0048737 ”System development”
GO0006357 ”Neg. reg. RNA polymerase transcription”
GO0001504 ”Neurotransmitter uptake”
GO0048469 ”Cell maturation”
GO0001764 ”Neuron migration”

Cluster 2 vs All clusters
GO0015290 ”El.chem transport activity”
GO0015291 ”Porter activity”
GO0015293 ”Symporter actitivy”
GO0005416 ”Amino acid symporter activity”
GO0048143 ”Astrocyte formation”
GO0015103 ”Anion transport activity”
GO0006820 ”Anion transport”
GO0015380 ”Anion exchange activity”
GO0015108 ”Chloride transporter activity”
GO0015297 ”Antiporter activity”

Table 4: Top 10 GO categories of all clusters, and clusters 1 and 2.
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Cluster 3 vs All clusters
GO0005694 ”Chromosome”
GO0009966 ”Reg. signal transduction”
GO0030900 ”Forebrain development”
GO0007249 ”NFkappa-B cascade”
GO0031175 ”Neurite development”
GO0048666 ”Neuron development”
GO0000785 ”Chromatin”
GO0044427 ”Chromosomal part”
GO0007242 ”Intracell. signal cascade”
GO0007409 ”Axonogenesis”

Cluster 4 vs All clusters
GO0030427 ”Site of polarized cone”
GO0030426 ”Growth cone”
GO0015631 ”Tubulin binding”
GO0005856 ”Cytoskeleton”
GO0008017 ”Microtubule binding”
GO0030018 ”Z-disc”
GO0005886 ”Plasma membrane”
GO0000267 ”Cell fraction”
GO0044228 ”Non-membrane-bound organelle”
GO0017111 ”Nucleoside-triophasphate act.”

Table 5: Top 10 GO categories for clusters 3 and 4.
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Cluster 5 vs All clusters
GO0006767 ”Vitamin metabolism”
GO0005739 ”Mitochondria”
GO0019752 ”Carb. acid metabolism”
GO0006082 ”Organic acid metabolism”
GO0031975 ”Envelope”
GO0031967 ”Organelle envelope”
GO0044237 ”Cell metabolism”
GO0043170 ”Macromolecule metabolism”
GO0009058 ”Biosynthesis”
GO0006865 ”Amino acid transport”

Cluster 6 vs All clusters
GO0044272 ”Sulfur compound biosynthesis”
GO0008652 ”Amino acid biosynthesis”
GO0000097 ”Sulfur amino acid biosynthesis”
GO0006092 ”Pathway of carbohydrate metabolism”
GO0050794 - ”Neg. reg. cell process”
GO0008217 ”Blood pressure regulation”
GO0008202 ”Steroid metabolism”
GO0005624 ”Membrane fraction”
GO0005515 - ”Protein binding”
GO0000267 ”Cell fraction”

Table 6: Top 10 GO categories for clusters 5 and 6.
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Cluster 7 vs All clusters
GO0048729 ”Morphogenesis”
GO0050874 ”Tissue development”
GO0009605 ”Response to external stimulus”
GO0016042 ”Lipid catabolism”
GO0050875 ”Organ. phys. process”
GO0050896 ”Response to stimulus”
GO0008081 ”Phospholiric dieter hydrolase activity”
GO0042330 ”Taxis”
GO0006935 ”Chemotaxis”
GO0005543 ”Phospholipid binding”

Cluster 8 vs All clusters
GO0044421 ”Extracell. region”
GO0043235 ”Receptor complex”
GO0004720 ”Protein-oxidase activity”
GO0007270 ”Nerve-nerve synaptic transmission”
GO0044238 - ”Primary metabolism”
GO0005615 ”Extracellular space”
GO0009653 ”Morphogenesis”
GO0007271 Synaptic transmission
GO0005102 Receptor binding
GO0000902 Cellular morphogenesis

Cluster 9 vs All clusters
GO0006797 ”Phosphorus metabolism”
GO0006796 ”Phosphate metabolism”
GO0006350 ”Transcription”
GO0045449 ”Reg. of transcription”
GO0006351 ”DNA-dependent transcription”
GO0019219 ”Reg. of nucleic acid metabolism”
GO0006468 ”Protein amino acid phosphorylation”
GO0006464 ”Protein modification”
GO0043412 ”Biopolymer modification”
GO0044237 ”Cellular metabolism”

Table 7: Top 10 GO categories for clusters 7, 8 and 9.
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