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Abstract Chromatin immunoprecipitation followed by high throughput sequencing
(ChIP-seq) experiments are routinely utilized for studying epigenomics of transcrip-
tional regulation. We review some of the important statistical issues in the analysis
of these experiments and extend our previous model for the analysis of ChIP-seq
data of transcription factors, named MOSAiCS, with a hidden Markov model archi-
tecture (MOSAiCS-HMM). MOSAiCS-HMM provides a model-based approach for
modeling read counts in histone modification ChIP-seq experiments and accounts
for the spatial dependence in their ChIP-seq profiles. In addition, its R package im-
plementation provides many functionality for summarizing these data and generat-
ing files that can be directly uploaded to the UCSC genome browser.

1 Introduction

Regulation of gene expression is a multi-faceted process. DNA binding proteins,
i.e., transcription factors, and histone modifications are two of the critical mecha-
nisms for regulating gene expression. Transcription factors (TFs) interact with the
DNA in a sequence specific or non-specific manner and can act alone or in protein
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complexes with co-factors. They promote (activate) or block (repress) expression
of their specific target genes. In contrast, histones are a specific class of proteins
that package DNA. Every 146 base pairs of DNA winds around a histone complex
consisting of two of each of the H2A, H2B, H3, and H4 histone proteins, and form
the structural unit of DNA called nucleosomes. The H3 and H4 histones have long
tails that can be covalently modified at several places. Methylation, acetylation, and
phosphorylation are some of the most commonly studied histone modifications and
they affect diverse biological processes including gene regulation [30].

Chromatin immunoprecipitation followed by high throughput sequencing (ChIP-
seq) has become a versatile experimental technique for profiling TF-DNA interac-
tions, histone modifications, chromatin remodeling enzymes, RNA polymerase, and
nucleosomes [2, 15]. A typical TF or histone modification ChIP-seq experiment in-
volves isolating regions of the genome interacting with the protein of interest or
undergoing the targeted modification. This is accomplished by first cross-linking
proteins and associated chromatin in a cell lysate and then shearing DNA to an
average of 500 base pair fragments. Then, the DNA fragments associated with the
protein of interest are selectively captured by immunoprecipitation with an antibody
specific to that protein. In the case of histone modifications, antibodies targeting spe-
cific histone proteins with a specific modification are utilized. The associated DNA
fragments are then purified and one (single-end sequencing) or both ends (paired-
end sequencing) of the captured fragments are sequenced by using a high throughput
sequencing platform.

These high throughput in vivo biological assays are embraced by large consortia
projects such as ENCODE [10] and RoadMap EpiGenomics [4] and have resulted
in large volumes of publicly available data. ChIP-seq experiments for transcrip-
tion factors enable identification of where a protein binds in the genome in vivo,
whereas experiments targeting histone modifications identify which regions of the
genome are undergoing the targeted histone modification. Because both binding of
transcription factors and histone modifications play important roles in cell specific
gene regulatory programs, their genome-wide mapping is crucial for understanding
and diagnosing human diseases.

Characteristics of data from ChIP-seq experiments vary based on what is being
profiled (e.g., transcription factor, modified histone, RNA polymerase) and what se-
quencing parameters (e.g., single-end, paired-end) are being utilized. Illumina plat-
form is by far the most popular choice for ChIP-seq experiments [2, 15, 21, 27].
As a result of sequencing, reads of size 36-100 base pairs (bps) representing one
or both ends of immunoprecipitated DNA fragments with varying lengths are ob-
tained. The lengths of DNA fragments are typically kept around 150-300 bps for
optimal sequencing by a size selection step in the experimental protocol. ChIP-seq
experiments are typically coupled with control experiments which either skip the
immunoprecipitation step (Input control) or use a non-specific antibody (IgG con-
trol) to measure non-specific protein DNA interactions and characterize background
read distribution. Compared to their array-based analogues (ChIP-chip experiments
[5, 16]), ChIP-seq provides higher resolution and genomic coverage [38].
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Fig. 1 Typical work flow of statistical analysis of ChIP-seq experiments.

Analysis of ChIP-seq data involves multiple steps from quality assessment to
downstream analysis for biological interpretation (Figure 1). The main statistical
task is, however, identifying regions of the genome that exhibit significantly higher
levels of ChIP read counts compared to background read counts. Figure 2 displays
ChIP and Input control profiles for such a region from a H3K4me3 experiment in
GM12878 cell lines which was generated as part of the ENCODE project [10].
There are a plethora of computational and statistical approaches for analyzing data
from ChIP-seq experiments (reviewed in [1]). Most of the well-studied approaches
[7, 17, 18, 26, 37] are geared towards ChIP-seq experiments of transcription factors
which generate punctuated peaks. In such data, ChIP reads concentrate on the TF-
DNA interaction site and have a clear summit. In contrast, ChIP-seq experiments
profiling modified histones can result in punctuated, broad (e.g., for H3K27me3,
H3K36me3, and H3K9me3), or a mixture of punctuated and broad peaks and show
larger variations in the widths of the enriched regions compared to TF ChIP-seq.
Methods for analyzing ChIP-seq data of histone modifications either require running
methods for punctuated signals in a special ”broad” model [17, 37] or primarily
focus on identifying differential histone modifications [23, 28, 32, 34]. Recently, a
stochastic Bayesian Change-Point method named BCP [33] has been proposed for
the analysis of diffuse histone ChIP-seq data and has been shown to be also effective
in analyzing punctuate transcription factor ChIP-seq data.

We have recently developed a model-based, versatile method, named MOSAiCS
(Model-based One- and Two-Sample Analysis and Inference for ChIP-seq), for the
analysis of ChIP-seq data [18]. MOSAiCS accommodates both one- (in the ab-
sence of a control sample) and two-sample analysis of ChIP-seq data. Unlike other
popular ChIP-seq methods that consider explicit modeling of data only under the
null hypothesis of no enrichment [26, 37], MOSAiCS provides biologically moti-
vated statistical models for reads that arise under both non-enrichment (background)
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Fig. 2 H3K4me3 ChIP-seq read profile generated by R package dpeak [7]. Black and gray
curves depict ChIP and sequencing depth normalized Input read counts for a peak identified by all
the three methods. Vertical lines depict the boundaries of the peak as determined by different peak
callers.

and enrichment (signal). Furthermore, MOSAiCS builds a parametric background
model that takes into account biases such as GC content [8] and mappability [38]
that are inherent to ChIP-seq data. MOSAiCS model does not assume punctuated
or broad peak structures but instead quantifies whether the ChIP reads show enrich-
ment compared to the background reads for every genomic interval (e.g., bin) of
user defined size in the genome. Although such analysis captures most parts of the
broad domains, large regions with low but consistent enrichment might be prone
to misidentification. In this paper, we extend the MOSAiCS model with a hidden
Markov model architecture to allow spatial dependence between adjacent bins and
facilitate identification of broad enriched regions in ChIP-seq data. We conclude
with a brief discussion of other issues concerning ChIP-seq data analysis (Figure 1).

2 MOSAiCS-HMM Model

2.1 MOSAiCS

We first review the MOSAiCS model [18] that MOSAiCS-HMM builds on. Previ-
ous work by others and us have established that next generation sequencing datasets
including naked DNA, Input DNA, and ChIP samples are prone to sequencing and
other sources of biases [3, 8, 18, 26]. Specifically, observed read counts are af-
fected by local sequence characteristics such as mappability and GC content. In
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order to correct these biases and obtain accurate measurements of enrichment sig-
nals, we developed MOSAiCS, a flexible mixture model that incorporates various
sequence biases in modeling the background read distribution. We implemented the
MOSAiCS model as R package mosaics which is available from Bioconductor
(http://www.bioconductor.org/) [12]. In this R package, the MOSAiCS model is im-
plemented in a computationally efficient way by using Rcpp and parallel R
packages for C++ implementation and parallel computing, respectively. mosaics
package also provides various tools for exploratory analysis, model fitting, model
selection, and diagnostics for ChIP-seq data analysis with MOSAiCS [31].

In the MOSAiCS model, reference genome is divided into non-overlapping inter-
vals (e.g., bins) of typically 200 bps. We consider ChIP reads in each bin as arising
from a mixture of non-enriched and enriched distributions. Let Yj denote the ChIP
read counts in j-th bin. Let M j and GC j be the bin-specific mappability and GC
content scores. These quantities are defined as functions of base pair mappability
and GC scores [6]. For a read length of k and library size of L, let x(i):(i+k−1) denote
the kmer starting at position i and ending at position i+ k − 1 from 5′ to 3′. Let
xc
(i):(i−k+1) denote the kmer starting at position i and ending in i− k+1 in the other

strand. Then, the nucleotide-level mappability is defined as:

δi =

{
1 if x(i):(i+k−1) is unique,
0 o.w.

Mappability for a position in the reverse strand is similarly defined as:

δ c
i =

{
1 if xc

(i):(i−k+1) is unique,
0 o.w.,

,

where δ c
i = δi−k+1. The GC content at the nucleotide level is defined similarly by

setting δi = I(i-th position is a G or C). In the MOSAiCS model, bin-level versions
of these quantities are utilized to account for the fact that the total number of ob-
served counts at position i could be contributed by forward strand reads that origi-
nate between positions i−L+1 and i and get extended to L bps or the reverse strand
reads that originate between positions i and i+L−1 and get extended to L bps. The
bin-level mappability/GC content for single-end reads is defined as:

δ ∗
i =

1
2L

(
i

∑
j=i−L+1

δ j +
i+L−1

∑
j=i

δ c
j

)
, (1)

=
1

2L

(
i

∑
j=i−L+1

δ j +
i+L−k

∑
j=i−k+1

δ j

)
. (2)

Bin-level mappability and GC content scores for paired-end reads can be computed
similarly by taking into account the actual lengths of the fragments that two end
reads represent.
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When a matching control sample, such as Input control, is available, we further
denote the control read counts in j-th bin by X j. Finally, we denote the indicator
of enrichment status of j-th bin as Z j, where Z j = 1 if j-th bin is enriched, i.e.,
exhibiting TF binding or histone modification, and Z j = 0 otherwise. We assume
that enrichment status of individual bins are independent and is given as follows for
j = 1,2, · · · ,M,

Pr(Z j = 0) = π0, Pr(Z j = 1) = 1−π0. (3)

Given these underlying enrichment states for j-th bin, we assume that

(Yj|Z j = 0)∼ N j, (Yj|Z j = 1)∼ N j +S j, (4)

where N j and S j represent background and signal, respectively. MOSAiCS models
reads from the background component with Negative Binomial regression:

N j ∼ NegBin(a,a/µ j), (5)

where we model its mean, µ j, slightly differently under three different scenarios.
The specifications of these models emerged from exploratory analysis of a large
collection of ENCODE datasets [18] and other datasets across multiple organisms
[14, 22, 29]. The mappability scores contribute the mean model with a log trans-
formation to account for the curvature that is apparent from the mappability versus
ChIP read count relationship. Similarly, the piecewise linear B-spline model for the
GC-content score enables a flexible way of capturing the GC content versus ChIP
read count relationship observed in multiple ChIP-seq datasets. Next, we detail the
three mean models and discuss the conditions under which they are appropriate.

• Case 1: In the absence of a control sample:

log µ j = β0 +βM log2 (M j +1)+β ′
GCSp(GC j) ,

where Sp(GC j) is a vector of piecewise linear B-spline basis functions with
knots at the first and third quantiles of the GC content. β GC is vector valued and
represents all the coefficients in the spline model. Current standard practice for
ChIP-seq experiments is to couple each ChIP sample with a Input control sam-
ple. However, investigators occasionally generate ChIP samples without control
samples especially when choosing among different antibodies for the same fac-
tor. This mean model facilitates the analysis of such samples without a control
by approximating the background mean read counts using mappability and GC
content scores.

• Case 2a: In the presence of a shallowly sequenced control sample:

log µ j = β0 +
[
βM log2 (M j +1)+β ′

GCSp(GC j)βX1Xd
j

]
1
{

X j ≤ s
}

+βX2Xd
j 1
{

X j > s
}
,
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where 1{A} is an indicator function for set A, and s and d are tuning parameters.
This model is essentially performing a power transformation with exponent d on
the control read counts and incorporating mappability and GC content values for
bins with less than or equal to s control read counts. In our previous work [18],
we have shown that even in the presence of a control sample, utilizing mappabil-
ity and GC content values for estimating the background read distribution might
improve detection power and eliminate false positives. From a practical point
of view, inclusion of mappability and GC content values matters the most when
the background read distribution cannot be estimated well just based on the con-
trol sample. MOSAiCS framework provides goodness-of-fit plots (Figure 3(a))
which aid in this decision.

• Case 2b: In the presence of an adequately sequenced control sample:

log µ j = β0 +βX Xd
j ,

where d is again the exponent in the power transformation of the control read
counts. This model is suitable for cases where the control sample is deeply se-
quenced and the fit can again be evaluated by the goodness-of-fit plots provided
by MOSAiCS. Since its publications, we have applied MOSAiCS to tens to a few
hundreds of datasets and observed that s = 2 and d = 0.25 work well in practice.
Therefore, these values are currently the default values in the mosaics R pack-
age.

For the signal component, we consider both a single negative binomial and a mixture
of two negative binomial distributions, i.e.,

(1) S j ∼ NegBin(b,c)+ k,

(2) S j ∼ p1NegBin(b1,c1)+(1− p1)NegBin(b2,c2)+ k,

where k is a constant set to 3 and represents the minimum observable read count in
an enriched region. The optimal model for signal component is determined based
on Bayesian information criterion (BIC). The parameters in the MOSAiCS model
are estimated using a computationally efficient Expectation-Maximization (EM) al-
gorithm described in [18].

After we fit the MOSAiCS model, enriched regions are identified using a direct
posterior probability approach [24] for false discovery rate (FDR) control based
on the posterior probability that read counts for each bin are generated from the
background component. Specifically, we first rank the bins according to increasing
values of Pr

(
Z j = 0|Y; Θ̂

)
, where Θ̂ denotes the final parameter estimates obtained

from the EM algorithm. Let f dr j denote the sorted Pr
(
Z j = 0|Y; Θ̂

)
values. Then,

we increase the cutoff κ until the expected proportion of false discoveries given by

∑M
j=1 f dr j1

{
f dr j ≤ κ

}
∑M

j=1 1
{

f dr j ≤ κ
} ,
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reaches the pre-specified cutoff (α) for false discovery rate. Finally, using this deter-
mined cutoff κ̂ , bins satisfying the condition that Pr

(
Z j = 0|Y;Θ̂

)
≤ κ̂ are reported

as enriched regions. FDR control ensures that reported enriched regions achieve a
certain level of statistical significance. However, in addition to statistical signif-
icance, investigators often would like to require each enriched region to have a
minimum number of ChIP reads. Therefore, R package mosaics allows such a
threshold as input. In practice, setting this threshold to a certain percentile (e.g.,
0.90− 0.99) of the ChIP read count distribution works well if the control sample
is shallowly sequenced (e.g., less than 20 million reads for human samples). In the
presence of a deeply sequenced control sample, this threshold can also be set to a
depth normalized percentile of the control read count distribution.

2.2 MOSAiCS-HMM

In the MOSAiCS model, enrichment states of adjacent bins are assumed to be inde-
pendent. This assumption might be mildly violated in practice for the ChIP-seq data
of TFs with narrow enrichment profiles that typically span 1-3 bins. However, it is
more likely to be invalid for the ChIP-seq data of histone modifications which can
easily cover a larger number of bins and might exhibit broad enrichment signals.
In the case of broad signals, multiple adjacent bins constitute a wide block-shaped
peak and a spatial correlation structure underlies the relation between enrichment
status of adjacent bins. Hidden Markov Models (HMMs) provide a graceful way to
handle these types of spatial correlations without losing spatial resolution (reviewed
in [9] and [25] among many others). This observation motivates our development
of the MOSAiCS-HMM framework to account for spatial correlations in ChIP-seq
data.

In MOSAiCS-HMM, we assume that enrichment states constitute a Markov
chain along each chromosome. Specifically, Eq. (3) of the MOSAiCS model is re-
placed by

Pr
(
Z j+1 = b|Z j = a

)
≡ πab, a,b ∈ {0,1}, j = 1, · · · ,M−1 (6)

and ∑1
b=0 πab = 1 for a = 0,1. Finally, conditional on these underlying enrichment

states, ChIP read counts are assumed to follow the read count distributions of the
MOSAiCS model, given in Eqs. (4), (5), and (6). This allows effective adjustment
of sequence biases in the binding site identification, as shown in [18].

2.3 Parameter Estimation for the MOSAiCS-HMM Model

We estimate the parameters of MOSAiCS-HMM using the Baum-Welch algorithm,
which is a special case of the EM algorithm. MOSAiCS-HMM inherits estimates
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of the emission distributions from the MOSAiCS fits to the data. Although this is
in principle statistically inefficient, the MOSAiCS-HMM goodness-of-fit plots sug-
gest that this procedure results in good fit to the data (Figure 3(b)). More impor-
tantly, this approach accelerates fitting of MOSAiCS-HMM significantly because
the Baum-Welch algorithm needs to only estimate the transition matrix and state
probabilities for the starting bin. We fit the MOSAiCS-HMM model to each chro-
mosome separately because a smooth transition between end of one chromosome
and start of another chromosome is not expected. Furthermore, by analyzing each
chromosome separately, the fitting of MOSAiCS-HMM can be easily parallelized
to decrease computational cost.

Since MOSAiCS-HMM fit utilizes the background and signal distribution es-
timates of the MOSAiCS fit, the parameters that need to be estimated for each
chromosome with the Baum-Welch algorithm are Θ = (π00,π10,π01,π11,π∗0,π∗1),
where π00, π10, π01, and π11 are transition probabilities defined in Eq. (6), and π∗0
and π∗1 are probabilities of enrichment states in the first bin of each chromosome,
i.e., π∗0 ≡ Pr(Z1 = 0), π∗1 ≡ Pr(Z1 = 1), and π∗0 + π∗1 = 1. Then, the complete
data likelihood function is given by

Lc =
1

∏
k=0

πZ0k
∗k

M−1

∏
j=1

1

∏
k=0

1

∏
l=0

π
Z jkZ( j+1)l
kl

M

∏
j=1

1

∏
l=0

{
Pr(Yj|Z j = l)

}Z jl .

Because Pr(Yj|Z j = l) are obtained from the MOSAiCS fit, the MOSAiCS-HMM
EM algorithm iterates between the following E- and M-steps until the likelihood or
the parameter estimates converge or a fixed number of iterations specified by the
user is reached. For the m-th iteration, we have the following and E- and M-steps.
E-step:

We first update the conditional probabilities of the enrichment states k = 0,1 in the
first bin of each chromosome as

z(m)
∗k = Pr

(
Z1 = k|Y;Θ(m)

)
=

π(m)
∗k Pr(Y1|Z1 = k)

P(Y1;Θ(m))
.

The conditional expectation of transition between the states can be computed effi-
ciently using the forward and backward algorithms as follows. In the forward algo-
rithm, we have

f (m)
1l = π(m)

∗l Pr(Y1|Z1 = l), l = 0,1,

f (m)
jl = Pr

(
Y1,Y2, · · · ,Yj,Z j = l;Θ(m)

)
= Pr(Yj|Z j = l)

1

∑
k=0

f (m)
( j−1)kπ(m)

kl , j =,2,3 · · · ,M, l = 0,1.

In the backward algorithm, we have
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b(m)
Mk = 1, ,k = 0,1,

b(m)
jk = Pr

(
Yj+1,Yj+2, · · · ,YM|Z j = k;Θ(m)

)
=

1

∑
l=0

π(m)
kl Pr(Yj+1|Z j+1 = l)b(m)

( j+1)l , j = (M−1),(M−2), · · · ,1, k = 0,1.

Finally, we calculate the conditional probabilities of transition from state k = 0,1 to
l = 0,1 based on the quantities from the forward and backward algorithms as

z(m)
jkl = Pr

(
Z j = k,Z j+1 = l|Y;Θ(m)

)
=

f (m)
jk π(m)

kl Pr(Yj+1|Z j+1 = l)b(m)
( j+1)l

P(Y;Θ(m))
, j = 1,2, · · · ,(M−1).

M step:

For states k = 0,1 and l = 0,1, we update the transition probabilities as

π(m+1)
kl =

∑M−1
j=1 z(m)

jkl

∑1
l′=0 ∑M−1

j=1 z(m)
jkl′

and the probabilities of states k = 0,1 in the first bin of each chromosome as

π(m+1)
∗k =

z(m)
∗k

∑1
k′=0 z(m)

∗k′

.

We use the scaling procedures provided in [9] to avoid numerical problems in the
forward and backward algorithms.

With MOSAiCS-HMM, users can finalize the set of enriched regions by either
the Viterbi algorithm or the posterior decoding. If the Viterbi algorithm is used, the
most likely sequences of enrichment states are determined across each chromosome.
With the posterior decoding approach, enrichment state of each bin is determined
using the direct posterior probability approach [24] for FDR control. We next dis-
cuss the details of the decoding procedures.

2.3.1 Viterbi Algorithm for the MOSAiCS-HMM Model

The Viterbi algorithm for MOSAiCS-HMM identifies the most likely sequences of
enrichment states across each chromosome, i.e.,

Ẑ = argmax
Z

Pr
(
Y,Z;Θ̂

)
,
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where Θ̂ is the final parameter estimates obtained from the EM algorithm. Specifi-
cally, the Viterbi algorithm is implemented in the following four steps. First, in the
initialization step, for states l = 0,1, we set

v1l = π̂∗l Pr(Y1|Z1 = l),

ptr1l = 0,

where π̂∗l is the final estimate for π∗l . Second, in the recursion step, from bin j =
2,3, · · · to bin M,

v jl = Pr(Yj|Z j = l)max
k

{
v( j−1)kπ̂kl

}
,

ptr jl = argmax
k

{
v( j−1)kπ̂kl

}
,

where π̂kl is the final estimate for πkl . Third, in the termination step, we set

ẑM = argmax
k

{vMk} .

Finally, in the trace back step from bin j = (M−1),(M−2), · · · to bin 1,

ẑ j = ptr( j+1)ẑ j+1 ,

where ẑ j is the estimated state for j-th bin.

2.3.2 Posterior Decoding for MOSAiCS-HMM Model

In the posterior decoding approach, the enrichment state for j-th bin is determined
using the direct posterior probability approach of [24] for false discovery rate control
based on the following posterior probabilities:

Pr
(
Z j = k|Y; Θ̂

)
=

f̂ jkb̂ jk

P(Y;Θ̂)
,

where Θ̂ denotes the final parameter estimates obtained from the EM algorithm, and
f̂ jk and b̂ jk are the values from the forward and backward algorithms based on the
final parameter estimates. Specifically, we first rank the bins according to increas-
ing values of Pr

(
Z j = 0|Y; Θ̂

)
and denote these sorted values with f dr j. Then, we

increase the cutoff κ until the expected proportion of false discoveries given by

∑M
j=1 f dr j1

{
f dr j ≤ κ

}
∑M

j=1 1
{

f dr j ≤ κ
} ,

reaches the pre-specified false discovery rate α . Finally, using this determined cutoff
κ̂ , we report the bins satisfying the condition that Pr

(
Z j = 0|Y; Θ̂

)
≤ κ̂ as enriched

regions.
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The MOSAiCS-HMM model is now part of the R package mosaics (≥ 1.6.0).

3 Case Study: H3K4me3 Profiling in GM12878 Cells

We used ChIP-seq data of H3K4me3 in GM12878 cells from the ENCODE project
to evaluate performances of MOSAiCS, MOSAiCS-HMM, and BCP. The dataset
contained two ChIP replicates with 21.3 and 18.1 million aligned reads each. Each
ChIP sample was analyzed with respect to a common Input control sample of 13.4
million aligned reads. We used the default parameter values for BCP and a false dis-
covery rate of 0.05 and a threshold value equal to the 99-th percentile of the bin-level
ChIP read counts for MOSAiCS and MOSAiCS-HMM with the posterior decoding
approach. Overall, MOSAiCS-HMM fits had better BIC values than the MOSAiCS
fits for both replicates (36,273,306 (MOSAiCS) versus 33,169,356 (MOSAiCS-
HMM) for replicate 1; 32,568,329 (MOSAiCS) versus 29,652,020 (MOSAiCS-
HMM) for replicate 2). The goodness-of-fit plots indicate that both models fit the
data adequately (Figure 3(b)).

BCP identified 17664 and 16964 peaks for the two replicates whereas MOSAiCS
and MOSAiCS-HMM identified 16438 and 20079 peaks for replicate 1 and 16730
and 20294 peaks for replicate 2, respectively. We allowed MOSAiCS to merge
enriched bins that are within 200 bps of each other to facilitate identification of
wide enriched regions. We then evaluated the replicate consistency of the methods
by ranking and comparing the peaks from the two replicates of each method. For
BCP, peak-specific posterior means, which are the only statistical measurements of
enrichment reported in the BCP output, were used for ranking whereas for MO-
SAiCS and MOSAiCS-HMM, maximum signal which denotes the maximum bin-
level ChIP read count within the peak region was used. Similar results were obtained
when the MOSAiCS and MOSAiCS-HMM peaks were ranked with respect to their
maximum posterior probability of enrichment over the bins within the enriched re-
gions. Figure 4(a) depicts the percentage overlap between the peak sets of the two
replicates for each method as a function of peak rank. We note that both MOSAiCS
and MOSAiCS-HMM provide better ranking of the peaks than BCP. The final over-
lap percentages of the peak sets of the replicates are comparable between the meth-
ods, indicating that MOSAiCS-HMM is identifying more peaks with the same over-
lap consistency rate. This overlap analysis is based on the original widths of the
peaks reported by each method. Figure 4(b) displays the median widths across top
500,1000,1500, · · · ,20000 peaks for the peak sets of replicate 2 from each method.
Similar results are obtained with replicate 1 (data not shown). We observe that BCP
peaks are the widest. Despite this, overlap percentages of the ranked BCP peaks
are the smallest as illustrated in Figure 4(a). BCP peaks often have long flanking
regions lacking enrichment (Figure 2) or a single BCP peak harbours multiple en-
riched regions separated by long regions lacking enrichment. An example of the
latter case is provided in Figure 5, where two enriched regions separated by about
5000 bps are reported as a single peak. We also note that MOSAiCS-HMM actually
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provides slightly narrower peaks than MOSAiCS. This indicates that the gain from
the HMM architecture cannot simply be attained by merging of enriched bins within
close proximity of each other in the MOSAiCS output.

H3K4me3 is a promoter-specific histone modification associated with active tran-
scription; therefore H3K4me3 enrichment is expected at the promoter regions of
genes that are transcribed in GM12878. To evaluate biological relevance of peaks
identified by each method, we overlapped promoter regions of the expressed genes
in GM12878 with each of the peak sets. Expressed genes are defined based on EN-
CODE2 RNA-seq data from GM12878 by subsetting genes with transcripts per mil-
lion larger than 20. For each gene, we defined the promoter region as the [-1000,
+500] bps interval anchored at the transcription start site. Since wider peaks are ex-
pected to provide high overlap by definition, we resized the peaks of each method
to 2000 bps by using the midpoint of the peak as the anchoring point. MOSAiCS
pipeline reports a summit. Ideally, a summit denoting the location of the highest
signal would be a better anchoring point for all the methods; however since BCP
only reports intervals of enrichment, using the midpoint as the anchor minimized
the summit selection bias between the methods. Table 1 summarizes the total num-
ber of promoters that overlap with peak lists of each method and also specifies how
many of the promoters are completely within a H3K4me3 peak. We observe that
MOSAiCS-HMM peaks overlap with a larger fraction of the active promoters and
completely cover the largest number of promoters. When the promoter overlap of
the peaks is calculated using the original widths (numbers reported in parentheses
in Table 1), a slightly higher number of promoters are overlapping with the BCP
peaks; however as depicted in Figure 5, this gain comes at the price of many base
pairs that lack any enrichment within the peak regions .

Table 1 H3K4me3 peak coverage of the promoters of the 5979 expressed genes in GM12878. The
numbers of overlapping promoters are based on the intersection of promoters overlapping with
peaks of both replicates. Numbers in parentheses denote the numbers of promoters overlapping
with the peaks when the original peak widths are used. The numbers of completely covered pro-
moters are based on the minimum of the number of promoters completely covered by the peaks of
each of the replicates.

BCP MOSAiCS MOSAiCS-HMM
# of overlapping promoters 2782 (5484) 4514 (5360) 4745 (5363)
# of completely covered promoters 546 656 704

4 Discussion

We presented an extension of MOSAiCS, named MOSAiCS-HMM, for analyzing
ChIP-seq data of histone modifications. MOSAiCS-HMM can analyze ChIP-seq
experiments with or without a Input control experiment and provides FDR control.
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Fig. 3 Goodness-of-fit (GOF) plots. (a) MOSAiCS goodness-of-fit plots for replicate 1. Goodness-
of-fit plot for replicate 1. Both axes are in the log10 scale. SIM:N: reads simulated from the esti-
mated background read distribution. Sim:N+S1: reads simulated from the MOSAiCS model with
one signal component for the ChIP reads. Sim:N+S1+S2: reads simulated from the MOSAiCS
model with two signal components for the ChIP reads. Simulated data Sim:N+S1+S2 overlap the
actual ChIP data well, indicating good overall fit. (b) MOSAiCS and MOSAiCS-HMM goodness-
of-fit plots for replicate 1. Both axes are in the log10 scale. SIM:Background: reads simulated from
the estimated background read distribution. Sim: MOSAiCS: reads simulated from the estimated
MOSAiCS model with two signal components for the ChIP reads. Sim: MOSAiCS-HMM : reads
simulated from the estimated MOSAiCS-HMM model with two signal components for the ChIP
reads.

(a) (b)

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

60

70

80

90

100

0 5000 10000 15000 20000
Peak rank

%
 O

v
e
rl

a
p

●BCP MOSAiCS MOSAiCS−HMM

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ●

1500

2000

2500

3000

3500

4000

4500

0 5000 10000 15000 20000
Top peaks

M
e
d
ia

n
 w

id
th

●BCP MOSAiCS MOSAiCS−HMM

Fig. 4 Comparison of MOSAiCS, MOSAiCS-HMM, and BCP on H3K4me3 ChIP-seq data from
GM12878. (a) Overlap percentages of enriched regions identified by two independent replicates
as a function of the peak rank. (b) Median widths across top (500,1000,1500, · · · ,20000) ranked
peaks.
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Fig. 5 Comparison of MOSAiCS, MOSAiCS-HMM, and BCP on H3K4me3 ChIP-seq data from
GM12878. H3K4me3 ChIP-seq read profile generated by the R package dpeak [7] for a wide
BCP peak. Dashed, vertical gray lines mark the boundaries of the BCP peak. Both MOSAiCS and
MOSAiCS-HMM identify two peaks within this enriched region.

We conclude by discussing some other key issues related to histone ChIP-seq
data, and more generally ChIP-seq data (Figure 1). The commonly used read lengths
in ChIP-seq protocols are 50 to 100 bps. This results in about 10-25% of the reads
aligning to multiple locations on the reference genome for human and mouse sam-
ples. These reads are commonly referred to as multi-reads and are typically dis-
carded from the analysis. This leads to missing read data for highly repetitive re-
gions of the genome and such reads are important to recover for studying TFs or
histone modifications that interact with repetitive DNA. To address this issue, we
developed a ChIP-seq-specific read mapper [6] named CSEM. This mapper utilizes
Bowtie [20] alignments of the reads, where multi-reads are retained, and fraction-
ally allocates multi-mapping reads by considering the local read contents of the
mapping positions. As a result, it can generate both an alignment file with all the
mapping reads and their allocation probabilities and a pseudo alignment file in bed
file format where each multi-read is allocated to its most probable mapping location.
The latter alignment file is accepted as input by multiple peak callers.

There are multiple quality control procedures developed for ChIP-seq data. Most
notable of these is the cross-correlation analysis which is built on calculating cross-
correlation between strand-specific genome-wide ChIP read profiles [19]. In ChIP-
seq experiments with high signal-to-noise ratios, cross-correlation between the base-
pair level forward and reverse strand read counts is expected to attain its maximum
value around the average fragment length. A maximum cross-correlation value at
a length vastly different than that of the average fragment size indicates potential
problems with the ChIP-seq data and requires further attention. ChIP-seq experi-
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ments are prone to a wide range of amplification biases. A commonly encountered
bias is the extreme amplification of local regions. For such abnormally amplified
regions, the same set of nucleotides covering the region appears in the data set hun-
dreds of and even thousands of times. The common practice to alleviate problems
due to abnormal amplification effects is the removal of multiple copies of a given
read. More specifically, only a single read is allowed to start at each distinct genomic
position. This feature is also part of the mosaics R package. Many ChIP-seq anal-
ysis methods provide some level of FDR control. However, the reliability of the
FDR control typically depends on how well the assumed model fits the data. An
alternative approach, which relies on the consistency of between two independent
replicates of the ChIP-seq data, is control of irreproducible discovery rate (IDR).
This approach has been widely adapted by the ENCODE project [19] and is shown
to stabilize the number of peaks obtained from the same data set by different meth-
ods. When the MOSAiCS-HMM GOF plots indicate a lack of fit, IDR provides a
robust alternative for choosing the number of peaks in MOSAiCS-HMM.

Once the enriched regions are identified in a ChIP-seq experiment, downstream
analysis depends on the specific application. For TFs, especially in compact genomes,
an important issue is the deconvolution of closely located binding events. Most of
the commonly used ChIP-seq analysis methods [17, 18, 26, 37] are not specifically
designed to deconvolve closely located binding; however, the number of methods
which can perform such a task is on the increase [7, 13, 36]. In TF ChIP-seq ex-
periments, summits of the peaks (predicted binding locations) are the main parame-
ters of interest. In contrast, for histone ChIP-seq experiments, the boundaries of the
enriched regions constitute one of the most important features. Most of the com-
monly used histone ChIP-seq analysis methods operate by binning the genome into
small non-overlapping intervals. As a result, the resulting enriched regions might
have inaccurate boundaries and require post trimming and extension procedures. It
is often of interest to study multiple histone modifications simultaneously and di-
vide genome into regions exhibiting different combinations of histone modifications
[11]. To this end, we developed jMOSAiCS [35], which efficiently analyses multiple
TF or histone modification datasets simultaneously and identifies regions showing
combinatorial enrichment of the studied factors.
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