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Summary. Chromatin immunoprecipitation followed by DNA microarray analysis (ChIP-chip

methodology) is an efficient way of mapping genome-wide protein-DNA interactions. Data from

tiling arrays encompass DNA-protein interaction measurements on thousands or millions of short

oligonucleotides (probes) tiling a whole chromosome or a genome. We propose a new model-based

method for analyzing ChIP-chip data. The proposed model is motivated by the widely used two-

component multinomial mixture model of de novo motif finding. It utilizes a hierarchical gamma

mixture model of binding intensities while incorporating inherent spatial structure of the data. In

this model, genomic regions belong to either one of the following two general groups: regions with a

local protein-DNA interaction (peak) and regions lacking this interaction. Individual probes within

a genomic region are allowed to have different localization rates accommodating different binding

affinities. A novel feature of this model is the incorporation of a distribution for the peak size

derived from the experimental design and parameters. This leads to the relaxation of the fixed

peak size assumption that is commonly employed when computing a test statistic for these types

of spatial data. Moreover, the proposed framework promotes the control of the false discovery rate

at the peak level rather than the probe level and this leads to less conservative analysis. Simula-

tion studies and a real data application demonstrate good operating characteristics of the method

including high sensitivity with small sample sizes when compared to available alternative methods.
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1. Introduction

Up until recently, most genomic research has focused on coding DNA. Microarray gene expression

analysis has been widely used to identify subsets of target genomes that have similar transcription

levels under various experimental conditions. What remains a challenge is to identify regulatory

mechanisms governing similar expression patterns.

Sequence specific DNA binding proteins, also known as transcription factors (TFs), regulate

transcription in eukaryotes. Each transcription factor, or group of related factors, recognizes a

unique family of short sequence elements, usually between 5 and 20 base pairs (bps) in length.

The non-coding DNA sequence surrounding a gene determines when and where the gene will be

expressed, just as the coding sequence determines the gene’s molecular function. Understanding

precisely how this regulatory information is encoded in the genome is one of the major problems in

current biology. A recent technological innovation, chromatin immunoprecipitation (ChIP) coupled

with microarray (chip) analysis, hence the name ChIP-chip, has enabled researchers to identify

regions of a given genome that are bound by specific DNA binding proteins. This genome-wide

localization methodology is highly promising for annotating transcription factor binding sites on

genome scale. It has been applied using both high density oligonucleotide arrays, i.e., tiling arrays,

(Cawley et al., 2004) and spotted two color microarrays (Ren et al., 2000 and Weinmann et al.,

2001). The experimental protocol depends on the array platform used. We refer to Buck and Lieb

(2004) for an excellent overview of this technology and experimental details. The key point of

ChIP-chip experiments is to detect differences between the intensity measurements of IP-enriched

(treatment) and control hybridizations for each array element. It is expected that the array elements

showing significant differences belong to genomic locations in the vicinity of binding sites for the TF

of interest. Thus, analysis of ChIP-chip experiments consists of two steps: (1) identifying bound

regions that are in the order of ∼ 1000 bps; (2) sequence analysis of bound regions to identify

specific binding sites. The latter step is sensitive to the quality of identified bound regions. In this

paper, we are concerned with developing a formal modeling framework for the first step.

A small number of available approaches for analyzing these data involve testing for each probe,
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under a common null distribution, whether it is part of a bound DNA fragment. In particular,

Cawley et al. (2004) and Keleş et al. (2004) have used various sliding window test statistics. Keleş

et al. (2004) utilized a scan statistic which is an average of two sample t-statistics across certain

number of probes whereas Cawley et al. (2004) used Wilcoxon rank sum test within a certain

genomic distance in a sliding window fashion. Regardless of the test statistic used, one is left with

a large multiple testing problem, i.e., over 100,000 tests per chromosome. One critical issue of

the multiple testing framework, for controlling various error rates in this high dimensional testing,

is the estimation of the joint null distribution of the test statistics. Although there are powerful

resampling based approaches for estimating such a joint null distribution (Pollard and van der

Laan, 2002), a typical ChIP-chip experiment might rarely have sufficient number of replicates for

such a resampling. The lack of enough replicates typically leads to making assumptions such as

identical test statistic marginal null distribution for probes. However, such an assumption might not

always be valid since probes might have different binding affinities leading to different distributional

characteristics for test statistics. Another shortcoming of sliding window testing approaches is that

the sliding window size is kept constant even though experimental design and empirical results

suggest the suitability of a variable window size (Keleş et al., 2004). More recently, Kim et al.

(2005) used a double regression methodology fitting a triangle shaped regression function across a

moving window of fixed size. One of the apparent limitations of this approach is the enforcement

of a triangular shape. Although the underlying peak structure is expected to have a bell shape,

in practice one only observes randomly sampled regions from this structure. On the other hand,

Li et al. (2005) proposed a model-based method that relies on the use of external array data for

estimating the distribution of probe intensities and utilizes a hidden Markov model. More recently,

Ji and Wong (2005) developed a two step approach for analyzing tiling array data. This approach

utilizes a hierarchical empirical Bayes model for computing probe specific test statistics with a

robust variance estimate. Then, these test statistics are used either to compute moving averages as

in Keleş et al., 2004 or to build a hidden Markov model which treats them as outcomes of bound

and unbound hidden states.
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Although some of above approaches consider explicit modeling of the tiling array data, none

utilizes the apparent recent advancements in the modeling of the gene expression array data. The

fact that the first step of ChIP-chip data analysis constitute microarray analysis with spatially

structured data motivated our work. We develop a modeling framework for ChIP-chip data by

extending the hierarchical mixture model of Newton et al. (2004) for gene expression. This extension

is motivated by the spatial structure in the ChIP-chip data and its resemblance to the way one thinks

about de nova motif finding using sequence data. In Section 2, we provide further motivation for

our model and develop the model and establish inference procedures in Section 3. Sections 4 and

5 are dedicated to comparisons of our approach to sliding window testing approaches and TileMap

of Ji and Wong (2005) both on simulated data and data from transcription factor cMyc.

2. Motivation for a hierarchical mixture model

Spatial data structure. There is a fundamental difference between ChIP-chip experiments and

mRNA experiments in terms of what they are trying to measure. In mRNA microarray experiments,

each array element measures the abundance of one type of mRNA. In contrast, each element in a

ChIP-chip experiment measures the abundance of a population of fragments of DNA. The DNA

fragments in this population are of various lengths due to sonication to an average length. These

fragments are hybridized to arrays containing short oligonucleotides (25mer or longer probes) after

being fragmented further into smaller pieces. As a result of this process, the set of probes that map

to a target fragment of the transcription factor on the genome are hybridized by the corresponding

fragment in the IP-enriched DNA solution. Therefore, enrichment due to a specific binding site will

not be detected by a single array element but will be detected by a group of array elements mapping

in the vicinity of the binding site on the genome (Buck and Lieb, 2004 and Keleş et al., 2004). This

process causes the data to have a spatial structure, that is, the bound probes are expected to occur

in small clusters which we refer to as peaks.

Varying size of the sheared DNA fragments and its effect on the peak size. In the experiments

of Cawley et al. (2004), IP-enriched DNA is sheared into fragments of average length 1 kbs and

authors use a test statistic based on a fixed window size of 1 kbs, i.e., combining information across
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probes that fall within a window size of 1 kbs. This corresponds to an average of ∼ 28 probes within

a peak. We investigated the Cawley et al. (2004) ChIP-chip data for 13 quantitative PCR verified

p53 bound regions on chromosomes 21 and 22 and observed the following peak size distribution:

P (w ∈ (0, 5]) = 2/13, P (w ∈ (5, 10]) = 1/13, P (w ∈ (10, 15]) = 6/13, P (w ∈ (15, 20]) = 4/13 where

w represents the number of probes in a peak. Quite strikingly, all of the 13 verified binding regions

contained much smaller number of probes (≤ 20) than the theoretical prediction of ∼ 28 probes.

Using a peak size that is much larger than the truth might lead to an increase in the false negative

rate since for peaks with small number of probes, the peak quality measure will be down-weighted by

probes not contributing to the peak but are within the window considered by the testing approach.

Additionally, a study by Keleş et al. (2004) predicted the size of the DNA fragments hybridizing

to the array to have a a left skewed distribution, generating much shorter sheared DNA fragments.

Although, the distribution of the peak size is going to depend on the specific lab/sonication process,

it is desirable to develop a framework that incorporates this variation into the analysis of ChIP-chip

data.

Limited number of replicates. Finally, one other challenge regarding ChIP-chip data is the small

number of replicates, e.g., typically one to three replicates due to monetary reasons. In the context of

gene expression analysis, many (Newton et al. (2004), Gottardo et al. (2005), have illustrated that

model-based approaches provide a powerful alternative to simple testing approaches especially when

there are few number of replicates. This further motivates us to consider model-based approaches

for the analysis of ChIP-chip data.

3. Model and inference

Genome tiling arrays usually interrogate an entire genome at a certain bps resolution. For example,

Affymetrix uses a resolution of 35 bps (distance between mid points of two probes) and oligonu-

cleotides of size 25 bps as probes, whereas NimbleGen technology utilizes longer oligonucleotides.

However, tiling probes do not encompass repeat regions or regions with known unreliable hybridiza-

tion characteristics. As a result, there might be large gaps (>Q bps) in genomic distance going from

one probe to the adjacent one according to physical genomic location. Due to this gap structure,
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it is reasonable to treat each sequence of probes that are more than Q bps away from each other

separately. This forces the data to be partitioned into genomic regions of different lengths and each

genomic region is at least Q base pairs away from the closest genomic region. Q is driven by the

average length of the sheared DNA fragment, e.g. 1000 bps, and we discuss it further in the case

study section. Data structure as a result of such partitioning is an important component of our

framework and allows us to carry out the statistical calculations easily. Next, we present this new

data structure and our model in detail.

We assume to have N genomic regions where each region i, i = 1, · · · , N , has Li probes. Let

(Yj(i), Xj(i)), j = 1 · · · , Li i = 1, · · ·N , denote preprocessed treatment and control data on j-th

probe of i-th genomic region. Each Yj(i) = (Yj1(i), · · · , Yjn(i)) is a vector of n replicates whereas

each Xj(i) = (Xj1(i), · · · , Xjm(i)) is a vector of m replicates. Let µj1(i) and µj2(i) denote the

latent mean levels of Xj(i) and Yj(i). We assume that conditional on these expectations Yj(i)

form an independent and identically distributed random sample from an observation component

pY (. | µj2(i)) and likewise Xj(i) is an independent random sample from pX(. | µj1(i)). Here, we are

treating the means µj1(i) and µj2(i) as unobserved random variables and allowing probe specific

intensity distributions.

In order to simplify model fitting, we will assume that there can be at most one peak in each

genomic region. In the context of de novo motif finding, this corresponds to assuming that each

sequence has 0 or 1 motif and several heuristics exist for extending this assumption (Bailey and

Elkan, 1995; Keleş et al., 2003). In our context, this assumption easily holds unless a genomic

region spans a large genomic distance and this might be avoided by partitioning genomic regions

accordingly as will be discussed in the case study section. As a consequence of this assumption each

genomic region can be in of the following two states: (1) Peak state: there is exactly one peak; (2)

Non-peak state: there are no peaks. This translates into following probe specific hypothesis:

Peak: µj1(i) ≤ µj2(i), j-th probe of genomic region i is part of a peak,

Non-Peak: µj1(i) = µj2(i), j-th probe of genomic region i is not part of a peak.

Let Ri denote an unobserved random variable representing whether or not the i-th genomic region
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has a peak. Let W = {w1, · · · , wM} be the ordered set of possible peak sizes, i.e., w1 represents

the smallest peak size (# of probes within a peak) and wM represents the maximum peak size.

Furthermore, let Zi(z), z = 1, · · · , Li −w1 + 1, be a set of indicator variables representing the start

site of the peak in genomic region i. Note that we have
∑Li−w1+1

z=1 Zi(z) ∈ [0, 1], ∀i. We will denote

the end position of the peak in i-th genomic region by indicator variables Vi(v). Given Zi(z) = 1

for a z, Vi(v) can only take on values {z + w1 − 1, · · · , z + wM − 1}1.

The next assumption deals with the distributional forms of the intensities conditional on the

latent means. A gamma observation component with constant shape parameter, hence constant

coefficient of variation, for a single condition is shown to be well suited for microarray data by

Kendziorski et al. (2003) and Newton et al. (2004). We also adopt this model and consider

expectations (µj1(i), µj2(i)) to be a random pair from an unknown bivariate distribution. Unlike

two-sample microarray gene expression data where f is typically a discrete mixture over three

hypotheses - over-expressed, under-expressed and not differentially expressed, there are only two

hypotheses of interest corresponding to the peak and non-peak states for the ChIP-chip data. Hence,

we can write the joint distribution of the latent mean levels for a single probe j in the genomic

region i as a two component mixture model:

f(µj1(i), µj2(i)) = P (Ri = 0)f0(µj1(i), µj2(i)) + P (Ri = 1)f1(µj1(i), µj2(i)), (1)

where the densities f0 and f1 describe fluctuations of the means within each states. We will denote

the mixing proportion P (Ri = 0) by p0. As in Newton et al. (2004), we will relate the joint distribu-

tion f to a one dimensional base distribution π to generate the probe and state specific latent means.

This ensures closed form representations for both f0, f1 and also for the marginal Gamma observa-

tion component distributions. This base distribution relates to the mixture distribution f as follows:

f0(µj1(i), µj2(i)) = π(µj1(i))I(µj1(i) = µj2(i)) and f1(µj1(i), µj2(i)) = 2π(µj1(i))π(µj2(i))I(µj1(i) ≤

µj2(i)) and this relation is best understood by considering the underlying data generation process

for the i-th genomic region. Next, we describe this process and discuss the model components.

1. Draw the state indicator Ri from the Bernoulli(p0) distribution. Ri = 0 implies that there is

1v should be such that v ≤ Li is ensured.

7



no peak in i-th genomic region while Ri = 1 implies the occurrence of a peak.

2. Genomic region without a peak. If Ri = 0, then for j = 1, · · · , Li:

(a) Draw θj1(i), θj2(i) from a two-parameter Gamma distribution, with shape parameter a0

and scale parameter 1/(a0x0), which seems to be appealing for the microarray data and

makes computations analytically tractable.

(b) Set µj2(i) = µj1(i) = 1/θj1(i) and ignore θj2(i). Note that both µj2(i) and µj1(i) have

Inverse Gamma distribution (base distribution π) which is conjugate to the Gamma

observation component.

(c) Randomly draw the control and treatment observations from the corresponding Gamma

distributions:

Yjk(i) | µj1(i) ∼ Ga

(
a2,

µj1(i)

a2

)
, k = 1 · · ·n; Xjk(i) | µj1(i) ∼ Ga

(
a1,

µj1(i)

a1

)
, k = 1 · · ·m.

3. Genomic region with a peak. If Ri = 1:

(a) Draw a peak start site position z from {1, · · · , Li − w1 + 1} under the assumption that

all sites are equally likely to be a peak start site position. Set Zi(z) = 1 and Zi(l) = 0,

for l ∈ {1, · · · , Li}\{z}. Let ρ(w), w ∈ W denote the discrete peak size distribution.

Draw a peak size w from ρ(w) and set Vi(z + w− 1) = 1 and the rest of the components

of Vi(.) to 0.

(b) Draw θj1(i), θj2(i) from the base distribution π.

(c) Randomly draw control and treatment observations as follows:

For j = {Zi, · · · , Vi}, k = 1 · · ·n:

Yjk(i) | µj2(i) ∼ Ga

(
a2,

µj2(i)

a2

)
, where µj2(i) = 1/ min (θj1(i), θj2(i)),

For j = {1, · · · , Li} / {Zi, · · · , Vi}, k = 1 · · ·n:

Yjk(i) | µj1(i) ∼ Ga

(
a2,

µj1(i)

a2

)
, where µj1(i) = 1/ max (θj1(i), θj2(i)),

Xjk(i) | µj1(i) ∼ Ga

(
a1,

µj1(i)

a1

)
, k = 1 · · ·m, where µj1(i) = 1/ max (θj1(i), θj2(i)).
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The above model allows different localization rates for each probe through Gamma distributions

with different latent means (2.(c) and 3.(c)) and variable peak sizes (3.(a)). The overall parameter

set for this hierarchical model consists of the mixing proportion p0, i.e., proportion of genomic

regions without a peak, latent mean base distribution parameters a0, x0, and observation component

parameters a1 and a2. We estimate these parameters by maximizing the marginal likelihood of

the data using the EM algorithm (Dempster et al. (1977)). Various marginals and conditional

distributions induced by this hierarchical mixture model are easily obtained adapting the derivations

in Newton et al. (2004) by accommodating the fact that we only have two hypotheses for each

probe and additional unobserved random variables Z and V . Next, we present the complete data

likelihood, outline the EM algorithm steps and discuss the posterior probabilities for inference.

3.1 Full data likelihood

The full data likelihood is a product over N genomic regions, where each genomic region i

contributes likelihood Li over Li probes, given by

Li = P (Y (i), X(i), Ri, Zi, Vi | a0, x0, a1, a2) =
{

P (Ri = 0)P (Y (i), X(i) | Ri = 0)
}I(Ri=0)

×

[
P (Ri = 1)

Li−w1+1∏
z=1

min (Li,z+wM−1)∏
v=z+w1−1

{
P (Y (i), X(i) | Ri = 1, Zi(z) = 1, Vi(v) = 1)

ρ(v − z + 1)

Li − w1 + 1

}I(Zi(z)=1,Vi(v)=1)]I(Ri=1)

,

where we substitute in P (Zi = v | Ri = 1) = 1/(Li − w1 + 1) and P (Vi(v) = 1 | Zi(z) = 1, Ri =

1) = ρ(v− z +1). Furthermore, let h(u1, · · · , uk) represent a compound Gamma distribution (Hogg

et al. (2005), p. 191) with density given in equation (A.1) of the Appendix. Then, we have

P (Y (i), X(i) | Ri = 0) =

Li∏
j=1

P (Yj(i), Xj(i) | Ri = 0) =

Li∏
j=1

h(Yj(i), Xj(i)).

Let T z,v
i denote all the probes outside the peak when the peak start and end positions are z and

v, respectively. Then,

P (Y (i), X(i) | Ri = 1, Zi(z) = 1, Vi = v) =
∏

j∈T z,v
i

P (Yj(i), Xj(i) | Ri = 1, Zi(z) = 1, Vi(v) = 1)

×
v∏

j=z

P (Yj(i), Xj(i) | Ri = 1, Zi(z) = 1, Vi(v) = 1)
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=
∏

j∈T z,v
i

h(Yj(i), Xj(i))
v∏

j=z

2h(Yj(i))h(Xj(i))P (B > b),

where B is a Beta-distributed random variable with shapes (a0 + ma1, a0 + na2) and

b =
a0x0 + a1

∑m
k=1 Xjk(i)

2a0x0 + a1

∑m
k=1 Xjk(i) + a2

∑n
k=1 Yjk(i)

.

Here, probe specific conditional joint distributions P (Yj(i), Xj(i) | Ri = 0) and P (Yj(i), Xj(i) |

Ri = 1, Zi(z) = 1, Vi(v) = 1) are derived integrating over the latent means µj1 and µj2 as in Newton

et al. (2004).

3.2 Genomic region specific inference

Fitting the hierarchical model readily provides several useful posterior probabilities that are

by-products of the E-step of the EM algorithm. We use

ηi = P (Ri = 1 | Y (i), X(i)) = (1− p0)P (Y (i), X(i) | Ri = 1)/ P (Y (i), X(i)), where (2)

P (Y (i), X(i) | Ri = 1) = (3)
Li−w1+1∑

z=1

min (z+wM+1,Li)∑
v=z+w1−1

P (Y (i), X(i) | Ri = 1, Zi(z) = 1, Vi(v) = 1)
ρ(v − z + 1)

(Li − w1 + 1)
,

P (Y (i), X(i)) = p0P (Y (i), X(i) | Ri = 0) + (1− p0)P (Y (i), X(i) | Ri = 1),

for inferring the genomic regions that have a peak. Moreover, the following posterior probabilities

are utilized to infer the most likely start and end positions of a peak.

ζi(z, v) = P (Zi(z) = 1, Vi(v) = 1, Ri = 1 | Y (i), X(i)) =

P (Y (i), X(i) | Ri = 1, Zi(z) = 1, Vi(v) = 1)ρ(v−z+1)
Li−w1+1

(1− p0)

P (Y (i), X(i))
. (4)

In this modeling framework, M-step of the EM-algorithm does not have a closed form solution,

hence R optimization function optim() is used. We have observed good convergence properties in

this optimization step with both real and simulated data starting from different starting values. In

order to provide starting values for the parameters, we evaluate the observed data likelihood for a

large set of values and start the EM algorithm with the set giving the highest initial observed data

likelihood. Due to space limitations, we do not discuss the estimation of the peak size distribution

but refer the reader to an online technical report Keleş (2005).
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4. Simulations

We carried out a simulation study to assess the proposed method and to compare it with the

available approaches. The following parameters are varied in each simulation: (1) data generating

mechanism, (2) number of replicates n and m, and (3) structure of the peaks, i.e., fixed peak size

versus variable peak size. We focus on the following two data generating mechanisms.

• Simulation model I. The first simulation model follows the hierarchical Gamma mixture

model with parameters a0, x0, a1, a2 as presented here. Instead of setting these parameters to

arbitrary values in simulations, we set them to values derived from the fit of cMyc ChIP-chip

data (Section 5) as a0 = 297, x0 = 8, a1 = 962, and a2 = 2611.

• Simulation model II. The second simulation model intends to evaluate performance when

the Gamma observation component assumption is violated. The data are generated according

to the following model for k-th replicate of the j-th probe in i-th genomic region:

Xjk(i) = θj1(k) + ε1(i),

Yjk(i) =

{
θj2(k) + ε2(i), if j-th probe is within a peak,
θj1(k) + ε1(i), o.w.

Here, θj1(k) and θj2(k) are two base means sampled from the set Θ = (8, 9, 10, 11, 12, 13, 14,

15) with probabilities p1 = (0.2, 0.6, 0.1, 0.05, 0.03, 0.01, 0.007, 0.003) and p2 = (0.05, 0.1,

0.05, 0.1, 0.2, 0.2, 0.2, 0.2), respectively. Here, p2 puts higher probability on large values of

the base mean. ε1(i) and ε2(i) are log-normal random variables with genomic region specific

means µ∗1, µ
∗
2 and variances σ2

1, σ2
2. For each genomic region, both means (µ∗1, µ

∗
2) are sampled

uniformly between [0.1, 0.5] and σ2
1 and σ2

2 are set so that the constant coefficient of variation

assumption is satisfied. These parameters were set as a result of a search across a wide range

for generating the most disadvantageous (in terms of sensitivity, specificity, and FDR) case

for our hierarchical model.

We compared the hierarchical Gamma mixture model (HGMM) with the scan statistic (SS) ap-

proach of Keleş et al. (2004), sliding window Wilcoxon rank sum test (WRS) approach of Cawley

et al. (2004) and TileMap of Ji and Wong (2005). Since TileMap implements both a moving average

11



(TileMap-MA) and a HMM (TileMap-HMM) method, whenever possible we used both.

Results of simulation I, where the parametric model assumptions are met, are summarized in

Figure 1. Here, we show the results for HGMM, SS, WRS and HMM of TileMap approaches where

we apply false discovery rate (FDR) controlling procedures at level α = 0.05, overall conclusions

stayed the same when considering other FDR rates (data not shown). We used the direct posterior

probability approach of Newton et al. (2004) to control FDR at the desired threshold using the

posterior probabilities from the fitted hierarchical mixture model and posterior probabilities of

the TileMap-HMM and the procedure of Benjamini and Hochberg (1995) for the sliding window

testing approaches. TileMap-MA is not included in this comparison because setting the overall false

discovery rate to reasonable values such as 0.05 and 0.1 did not provide any identified regions in

a vast majority of the simulations. We obtained empirical estimates of sensitivity, specificity, and

FDR for all the three approaches using B = 100 simulated datasets. Here, we note that for all

approaches except for HGMM, FDR is controlled at the probe level and for HGMM it is controlled

at the peak level since we are able to obtain region specific posterior probabilities. Sensitivity and

specificity are computed at the peak level for all the approaches. For a peak to be declared a

true positive for SS, WRS and TileMap, we required that at least one of the probes in the peak

overlapped the true set of bound probes.

[Figure 1 about here.]

[Figure 2 about here.]

Here, only the mean estimates of the sensitivity, specificity, and false discovery rate are reported

since the corresponding standard errors were small and comparable among the three methods. The

first striking result is the poor performance of SS and WRS methods with small sample sizes. This

result holds for other parameter sets not reported here (extensive simulations are available in Keleş,

2005). It is particularly interesting to note that when the observation component parameters are

set to values obtained from real data, sliding window approaches have a maximum sensitivity of

0.38 with a sample size of 2 whereas HGMM has sensitivity and specificity values equal to 0.9818
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and 0.983, respectively. Since the SS approach is based on constructing two-sample t-statistics and

averaging these across a peak, it has poor performance with very small sample sizes, as expected.

This was also pointed out by Ji and Wong (2005). Furthermore, with a small sample size of 2,

the SS approach has elevated actual FDR levels since in this setting it identifies a few (1 or 2)

bound regions a large portion of which are false positives. Another interesting observation is that

with moderate sample sizes and variable peak structures, SS performs better than WRS in terms

of sensitivity while achieving the targeted FDR rate. This is due to SS’s capability to optimally

choose a data-dependent peak size by cross-validation. Under this setting, although TileMap-HMM

is performing better than SS and WRS, it has low sensitivity due to the conservative actual FDR

levels. There might be two reasons for this. First, since the FDR is being controlled at the probe

level rather than at the peak level, the FDR controlling procedure is dealing with many probe

specific tests than that are relevant. Second, observation component distributions for TileMap

are estimated by a method called unbalanced mixture subtraction which might be improved with a

better tuning. In these simulations, estimates of a0, a1, a2, and x0 averaged over the 100 simulations

were very close to the true values with little standard error. This indicates that optimization in the

M-step did not have any adverse effects on the convergence of the parameter estimates.

In simulation setting II, we investigate the operating characteristics of our method under model

misspecification. In this setting, the direct posterior probability approach for controlling the FDR

does not provide correct inference since the data generating model is misspecified. Therefore, in

order to make the comparisons meaningful we adjusted the nominal α levels of each procedure so

that the actual false discovery rate of the approaches are set as desired. Panels (a), (b), (c) and (d)

of Figure 2 summarize the results for HGMM, SS, WRS, and TileMap-HMM. For TileMap-HMM,

we varied the threshold on the maximum posterior probability of bound regions to achieve various

false discovery rates. We couldn’t carry a similar scheme for TileMap-MA since it reported the same

mean or minimum local FDR for all the detected regions. We observe that all the methods except SS

have good operating characteristics in this scenario where the observations from different probes are

independent but not identical. Overall, HGMM and HMM has the best performance with HGMM
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slightly better in terms of specificity at varying peak sizes. Although this comparison is useful in

this simulation setting, in practice we can’t set the actual FDR. Therefore, we also compared the

methods where each implemented a particular way of choosing a threshold. For TileMap-HMM

and MA we used a 0.5 cut-off for maximum posterior probability and minimum local FDR of the

regions, which are the defaults suggested by Ji and Wong (2005). For HGMM, we implemented

the following general scheme of choosing a cut-off for the posterior probability of regions when the

model assumptions are violated. We permuted the genomic regions B = 100 times and for each

permuted dataset we computed the posterior probabilities using the estimated model parameters

from the original fit. Then, by using the 95% quantile of the maximum of the posterior probabilities

from each permuted dataset, we were able to obtain a threshold that provides less than one false

positive. In fact, Cawley et al. (2004) also suggested a similar permutation based approach for

choosing a threshold for the p-values obtained from the Wilcoxon Rank Sum test. Panel (e) of

Figure 2 displays sensitivity and specificity for HGMM, WRS, HMM and MA under this setting

with a variable peak size structure. It seems like cut-off determination based on permutation helps

to get a more accurate inference from HGMM but provides a poorer sensitivity for WRS. HGMM

identifies more regions with better accuracy than HMM and MA of TileMap though the performance

of the latter might be improved with a different cut-off rule.

5. Case study: ChIP-chip data of cMyc

5.1 cMyc ChIP-chip data

Transcription factor cMyc is a growth-regulating transcription factor and plays an important

role in apoptosis. It functions by binding to cMyc DNA recognition sequences and regulates tran-

scription of growth-regulatory genes. Cawley et al. (2004) generated ChIP-chip data for cMyc on

chromosomes 21 and 22 distributed across three chips with 6 replicates each. We used data from

one of the chips encompassing 2/3 of chromosome 21. There are two types of controls available for

this factor. We refer to control GST, control Input and the treatment conditions as C1, C2 and

IP, respectively. Our current framework only allows two sample comparisons. However, to make

comparisons with TileMap we used both controls separately and combined results from the two
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analysis.

5.2 Model diagnostics

We checked whether constant coefficient of variation and Gamma observation component as-

sumptions are reasonable using the diagnostic tools provided by Newton and Kendziorsky (2003).

Figure 3 plots the coefficient of variation as a function of mean intensity for each probe on the chip

of interest. Solid green line is the lowess fit to these data. This flat line indicates that the sample

coefficient of variation does not have a systematic relation with the sample mean intensity. The

data points above the dashed red line are points for which this assumption might be violated. For

the control sample, these constitute only 0.35% of the data whereas for the IP-enriched sample they

represent only 0.34% of the data. Having examined these points, we see that they correspond to

probes with outlier data points, e.g., one observation is dramatically different than the rest of the

12 observations across 6 control and 6 IP-enriched intensities, but they don’t seem to be located in

the vicinity of potential peaks.

Furthermore, Figure 4 displays the quantiles of the fitted Gamma distribution versus empirical

quantiles of the control hybridization data across probes with various mean levels. These quantile

plots lie roughly on the 45 degree line indicating compliance with the Gamma observation component

assumption. Similar quantile-quantile plots are also observed for the IP-enriched case (more plots

involving other factors are available in Keleş, 2005).

[Figure 3 about here.]

[Figure 4 about here.]

5.3 Implementation details and results

We did not have an agarose gel image for these experiments to estimate the peak size distribution;

therefore we used the cross-validated peak size of 10 identified by Keleş et al. (2004). Genomic

regions were obtained by partitioning whenever there was a gap of Q = 1000 bps (average sheared

DNA fragment size) between the physical genomic locations of two adjacent probes. Furthermore,

genomic regions larger than 3000 bps were further partitioned. This generated a total of 7543

15



genomic regions. Below we present the results corresponding to this partition; however changing

the partition parameters did not effect the results in this case study.

We compared HGMM to TileMap-HMM on the gold standard dataset for the transcription factor

cMyc used by Ji and Wong (2005). These data included 18 arrays from chip A spanning 2/3 of

chromosome 21. The gold standard dataset was obtained by applying HMM and gtrans (Affymetrix

default software implementing WRS) using all the 6 replicates and then selecting the overlapping

probes among the top 0.5% of the probes identified by the two methods. These probes were further

grouped into binding regions generating 73 gold standard regions which are then treated as the true

set of bound regions. Following the comparison of Ji and Wong (2005), we based our comparisons

on the number of correctly identified regions among the top 100 regions declared as bound. Figure

5 displays the number of correctly identified gold standard regions as a function of total number

of identified regions for various scenarios. Here, s2r2 and s3r2 refer to two (IP > C1) and three

sample (IP > C1 and IP > C2) comparisons with 2 replicates and s3r4 refers to three sample

comparisons with 4 replicates. First, we see that under the composite hypothesis s3r4 scenario,

HGMM is performing comparable to the other approaches which were utilized to build the gold

standard regions. Here, although TileMap-HMM has a direct way of dealing with more than two

sample comparisons, HGMM which combines two two-sample comparisons by replacing posterior

probability of nonpeak for each region by the maximum of the two posterior probabilities from the

two comparisons performs equally well. Interestingly, for the s2r2 case, HGMM starts to outperform

the other approaches when the total number of rejections exceed 70. The reason why we don’t see

a uniform behavior over the range of 100 regions is that HGMM gives a different ordering of the

peak regions with respect to their strength. Investigating the top ranking regions of HGMM, we

observed that these are indeed identifiable when all the samples are utilized. When the composite

hypothesis IP > C1 and IP > C2 is considered at a sample size of 2, TileMap-HMM is the best

since it directly utilizes a test statistic using all the information.

[Figure 5 about here.]

Currently, a common practice with ChIP-chip experiments is to first perform genome-wide ChIP-
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chip experiments with a sample size of one and then to carry out replicate experiments for the

regions identified from the initial analysis. Additionally, when studying a new transcription factor,

initial small scale experiments with different antibodies are typically required. Since both gtrans

and HGMM are applicable with a sample size of one, we compared their reproducibility using the

cMyc ChIP-chip data. We first identified peaks using gtrans and HGMM with all the six replicates

and kept their highest scoring 100 peaks (referred to as full-analysis). Then, we carried out the

analysis of each replicate separately. Panel (a) of Figure 6 displays the box-plots of the number of

full-analysis peaks that are also identified by the six one-replicate analyses. Each white and gray

box-plot correspond to comparisons at the levels of 10, 20, · · · , 90, 100 top scoring peaks for gtrans

and HGMM, respectively. These results are for the control C1 and we obtained similar results for

the other control and when we varied the number of peaks identified from the full-analysis. We

observed that, for all the cutoffs on the number of peaks, HGMM identifies a larger proportion of

the full-analysis peaks. One of the one-replicate analysis was able to identify all the 100 peaks of

the full-analysis, this is reflected by the wide range of the whiskers of the box-plots in panel (a).

We regenerated the same boxplots based on the remaining five one-replicate analyses in panel (b) of

Figure 6 and observed that overall HGMM not only recovers more of the peaks of the full-analysis

but also provides much less variability among different analyses.

[Figure 6 about here.]

6. Discussion

Although genome-wide localization data of transcription factors are becoming increasingly available,

the number of replicates available is typically small due to the high cost of genome tiling arrays.

None of the methods to date, except the recently developed TileMap of Ji and Wong (2005),

present an explicit statistical modeling approach that allows information sharing across probes to

accommodate small sample sizes. We presented a model-based approach that aims to accommodate

the small sample size as well as other characteristics of ChIP-chip data. Our hierarchical model

enables information sharing across probes, incorporates the inherent spatial structure of these data,

and allows detection of variable size peaks. The current framework utilizes hierarchical Gamma
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mixture model of Newton et al. (2004) for modeling at the probe level, however it is possible to use

other statistical models such as that of Gottardo et al. (2005) at the probe level. A small simulation

study illustrates that, when the model assumptions are met, such a model drastically improves the

sensitivity when we have little information per probe. A case study of the transcription factor cMyc

provided further support that this approach has the potential to detect more bound regions and

provide a higher rate of reproducibility at varying sample sizes. This is especially important since

biologists might often be interested in initially performing a genome-wide ChIP-chip experiment

with a sample size of one. After analyzing the initial data, they might design the next generation

tiling array to only incorporate candidate bound regions from the initial analysis and carry out

replicate ChIP-chip experiments with the new array. Therefore, it is important to be able to create

as many reliable candidates as possible with as small as one sample size.

Our current implementation relies on partitioning the genomic data into non-overlapping regions.

This provides a nice framework where the overall FDR of the identified regions can be controlled

accurately when the model assumptions for regarding the probe intensities are met. Typically,

genomic gaps due to repeat masking present such partitions. Additionally, genomic annotations

(exon-intron boundaries, CpG island markers) or pairwise alignments between related species might

also be utilized. Another important issue in our current implementation is the one peak per genomic

region assumption. It is possible to extend this by moving to a larger model; however the compu-

tational complexity of model fitting increases drastically. Therefore, heuristic approaches such as

iterative identification of the peaks in a region while masking already identified peaks (Bailey and

Elkan, 1995) or employing the zero or one peak model with varying partitions (Keleş et al., 2003)

are reasonable alternatives. Our investigations with real data showed that the results are quite

robust against the violation of this assumption (Isogai et al. (2005)). In particular, if a genomic

region contains more than one peak, this region is almost certainly identified as bound and the

largest posterior probability is observed at the peak location with the highest signal. Other poten-

tial peaks within a bound region can be revealed by a likelihood ratio test using the estimated model

parameters and sliding over the genomic region. One important issue not addressed by our current
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framework is the apparent correlation between intensities of nearby probes, both in the bound and

unbound regions. Presumably, incorporation of such a correlation structure might further improve

our framework. The proposed methodology is implemented in an R package and is available from

the author’s website at www.stat.wisc.edu/~keles/software.
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Appendix A

Compound Gamma distribution (Hogg et al. 2005)

Let θ be a Gamma random variable with scale parameter a0 and shape parameter 1/(a0x0). Given

θ, let U1, · · · , Uk be conditionally independent Gamma-distributed variables with Ui ∼ G
(
ai,

1
aiθ

)
with 1/θ as the common conditional mean of the Uis. The compound Gamma distribution for the

joint distribution of Uis is known as:

h(u1, · · · , uk) =
x0Γ(

∑k
i=1 ai)(∑k

i=0 a0ui

)∑k
i=1 ai

k∏
i=0

[
aai

i uai−1
i

Γ(ai)

]
. (A.1)
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List of Figures

Figure 1. Simulation model I. Empirical estimates of sensitivity (open circle), specificity (filled

circle), and FDR (filled triangle) are plotted over 100 simulated datasets. Sample sizes of n = 2

and n = 6 and fixed and variable peak sizes are considered. Nominal α is set to 0.05.

Figure 2. Simulation model II. Empirical estimates of sensitivity (open circle) and specificity

(closed circle) are plotted over 100 simulated datasets. Fixed and variable peak sizes are considered

at a sample size of n = 2. In panels (a)-(b) and (c)-(d), nominal α is set such that the actual

α levels of the methods are 0.05 and 0.1, respectively. Panel (e) implements permutation based

thresholding rule for HGMM and WRS, and maximum posterior probability and minimum local

FDR based thresholds for TileMap-HMM and TileMap-MA.

Figure 3. Hierarchical Gamma mixture model diagnostic of cMyc ChIP-chip data: checking the

constant coefficient of variation assumption. Left panels: Plotted is the coefficient of variation

versus sample mean of the intensities across 6 replicates for each probe on the chip. Solid green

line is the lowess fit to these data. Data points above the dashed red line are points for which

this assumption might be violated. For the control sample, these constitute only 0.35% of the

data whereas for the IP-enriched sample they represent only 0.34% of the data. Having examined

these points, we see that they correspond to probes with outlier data points, e.g., one observation

is dramatically different than the rest of the 12 observations across 6 control and 6 IP-enriched

intensities, but they don’t exhibit peak characteristics. Right panels: Zooming into low mean

region of the plots on the left panel.

Figure 4. Hierarchical Gamma mixture model diagnostic for control hybridizations of cMyc ChIP-

chip data: Gamma quantile-quantile plot. For various mean levels, quantiles of the fitted Gamma

distribution versus empirical quantiles of the control hybridization data across ∼ 600 probes with

that mean level are plotted.

Figure 5. Comparison of HGMM with the HMM of TileMap and gtrans. s3r2 and s3r4 refer to

three sample comparisons with sample sizes of 2 and 4, respectively. s2r2 is two-sample comparison

with a sample size of 2. Gold standard dataset is based on TileMap-HMM and gtrans applications
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based on the whole dataset.

Figure 6. Comparison of HGMM (gray) and WRS (white) based on one-replicate analysis. For

each method, top 100 peaks are identified using all the replicates. Box-plots at each top scoring

peak number of 10, · · · , 100 provide the number of full-analysis peaks identified by the one-replicate

analysis. (a) Box-plots from six one-replicate analyses. (b) Box-plots from five one-replicate anal-

yses.
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