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Summary

1. Phylogenetic signal – the similarity in trait values among phylogenetically related species – is

pervasive for most types of traits in most organisms. Traits can often be categorized a priori into

groups based on the level of biological organization, functional relations, developmental origins,

or genetic underpinnings. Traits within such groups are often expected to be correlated and

hence show similar levels of phylogenetic signal.

2.We developed multivariate statistical methods to test for phylogenetic signal in groups of traits

while also incorporating estimates of trait measurement error (including within-species variation)

that can obscure phylogenetic signal. Simultaneously, these methods produce estimates of

correlations between traits that are corrected for phylogenetic relationships among species.

3. We applied these methods to data for 13 morphological and physiological traits gathered in a

common-garden study of nine species of Manglietia (Magnoliaceae). The 13 traits fell into four

groups: three traits involved photosynthesis [maximum net photosynthesis (Amax), light satura-

tion point (LSP), light compensation point]; three described leaf morphology (thickness of

leaves, palisade tissue, sponge tissue); four related to plant growth (basal stem diameter, crown

volume, leaf area, relative growth rate); and three measured thermal tolerance [critical tempera-

ture (Tch), peak temperature (Tmax), temperature of half-inactivation (T50)]. We also constructed

a molecular phylogeny for these species from 219 AFLP markers via maximum likelihood esti-

mation under the assumption of sequential binary changes in DNA sequences.

4. Of the 13 traits, only two photosynthesis traits (Amax and LSP) exhibited statistically detect-

able phylogenetic signal (P < 0Æ05) when analysed separately, whether using previously pub-

lished univariate tests or our new univariate tests that incorporate measurement error. In

contrast, multivariate analyses of the four trait groups, estimating simultaneously the phylo-

genetic signal for all traits and the correlations between traits, revealed a statistically significant

phylogenetic signal for two of the four groups (photosynthesis and plant growth), comprising

seven traits in total.

5. Our results demonstrate that even when the number of species in a comparative study is small,

resulting in low power for univariate tests, phylogenetic signal can nonetheless be detected with

multivariate tests that incorporate measurement error. Furthermore, our simulations show that

the joint estimation of phylogenetic signal and trait correlations can lead to better (less biased

and more precise) estimates of both.
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phylogenetic signal, shade tolerance, strategy
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Introduction

Statistical methods that incorporate phylogenetic informa-

tion are now common in comparative analyses of trait var-

iation and covariation (e.g. Clobert, Garland & Barbault

1998; Housworth, Martins & Lynch 2004; Hansen, Pienaar

& Orzack 2008; Lavin et al. 2008), because these methods

enhance both biological insight and statistical validity.

Biologically, shared ancestry should cause related species

to resemble each other for many traits, a pattern referred

to as phylogenetic signal (Blomberg & Garland 2002). For

example, in a survey of traits taken from many studies,

Blomberg, Garland & Ives (2003) demonstrated that phy-

logenetic signal was pervasive. Nonetheless, they found

that phylogenetic signal was weaker on average for

behavioural traits than for body size or size-adjusted mor-

pholometric traits. This finding may indicate that behavio-

ural traits experience selection that breaks down

phylogenetic patterns (Revell, Harmon & Collar 2008),

giving inferential information about evolution of behavio-

ural traits (although the possibility that they exhibit

greater measurement error cannot be discounted; Ives,

Midford & Garland 2007).

Statistically, analyses that require interspecific compari-

sons are challenging, because species cannot be assumed to be

independent data points, violating the foremost assumption

of many standard statistical analyses. When standard statisti-

cal methods are applied to phylogenetically related data, type

I errors (rejecting the null hypothesis when in fact it is true)

are often inflated, and coefficients estimated from statistical

models (such as regression slopes) may not be minimum vari-

ance (e.g. Grafen 1989; Diaz-Uriarte & Garland 1996; Gar-

land & Dı́az-Uriarte 1999; Rohlf 2006). To address both

biological and statistical issues, a large number of phylogenet-

ically informed approaches have been developed for a wide

range of analyses (reviewed in Garland, Bennett & Rezende

2005; Lavin et al. 2008).

Here, we extend this programme by developing new meth-

ods that estimate the correlation in trait values among species

while simultaneously estimating the strength of phylogenetic

signal and accounting for measurement error. This over-

comes a limitation of the most commonly used phylogenetic

statistical methods; they require an a priori assumption about

the strength of phylogenetic signal in the data to be analysed.

For example, Felsenstein’s independent contrasts method

(Felsenstein 1985) assumes that evolution follows a ‘Brown-

ian motion’ process in which trait values increase or decrease

randomly as evolution proceeds incrementally up a hierarchi-

cal phylogenetic tree. The assumption would be invalid, how-

ever, if trait evolution did not proceed in a Brownian motion

fashion (e.g. Diaz-Uriarte & Garland 1996). In contrast, our

methods estimate phylogenetic signal simultaneously with

trait correlations, rather than making a priori assumptions

about its strength, and so they should improve the estimation

of trait correlations (Ackerly 1999) and related inferences,

such as determining whether correlations differ statistically

from zero.

Our methods are related to recently developed

approaches used for detecting phylogenetic signal (Hansen

1997; Ackerly & Reich 1999; Freckleton, Harvey & Pagel

2002; Blomberg, Garland & Ives 2003; Butler & King

2004, 2005; Hansen, Pienaar & Orzack 2008; Scales, King

& Butler 2009) and for performing regression analyses

while simultaneously estimating the strength of phylo-

genetic signal (Lavin et al. 2008). Our methods use a

conceptually related approach, but applied to correlation

analyses. The approach is similar to that proposed by

Freckleton, Harvey & Pagel (2002) and generalized by

Revell & Harrison (2008), although it is based on an expli-

cit model of evolution (see Blomberg, Garland & Ives

2003).

In addition to eliminating the need to make a priori

assumptions about the strength of phylogenetic signal, our

methods have two advantages. First, they allow for the joint

estimation of phylogenetic signal in multiple traits (as does

Freckleton, Harvey & Pagel 2002). Based on simulations of

single continuous-valued traits, Blomberg, Garland & Ives

(2003) found that c. 20 species are required to detect phyloge-

netic signal with a statistical power of about 0Æ8. However,

statistical power could be improved if several traits are analy-

sed simultaneously. For example, phylogeny aside, a multi-

variate analysis of variance (MANOVA) of several (correlated)

traits typically yields much higher power to detect group dif-

ferences compared with an ANOVA of a single trait (Willig &

Owen 1987; Schmitz, Cherny & Fulker 1998). Our statistical

approach allows for the joint estimation of phylogenetic sig-

nal for any group of traits, but rather than create groups arbi-

trarily, it makesmost sense to combine traits based on level of

biological organization (e.g. behaviour or biochemistry),

functional relations (e.g. traits involved in locomotor or feed-

ing performance), developmental origins (e.g. Dohm &

Garland 1993) or genetic underpinnings (e.g. Arnold et al.

2008), because traits within such groups are expected to be

correlated.

Second, our methods make it possible to incorporate

within-species variation (or measurement error sensu Ives,

Midford & Garland 2007). Real data sets contain within-spe-

cies variation, and Ives, Midford & Garland (2007) and Fel-

senstein (2008) have shown that incorporating measurement

error improves the accuracy of statistical tests and increases

the statistical power to detect phylogenetic signal, group dif-

ferences and so forth. By incorporating independent estimates

of measurement error, our methods should give better esti-

mates of trait correlations and phylogenetic signal.

We illustrate these methods by analysis of 13 traits mea-

sured in a common-garden study of nine species ofManglietia

(Magnoliaceae). Below, we first focus on phylogenetic signal,

asking which of 13 physiological and morphological traits

show interspecific variation that to some extent reflects the

relationships of the underlying phylogenetic tree. We then

address the estimation of correlations among traits. For

both phylogenetic signal and trait correlations, we present

simulation studies to explore the statistical properties of the

methods.
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Materials and methods

P LA N T T R A I T S A N D P H Y LO G E N E T I C

R E C O N S T R U C T I O N

We performed a common-garden experiment using nine Manglietia

species: M. grandis, M. hookeri, M. insignis, M. szechuanica,

M. megaphylla, M. kwangtungensis, M. fordiana, M. chingii and

M. pachyphylla (for details, see Appendix S1, Supporting Informa-

tion). After growing four seedlings of each species for 11 months in a

greenhouse at the Xishuangbanna Tropical Botanical Garden, we

performed 10 physiological and morphological measurements that

divide into three categories: photosynthesis (maximum net photosyn-

thesis Amax, light saturation point LSP and light compensation point

LCP), plant growth (basal stem diameter, crown volume, plant

height, leaf area, relative growth rate) and thermal tolerance (critical

temperature Tch, peak temperature Tmax and temperature half-inacti-

vation T50). Data for the fourth group of traits, leaf morphology

(thickness of leaves, palisade tissue, sponge tissue), were obtained for

each species from the literature (Xie & Zhenghai 2000). Because all

traits except the measurements of leaf morphology obtained from the

literature were measured on multiple individuals, we used the stan-

dard error of the mean values of the traits for each species to estimate

within-species variability, or measurement error (Ives, Midford &

Garland 2007). Because multiple trait values were obtained from the

same individuals, within-species variability could be correlated

among different traits; for example, one individual that has a thick

pallisade layer might also have a thin sponge layer relative to other

individuals in the same species. Therefore, we calculated the corre-

lations in within-species variability among individuals and incorpo-

rated these into the statistical models along with the within-species

variability.

Inferring phylogenetic relationships among closely related plant

species is often difficult due to the lack of molecular markers exhibit-

ing enough nucleotide variability. Therefore, we used many amplified

fragment length polymorphisms (AFLPs) distributed throughout the

whole genome, which proved capable of generating a hypothesis for

the phylogenetic relationships among species (Appendix S1). For

AFLP analyses, individual plants for each of the nine species (n = 2–

11 individuals per species) were collected in the field or obtained from

two botanical gardens, located in Kunming and Wenshan, Yunnan,

China. We also includedLiriodendron chinense (n = 3 individuals) as

an outgroup to root the tree. A phylogenetic tree was constructed

from the AFLP data using maximum likelihood with PAUP 4.0 (Swof-

ford 1999). The analysis did not assume a molecular clock and

resulted in a single maximum likelihood tree for the nine Manglietia

species where the root position was determined by the location of the

outgroup Liriodendron. The phylogenetic tree for the nineManglietia

species obtained using AFLP markers is presented in Fig. 1, and the

AFLPdata and themeasurements of the 13 traits analysed in this arti-

cle are given in Appendices S2 and S3.

P ER M U T A T I O N T E S T F O R P H Y LO G E N E T I C S I GN AL

A simple permutation test for phylogenetic signal is given by Blom-

berg & Garland (2002) and Blomberg, Garland & Ives (2003), and

here we modify it to test for phylogenetic signal in multiple traits

simultaneously. The permutation test is based on the null hypothesis

that phylogenetic signal is absent, so that under the null hypothesis

trait values can be permuted among species without changing the

statistical characteristics of the data. For each permutation data set,

the mean squared error (MSE) is calculated under the assumption

that phylogenetic signal exists. Specifically, the MSE is calculated

assuming that evolution proceeds as a Brownian motion process

using the specified hierarchical phylogenetic tree, so that the covari-

ance in trait values between species is proportional to the amount of

their shared phylogenetic ancestry (i.e. the branch-length distance

from the root of the tree to their last common ancestor); more closely

related species have a longer shared ancestry and hence greater pre-

dicted covariances in trait values. (The MSE calculated in this way is

equivalent to the variance of standardized phylogenetically indepen-

dent contrasts; Blomberg &Garland 2002; Blomberg, Garland& Ives

2003.) The distribution ofMSE values calculated for the permutation

data sets is compared with the MSE calculated for the observed data.

If phylogenetic signal exists, then the MSE of the observed data will

be distinctly low relative to the distribution of permutation MSEs,

because incorporating phylogenetic structure (i.e. the assumption of

Brownian motion evolution) leads to a better explanation (lower

MSE) of the observed data.

Although Blomberg, Garland & Ives (2003) apply this test only to

single traits taken separately, it can also be performed on multiple

traits using the joint MSE for all traits. In this test, we want to weight

each trait equally, so we standardized trait values x to havemean zero

and variance 1, z ¼ x��x

varfxg1=2
. In other applications researchers might

want to transform some traits, such as log-transform body size,

in which case this should be done on the values of x before they are

standardized.

P H Y L O G E N ET I C S I G N A L A N D T R A I T C O R R E L A T I ON S

Here, we describe the estimation of trait correlations with the simulta-

neous estimation of phylogenetic signal. The utility of this approach

is that it leads to a full statistical model of both correlations among

traits and phylogenetic correlations among species that can be used to

test multiple hypotheses about trait correlations and phylogenetic sig-

nal. All of our computations for joint trait analyses were performed

by the program CORRELATIONv2.m written in Matlab (Math-

works, Inc. 1996), available on request fromT.G.

Our approach for the joint estimation of phylogenetic signal and

trait correlations is based on a specific model of evolution under an

Ornstein–Uhlenbeck (OU) process (Uhlenbeck & Ornstein 1930; Fel-

senstein 1988; Hansen 1997; Martins & Hansen 1997; Butler & King

2004; Scales, King&Butler 2009), although othermodels of evolution

could be used (Grafen 1989; Martins & Hansen 1997; Pagel 1997;

Fig. 1. Hypothesized phylogenetic tree for nine Manglietia species

based on AFLP markers. Species codes are Mg, M. grandis; Mh,

M. hookeri; Mf, M. fordiana; Mc, M. chingii; Mp, M. pachyphylla;

Mi, M. insignis; Ms, M. szechuanica; Mm, M. megaphylla; and Mk,

M. kwangtungensis. The tree is given in Nexus format with branch

lengths inAppendix S2.
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Freckleton, Harvey & Pagel 2002; Housworth, Martins & Lynch

2004); for a review, see Lavin et al. (2008 Appendix A) and Revell,

Harmon & Collar (2008). Our OUmodel is a multi-trait extension of

the single-trait OU process as modelled by Blomberg, Garland & Ives

(2003) in which evolution of the traits is correlated. This formulation

differs slightly from that proposed by Martins & Hansen (1997),

which assumes that the basal trait values are selected from the station-

ary distribution of an OU process. Instead, we assume that the vari-

ances in trait values at the base of the tree are zero, which has the

advantage that our model becomes a Brownian motionmodel of evo-

lution (which is a non-stationary process) as a special case.

To illustrate this model for two traits, suppose that over some arbi-

trarily small time stepDt, the evolution of trait values x(t) and y(t) for

a given species is described by

Xðtþ DtÞ ¼ dxXðtÞ þ cxðtÞ
Yðtþ DtÞ ¼ dyYðtÞ þ cyðtÞ

eqn 1

where dx and dy measure the strength of stabilizing selection for

traits x and y, and cx(t) and cy(t) are random variables with means

zero, variances rx
2 and ry

2, and correlation r. Mapping this model

onto a phylogenetic tree (under the assumption that the variance in

trait values at the base of the tree is zero), the covariance in trait x

between species i and j is

cov Xi;Xj

� �
¼ dsiþsj

x

1� d
2sij
x

1� d 2
x

r2
x eqn 2

where Xi and Xj are the values of trait x for species i and j, si and sj
are the distances from the node representing their most recent com-

mon ancestor to the tip of the tree for species i and j, and sij is the
branch length from the base to the most recent common ancestor

(Blomberg, Garland & Ives 2003). An identical expression holds for

the covariance in values of trait y among species. Using a similar

approach, it can be shown that the covariance between trait x for

species i and trait y for species j is given by

cov Xi;Yj

� �
¼ d si

x d
sj
y

1� dxdy
� �sij

1� dxdy
rrxry eqn 3

Thus, from the model of trait evolution (eqn 1) and a phylogenetic

tree with N species, we can construct the variances and covariances

in trait values among all species that incorporate both correlations

between traits r and the strength of phylogenetic signal d. The

stronger the stabilizing selection towards an optimum for a trait

(the larger the phylogenetic signal parameter d), the weaker the

phylogenetic correlation between species for that trait, because phy-

logenetic history is erased by selection towards the optimum (Fel-

senstein 1985; Blomberg, Garland & Ives 2003); a value of d = 0

corresponds to no phylogenetic signal (trait values among species

are independent), and a value of d = 1 corresponds to Brownian

motion evolution.

For use in statistical analyses, these variances (eqn 2) and covari-

ances (eqn 3) must be combined into a covariance matrix. For illus-

trative purposes, consider hypothetical example of three species and

two traits (Fig. 2). This leads to a 3 · 3 matrix C whose diagonal ele-

ments si contain the distance from the base to the tip for species i, and

whose off-diagonal elements sij give the shared distance on the phylo-

genetic tree between species i and j. In our example, we have standard-

ized the branch lengths so that si = 1 (although the methods do not

require that phylogenetic tree be ultra-metric, that is, have contempo-

raneous tips), and the shared branch between species 1 and 2 has

length sij = 0Æ7 (Fig. 2a). In the statistical analysis, both the trait cor-
relations r and the strength of phylogenetic signal d are estimated; for

our example, there is a single value of r and two values of d, one for

each trait. The effect of d on the strength of phylogenetic correlations

can be visualized using a phylogenetic tree, but now with branch

lengths proportional to the estimated phylogenetic signal. The value

of phylogenetic signal for trait x, dx, is 2, leading to a covariance of

0Æ8 between species, while for trait y, dy = 0Æ25 and the covariance

between species is 0Æ4; these covariances are contained within the

covariance matrices Cx(dx) and Cy(dy) that are visualized by either

extending (trait x) or contracting (trait y) the shared branch lengths

between species (Fig. 2b). With dx = 2 and dy = 0Æ25, the correla-

tion between traits is r = 0Æ5 and the variances for traits 1 and 2 are

rx
2 = 1Æ4 and ry

2 = 18Æ9, resulting in the joint covariance matrix

r2W (Fig. 2c). Here, we use the standard convention of scaling the

covariance matrix by r2 that gives the overall variance of the data

(e.g. Judge et al. 1985).

The two blocks of the covariance matrix r2W along the diagonal

(shaded) correspond to the covariance matrices for traits x and y;

each matrix gives the variances for each of the three species along the

diagonal and the phylogenetic covariances in the off-diagonals. The

two blocks of matrix r2W on the off-diagonals (not shaded) give the

covariances among species between traits x and y. For example, the

value 2Æ7 is the covariance between traits x and y expressed by species

(a)

(b)

(c)

Fig. 2. Construction of the joint trait-phylogeny covariance matrix

that incorporates correlations among traits and correlations among

phylogenetically related species. (a) The base information provided

for a three-species data set with two traits x and y. The covariance

matrix C describes the phylogeny; the covariance in trait values

between species is proportional to the shared branch lengths. (b)

Strengths of phylogenetic signal when the values of dx = 2 and

dy = 0Æ25 are estimated from the data. (Note that these values of d

are hypothetical and in fact values of d cannot be estimated for data

sets with fewer than four species.) The transformed matrices Cx and

Cy incorporate the strengths of phylogeny signal which are depicted

by the phylogenetic trees with transformed branch lengths. (c) The

overall trait–species covariance matrix, r2W. The 3 · 3 submatrices

along the diagonal of r2W (shaded) give the covariance matrices con-

taining correlations in values of a single trait among species. The

3 · 3 submatrices on the off-diagonal of r2W give the covariance

matrices containing correlations between traits x and y. The terms rx
2

and ry
2 give the variances in traits x and y, and r is the correlation

between them.
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1, while the value 1Æ7 is the covariance between trait x for species 1

and trait y for species 2. Thus, the matrix r2W gives covariances

between all trait–species combinations.

The statistical method we developed estimates the components of

the joint covariance matrix, specifically the parameters r, d and r2,
using RestrictedMaximumLikelihood estimation; the details are pre-

sented in Appendix S4. The covariance matrix r2W can also be modi-

fied to incorporate measurement error. We treat as measurement

error any within-species variation that might include error in the mea-

surement of the trait or variation among individuals of the same spe-

cies. (Population differences would also contribute to this error if they

had been pooled to obtain a single sample to represent a species.) This

measurement error is captured by the standard error of the within-

species estimates of trait values (Ives, Midford & Garland 2007). To

determine whether the estimates of d differ from zero or one, we used

likelihood ratio tests. Specifically, we calculated the maximum

restricted log likelihoods both including (LL) and excluding (LL0) the

parameters of interest, and tested the significance of the inclusion of

the parameters using the result that –2(LL0 ) LL) is asymptotically

v2-distributed with degrees of freedom equal to the number of param-

eters differing between models; for example, the test for d „ 0 for

three traits involves comparing the models with and without the three

parameters d, and the resulting chi-squared distribution for –

2(LL0 ) LL) has 3 degrees of freedom.

In addition to estimating trait and phylogenetic correlations simul-

taneously for groups of traits, giving estimates we refer to as rjoint and

djoint, we modified the methods to calculate the value of d assuming

that all species within the group have the same value dcommon and esti-

mate the corresponding trait correlations rcomon. This provides a test

for dissimilarity in phylogenetic signal among traits by comparing the

fits of the model using djoint and dcommon. To compare with the jointly

estimated values djoint, we also computed the values of d estimated for

each trait separately, dsep; we do not calculate the trait correlations r

along with dsep, because the correlations are components of the

covariance matrix r2W for which values of d for each species should

be estimated simultaneously (i.e. djoint).

S T A T I S T I C AL P O W E R T O I D EN T I F Y PH Y L OG E N E T I C

S I G N A L

To compare the statistical power of the two methods (joint permuta-

tion test, likelihood ratio test) to detect phylogenetic signal in multiple

traits, we performed a simulation study for three traits using the phy-

logenetic tree of the nine Manglietia species (Fig. 1). We simulated

data sets under the assumption that evolution of the three traits fol-

lowed an OU process with the same ‘true’ value of d for all traits. We

assumed traits were not correlated (r = 0), although simulations with

r „ 0 gave similar results (data not presented). For each value of d

between 0 and 1 in increments of 0Æ1, we simulated 2000 data sets, and

for each simulated data set we performed the joint permutation test

and the likelihood ratio test (obtained from the estimation of djoint);

we used an a = 0Æ05 level to identify statistically significant phyloge-

netic signal.

S T A T I S T I C AL P R O P ER TI E S O F ES T I M A T O R S O F D

A N D R

We investigated the statistical properties of the estimators of phyloge-

netic signal, d, and trait correlations, r, using simulations assuming

that there are three traits under study for nine species with the same

phylogeny as the nineManglietia species (Fig. 1). To address the issue

of sample size, we also considered the case of 49 species using the phy-

logenetic tree provided by Garland et al. (1993). For both simula-

tions, we assumed values of d are 0Æ2, 1 and 1Æ5, and values of r are 0Æ5,
)0Æ5 and )0Æ25. Finally, we simulated data both without and with

measurement error; measurement error for the nine-species simula-

tions were the same as for the nine Manglietia species, while for the

49-species simulations we assumed that the measurement error for

each trait and the covariances between measurement errors were the

same for all species and equal to the mean measurement errors for

the corresponding traits in the nine Manglietia species data set. For

the simulations with measurement error, we estimated djoint and dsep
both incorporating and not incorporatingmeasurement error.

Results

P H Y LO G EN ET I C S I G N A L

The four different groups of traits (photosynthesis, leaf

morphology, plant growth and thermal tolerance) demon-

strated contrasting patterns of phylogenetic signal. The

photosynthesis traits showed very strong phylogenetic sig-

nal (Table 1). For two of the three traits (Amax and LSP),

the single-trait permutation tests were statistically signifi-

cant and the estimates of dsep for each trait analysed sepa-

rately were greater than 1. The estimates of djoint gave a

similar pattern, and the joint permutation test was statisti-

cally significant. Finally, under the assumption that all three

traits have the same value of d, the estimate of dcommon was

greater than 1 both with and without the inclusion of mea-

surement error.

We used likelihood ratios to test three null hypotheses

regarding the estimation of djoint (Table 2): (i) whether there

is phylogenetic signal in the group of traits (H0:no signal),

(ii) whether the species covariances differ from those antici-

pated under Brownian motion evolution (H0:Brownian),

and (iii) whether there is heterogeneity in values of djoint
among species (H0:djoint = dcommon). For the three photo-

synthesis traits, only the first of these hypotheses was

rejected. We conclude that the phylogenetic signal is statisti-

cally indistinguishable from Brownian motion evolution,

and that all three traits show indistinguishable degrees of

phylogenetic signal.

For the three leaf morphology traits, the estimated values

of dsep and djoint are large, yet they nonetheless cannot be sta-

tistically distinguished from zero; the separate likelihood ratio

tests on dsep (Table 1) and the joint likelihood ratio test for

djoint (Table 2) are not statistically significant. Nonetheless,

the joint permutation test showed statistically significant phy-

logenetic signal (Table 1, P < 0Æ03). This illustrates that the
tests using d and the permutation test do not necessarily give

the same results for any given data set (see also Blomberg,

Garland & Ives 2003). Below we demonstrate that the joint

permutation test has greater statistical power than the likeli-

hood ratio test for djoint. Thus, it is not surprising that the

permutation test identifies statistically significant phyloge-

netic signal while the likelihood ratio test does not. Despite

the fact that the null hypothesis of no phylogenetic signal was

rejected by the permutation test, we nonetheless rely solely
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on the likelihood ratio test for reasons described below,

concluding that there is no phylogenetic signal in leaf mor-

phology traits.

The four traits for plant growth give an example in which

the analyses of single traits revealed little evidence of phyloge-

netic signal, yet phylogenetic signal was found for the group

of traits analysed jointly. Specifically, the null hypothesis

H0:no signal was rejected whethermeasurement error was not

(P < 0Æ01) or was (P < 0Æ004, Table 2) included. Moreover,

the null hypothesis H0:Brownian is also rejected (P < 0Æ009
and<0Æ006 with and without measurement error), indicating

that even though there is evidence for phylogenetic signal, the

Brown motion evolutionary model is also not supported. The

nearly significant rejection of the null hypothesis

H0:d = dcommon (P < 0Æ08 and <0Æ06 with and without

measurement error) suggests that traits differ in whether or

not they show phylogenetic signal, which is supported by the

very different estimates among species of both dsep and djoint
(Table 1). Note that in contrast to the leaf morphology traits,

although the likelihood ratio tests identify joint phylogenetic

signal, the permutation test does not. We return to this in the

Discussion.

Table 1. Measures of phylogenetic signal for 13 plant traits. The permutation test gives a nonparametric assessment (P-value) for statistical

departure from the case in which species are phylogenetically independent. Estimates of phylogenetic signal are given by the parameter d of an

Ornstein–Uhlenbeckmodel of stabilizing selection, which is estimated for traits separately, dsep, simultaneously for all traits within a group, djoint,

and simultaneously for all traits in a group under the assumption that all traits share the same value, dcommon. Likelihood ratio tests were used to

test the significant departure of dsep from zero (†P < 0Æ1; *P < 0Æ05; **P < 0Æ02), using likelihoods LLsep and LL0 calculated from the model

including and excluding dsep. The estimates of leaf morphology traits were taken from the literature and do not have associated measurement

errors, and therefore values of dwere not estimated withmeasurement error (shown by dashes in the table)

Trait

Permutation

test (P-values) d without ME d with ME

Single Joint dsep LLsep LL0 djoint dcommon dsep LLsep LL0 djoint dcommon

Photosynthesis

Amax 0Æ03 0Æ03 4Æ55** )3Æ69 )6Æ44 2Æ30 1Æ44 4Æ44† )4Æ90 )6Æ67 1Æ82 1Æ67
LSP 0Æ02 2Æ66* )38Æ29 )40Æ55 2Æ34 3Æ22* )43Æ12 )45Æ25 3Æ93
LCP 0Æ52 0Æ16 )8Æ54 )8Æ56 0Æ12 0Æ12 )9Æ59 )9Æ59 0Æ01

Leaf morphology

Thickness of leaves 0Æ21 0Æ04 2Æ65 )32Æ65 )33Æ01 0Æ74 0Æ26 – – – – –

Thickness of palisade

tissue

0Æ14 1Æ98 )31Æ04 )31Æ45 1Æ36 – – – –

Thickness of sponge

tissue

0Æ14 1Æ85 )34Æ00 )34Æ30 0Æ23 – – – –

Plant growth

Basal stem diameter 0Æ36 0Æ59 0Æ24 )0Æ47 )0Æ48 0Æ14 1Æ52 0Æ47 )0Æ95 )0Æ97 1Æ51 0Æ83
Crown volume 0Æ66 0Æ11 )86Æ89 )86Æ89 1Æ39 0Æ11 )96Æ80 )96Æ80 0

Leaf area 0Æ86 0Æ10 )48Æ29 )48Æ29 1Æ95 0Æ00 )52Æ92 )52Æ92 0Æ01
Relative growth rate 0Æ28 0Æ44 )3Æ15 )3Æ24 1Æ97 0Æ46 )3Æ31 )3Æ37 0

Thermal tolerance

Tch 0Æ74 0Æ88 0Æ08 )7Æ32 )7Æ32 0 0Æ00 0Æ00 )7Æ48 )7Æ48 0Æ30 0

Tmax 0Æ96 0Æ41 )3Æ59 )3Æ59 0 0Æ00 )3Æ26 )3Æ26 0Æ04
T50 0Æ70 0Æ05 )5Æ25 )5Æ25 0Æ10 0Æ00 )5Æ25 )5Æ25 0Æ16

Table 2. Joint tests for statistical significance of phylogenetic signal for four categories of traits. H0:no signal is the null hypothesis that there is

no phylogenetic signal (d = 0 for all traits). H0:Brownian is the null hypothesis that the phylogenetic signal can be described by a Brownian

motion model of evolution (d = 1 for all traits).H0:d = dcommon is the null hypothesis that the strength of phylogenetic signal is the same for all

traits within a category. ME denotes measurement error and only P-values <0Æ10 are shown. Degrees of freedom (d.f.) for the chi-squared tests

equal the number of parameters that differ between models; for H0:no signal and H0:Brownian, d.f. = the number of traits per group, and for

H0:d = dcommon, d.f. = the number of traits ) 1. Leaf morphology traits do not have associated measurement errors, and therefore models

incorporatingmeasurement error were not used

Trait category

Without ME With ME

H0:no signal H0:Brownian

H0:

d = dcommon H0:no signal H0:Brownian

H0:

d = dcommon

v2 P v2 P v2 P v2 P v2 P v2 P

Photosynthesis 11Æ2 0Æ01 5Æ8 5Æ3 12Æ7 0Æ005 8Æ1 0Æ04 5Æ3
Leaf morphology 2Æ34 2Æ57 2Æ17 – – –

Plant growth 12Æ6 0Æ01 13Æ5 0Æ009 8Æ3 0Æ08 15Æ3 0Æ004 14Æ3 0Æ006 9Æ0 0Æ06
Thermal tolerance 0Æ14 6Æ9 0Æ015 0Æ14 3Æ3 6Æ0 3Æ3
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For the fourth category of traits (thermal tolerance), there

is little indication of phylogenetic signal in any analysis.

S T A T I S T I C AL P O W E R T O I D EN T I F Y PH Y L OG E N E T I C

S I G N A L

In our simulation study, the joint permutation test had

greater statistical power than the likelihood ratio test (Fig. 3),

showing greater ability to reject the null hypothesis of no phy-

logenetic signal than the likelihood ratio test for d > 0. Fur-

thermore, the likelihood ratio test had a slightly inflated type

I error rate (probability of rejecting the null hypothesis when

it is true), with 6Æ6% of the data sets rejected at the a = 0Æ05
level when d = 0; this compared to a type I error rate of 5Æ6%
for the permutation test. Importantly, only 2Æ0% of the simu-

lated data sets were rejected by both the joint permutation test

and the likelihood ratio test. Therefore, if one were to apply

both tests to the same data set and conclude that the data set

had phylogenetic signal if either one or the other of the tests

rejected the null hypothesis, then the type I error rate would

be 10Æ2%; the type I error rates for the permutation and likeli-

hood ratio tests were 5Æ6% and 6Æ6%, so the probability of

one or the other test rejecting the null hypothesis is

5Æ6% + 6Æ6% ) 2Æ0% = 10Æ2%. This suggests that it is nec-

essary to make an a priori decision about which statistical test

to use – and use only that one – in order to obtain the correct

type I error rates.

T R A I T C O R R E L A T I O N S

We computed trait correlations within each of the four

groups. Table 3 gives four types of correlation coefficients: (i)

Pearson correlation coefficients obtained under the assump-

tion that there is no phylogenetic signal; (ii) coefficients calcu-

lated under the assumption of Brownian motion evolution;

(iii) coefficients calculated at the same time as djoint for all

three traits, rjoint; and (iv) rjoint calculated while incorporating

measurement error. For brevity, we do not report correla-

tions rcommon obtained when assuming all species have a com-

mon value of d.

For all groups of traits, the values of the correlation coeffi-

cients computed using all four methods exhibit general corre-

spondence (Table 3); this empirical correspondence between

standard and phylogenetic correlations has been shown previ-

ously (Ricklefs & Starck 1996; Ackerly & Reich 1999). Fur-

thermore, there was statistically significant correlation

between traits within all four groups; all likelihood ratio tests

of the hypothesis that all correlations are zero were rejected

using all four of the approaches for measuring correlation

coefficients (Table 3). Comparing statistical tests among the

four approaches used for estimating correlation coefficients,

the most striking result is the stronger rejections (lower P-

values) of the null hypotheses when the analyses incorporated

measurement error; for the three groups for which measure-

ment error was available (photosynthesis, leaf morphology

and thermal tolerance), the null hypotheses of zero correla-

tions were rejected at the P < 0Æ03, 0Æ01 and 0Æ001 levels

using Pearson correlations (assuming no measurement error

and no phylogenetic signal), whereas all these hypotheses

were rejected at the P < 0Æ001 level when estimating rjoint
withmeasurement error (Table 3).

S T A T I S T I C AL P R O P ER T I E S O F d A N D r

To explore the statistical properties of the joint estimation of

d and r, we performed a simulation study using phylogenetic

trees for nine species (Fig. 1) and 49 species (Garland et al.

1993). For simulations without measurement error, the esti-

mates of djoint were less biased and more precise (i.e. less vari-

able) than the estimates calculated for each species separately,

dsep, when there were nine species (Fig. 4a). Increasing the

sample size to 49 removed any bias for bothmethods, and the

estimates of djoint are only very slightly more precise (Fig. 4b).

Thus, for small sample sizes the estimates of djoint are pre-

ferred over dsep, even without the added advantage of djoint
that it provides statistical tests of phylogenetic signal for

groups of traits. (We should of course note that this is true

only for the specific simulations with the specific trait correla-

tions r that we investigated, and that researchers might want

to perform simulations based on their own data to confirm

this. Nonetheless, we suspect this pattern will hold broadly.)

In simulations including measurement error (Fig. 4c,d), the

estimates of d that ignored the simulated measurement error

were more biased than those incorporating measurement

error, especially for the case with 49 species (Fig. 4d). Fur-

thermore, the estimates of djoint were more precise than those

for dsep for small sample sizes (Fig. 4c). Thus, for data sets

with substantial measurement error, estimating djoint
with measurement error incorporated has the best statistical

properties.

In the same simulations we used to estimate values of d

(Fig. 4), we also obtained estimates of r (Fig. 5); we did not

Fig. 3. Power analysis for the joint permutation and likelihood ratio

tests for three traits simulated using the phylogenetic tree of nine

Manglietia species (Fig. 1). Each trait was simulated using an Orn-

stein–Uhlenbeck evolutionary process with a common value of d, and

traits were assumed to be independent. For values of d between zero

and one in increments of 0Æ1, 2000 simulations were performed, and

the figure gives the fraction for which the null hypothesis of d = 0

was rejected using the joint permutation test and likelihood ratio test

at an a = 0Æ05 level.
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include estimates of r when estimating dsep for reasons

described inMaterial andmethods. In simulations not includ-

ing measurement error (Fig. 5a,b), the estimates of r under

the assumption of no phylogenetic signal or Brownian

motion evolution were both biased for the larger sample size

of 49 species, whereas the estimates of rjoint were not. In simu-

lations with measurement error (Fig. 5c,d), with 49 species

the estimates using all methods were biased except for the

joint estimate of rjoint incorporating measurement error.

These results illustrate the relatively good statistical perfor-

mance of estimators of djoint and rjoint that simultaneously

include phylogenetic signal and trait correlations.

Discussion

Our statistical methods to measure phylogenetic signal in

multiple traits simultaneously revealed statistically significant

signal in the group of three traits involved in photosynthesis

(Amax, LSP and LCP) and the group of four traits involving

plant growth (basal stem diameter, crown volume, leaf area

and relative growth rate). A third group of three traits involv-

ing leaf morphology showed phylogenetic signal in the per-

mutation test but not in the likelihood ratio tests; estimates of

measurement error were not available, so our method for

incorporating measurement error could not be applied.

Finally, the fourth group of thermal tolerance traits exhibited

no phylogenetic signal. These results from analyses that con-

sider traits jointly within the same group contrast the conclu-

sions obtained when analysing the 13 traits separately.

Analysed separately, we found strong phylogenetic signal in

only two traits, Amax and LSP, both of which involve photo-

synthesis. Failure to detect phylogenetic signal in traits trea-

ted separately is not surprising, however, because statistical

tests of phylogenetic signal often lack power when sample

sizes are small (Blomberg, Garland & Ives 2003).

For the groups of traits showing statistically significant

phylogenetic signal, all we conclude is that phylogenetically

related species are more likely to share the same values of the

group of traits. Although our methods rely on a specific

model of evolution, assuming trait values evolve according to

an OU process of stabilizing selection across the phylogeny

(eqn 1), it would be an over-interpretation of the results to

conclude that the data were produced under an OU process.

A formal statistical test of the specific model of evolution

would consist of constructing competing models derived

under different evolutionary processes and then selecting the

best amongst them; although this procedure is straightfor-

ward, we suspect that large amounts of high-quality data

would be required to statistically distinguish among models.

Our goal, however, was only to identify the existence of phy-

logenetic signal, not to test any specific mechanisms that

underlie phylogenetic patterns (cf. Blomberg & Garland

2002; Blomberg, Garland & Ives 2003).

Previous studies of plants have documented cases of both

strong phylogenetic signal and weak or absent signal. Ackerly

& Reich (1999) assembled a data set of 108 tree species for

which eight leaf traits were available. All of the traits showed

phylogenetic signal, although this was largely due to the data

set spanning angiosperms and gymnosperms, two clades with

distinct leaf morphology (broad leaves vs. needles); in similar

Table 3. Correlation coefficients calculated

using four methods. The ‘no signal’ and

‘Brownian motion’ calculations assume that

there is no phylogenetic signal (d = 0) and

signal given by Brownian motion evolution

along the original specified phylogenetic tree

(d = 1). Coefficients were also calculated

using phylogenetic signal estimated

simultaneously for all traits, djoint, with and

without incorporating measurement error.

When d was estimated, the average of the

estimates of d is provided for each pair of

species. The traits are listed in order: (a)

photosynthesis traits (Amax, LSP, LCP), (b)

leaf morphology traits (thickness of leaves,

thickness of palisade tissue, and thickness of

sponge tissue), (c) growth traits (basal stem

diameter, crown volume, leaf area, relative

growth rate) and (d) thermal tolerance traits

(critical temperature Tch, peak temperature

Tmax, temperature half-inactivation T50). P-

values correspond to the likelihood ratio test

for the null hypothesis H0: r = 0 for all

species pairs

P-value

Trait pairs

1–2 1–3 2–3 1–4 2–4 3–4

(a) Photosynthesis traits

No signal 0Æ04 0Æ63 )0Æ63 )0Æ30
Brownian 0Æ005 0Æ71 )0Æ49 )0Æ18
rjoint 0Æ03 0Æ62 )0Æ56 )0Æ26
rjoint with ME 0Æ001 0Æ71 )0Æ52 0

Ave. djoint with ME 2Æ82 0Æ61 1Æ97
Ave. djoint 2Æ32 1Æ21 1Æ23

(b) Leaf morphology traits

No signal 0Æ002 0Æ34 0Æ61 )0Æ42
Brownian 0Æ002 0Æ30 0Æ56 )0Æ47
rjoint 0Æ003 0Æ25 0Æ52 )0Æ55
Ave. djoint 1Æ04 0Æ47 0Æ80

(c) Growth traits

No signal 0Æ01 0Æ30 0Æ29 0Æ37 0Æ84 0Æ65 0Æ75
Brownian 0Æ01 0Æ32 0Æ24 0Æ40 0Æ92 0Æ60 0Æ74
rjoint 0Æ001 0Æ35 0Æ29 0Æ92 0Æ45 0Æ63 0Æ83
rjoint with ME 0Æ001 0Æ26 )0Æ02 0Æ36 0Æ32 0Æ83 0Æ54
Ave. djoint with ME 0Æ75 0Æ76 0Æ01 0Æ75 0Æ00 0Æ01
Ave. djoint 0Æ77 1Æ05 1Æ67 1Æ06 1Æ68 1Æ96

(d) Thermal tolerance traits

No signal 0Æ001 0Æ80 0Æ85 0Æ64
Brownian 0Æ01 0Æ82 0Æ86 0Æ68
rjoint 0Æ001 0Æ80 0Æ85 0Æ64
rjoint with ME 0Æ001 0Æ50 0Æ99 0Æ52
Ave. djoint 0 0Æ05 0Æ05
Ave. djoint with ME 0Æ17 0Æ23 0Æ10
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analyses confined to angiosperms, they found little phyloge-

netic signal in the same traits. Zanne, Chapman & Kitajima

(2005) found strong phylogenetic signal in cotyledon type but

not seedmass among 70 species of trees and shrubs occupying

the same habitat in Uganda. In a survey of pollination traits

among 288 species, Ornelas et al. (2007) found phylogenetic

signal in all traits involving nectar production, as well as cor-

olla length, suggesting strong evolutionary conservatism in

plant reproductive biology.

These studies were broad taxonomic surveys, however,

involving diverse plant lineages. In contrast, our study com-

pared a small group of congeners. At a similar taxonomic

scale, Blomberg, Garland & Ives (2003) analysed two plant

data sets consisting of morphological traits for maple trees

(Ackerly &Donoghue 1998) andTithonia (Asteraceae) (Mor-

ales 2000). Despite the larger size of these data sets (17 and 32

species vs. our 9), phylogenetic signal was found for only

about one-third of traits (4 of 12 and 5 of 14 traits respec-

tively) based on the same permutation test that we employed

here (with P-values not corrected for multiple comparisons).

In a common-garden experiment on drought tolerance of

eight species from five genera, Valladares & Sanchez-Gomez

(2006) documented phylogenetic signal in several traits (as

determined by clustering of traits in a Principle Components

Analysis), with similar drought tolerance exhibited by mem-

bers of the same genera. In comparison with the taxonomi-

cally broad surveys, these studies suggest that phylogenetic

signal in plant traits is harder to identify among taxonomi-

cally similar species. However, this may also be the result of

sample size, as confining analyses to closely related species

often limits the number of species that can be analysed, thus

reducing statistical power.

Our statistical methods provide a means for estimating

simultaneously the correlations of multiple traits and the

phylogenetic correlations in values of traits among species.

In a simulation study, we showed that correlations calcu-

lated when either ignoring phylogenetic signal or assuming

phylogenetic signal generated a Brownian motion model of

evolution often produced biased estimates of the true corre-

lation (see also Rohlf 2006). In contrast, estimating trait

correlations while simultaneously estimating phylogenetic

signal, rjoint, gave less-biased estimates. This demonstrates

that correctly accounting for phylogenetic signal, rather

than making an a priori assumption that it is zero or given

(a)

(b)

(c)

(d)

Fig. 5. Estimates of the correlation coefficients for simulated data

sets for three traits. The same data sets were used as those producing

corresponding panels in Fig. 4. In (a) and (b) data were simulated

without measurement error, and dsep and djoint were estimated exclud-

ing measurement error. The correlation coefficients were then esti-

mated assuming no phylogenetic signal, Brownian motion evolution

and phylogenetic signals given by djoint. In (c) and (d) measurement

error was simulated, and djoint was estimated including and not

including measurement error. In (a) and (c) the phylogenetic tree for

the nine Manglietia species was used for simulations, and in (b) and

(d) the tree for 49 species fromGarland et al. (1993) was used. Points

give the mean of the estimates from simulations, vertical lines give the

95% inclusion intervals and horizontal lines give the true values of r

for the three traits (0Æ5, )0Æ5 and )0Æ25). For (a) and (c) 1000 data sets

were simulated, and for (b) and (d) 200 data sets were simulated.

(a)

(b)

(c)

(d)

Fig. 4. Estimates of phylogenetic signal, d, for simulated data for

three traits. In (a) and (b) data were simulated without measurement

error, and dsep and djoint were estimated excluding measurement error.

In (c) and (d) measurement error was simulated, and both dsep and

djoint were estimated including and not including measurement error.

In (a) and (c) the phylogenetic tree for the nineManglietia species was

used for simulations, and in (b) and (d) the tree for 49 species from

Garland et al. (1993) was used. Points give the mean of the estimates

from simulations, vertical lines give the 95% inclusion intervals and

horizontal lines give the true values of d for the three traits used in the

simulations: 0Æ2, 1 and 1Æ5. Values of r = 0Æ5, )0Æ5 and )0Æ25. For (a)
and (c) 1000 data sets were simulated, and for (b) and (d) 200 data sets

were simulated.
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by Brownian motion evolution, leads to better estimates of

correlations.

Although we present two tests for phylogenetic signal in

suites of traits, the joint permutation test and the likelihood

ratio test using estimates of djoint, only one of these tests

should be selected a priori and used to determine statistical

significance. This is because the two tests do not necessarily

identify the same data sets as showing phylogenetic signal in

suites of traits (see also Blomberg, Garland & Ives 2003). To

give an extreme example, if both tests had rejection rates of

the null hypothesis of 5%, yet data sets rejected by one test

were never rejected by the other, then 10% of the data sets

would be rejected by one or the other test. Therefore, if a

researcher were to assume that a data set showed phyloge-

netic signal for a suite of traits if one or the other statistical

test gave statistical significance, then in this example the type

I error rate (the rate of rejecting a null hypothesis that is true)

would be inflated to 10%. In our simulations, only 2Æ0% of

simulated data sets had null hypotheses that were rejected by

both tests, indicating potentially serious type I errors if both

tests were applied. The underlying explanation for this statis-

tical complexity is that the permutation and likelihood ratio

tests are rejecting the null hypothesis based on different char-

acteristics of the data sets; they are employing different alter-

native (H1) hypotheses.

Given that either the permutation test or the likelihood

ratio test should be selected a priori as the group test for phy-

logenetic signal, which one should it be? The joint permuta-

tion test has the advantage of greater power, and therefore it

might be preferred if detecting phylogenetic signal is the only

objective. The likelihood ratio test has the advantage of being

a model-based test that gives more information about the

data set, including an estimate of the strength of phylogenetic

signal and phylogenetically correct correlations among traits.

In our study, we were interested in not only phylogenetic sig-

nal but also trait correlations, and therefore we would pick

the likelihood ratio test over the permutation test. Thus,

although the permutation test shows phylogenetic signal for

the group of leaf morphology traits, we do not conclude that

they in fact exhibit phylogenetic signal.

The product of the estimation of djoint and rjoint is the joint

covariance matrix r2W that incorporates correlations due to

phylogenetic relationships among species, associations

between traits and measurement error (Fig. 1, Appendix S1).

This covariance matrix can be best explained by considering

each value of a trait for each species as a trait–species datum.

The elements of the covariance matrix are then the covari-

ances between each pair of trait–species values. In the struc-

ture assumed for the covariance matrix r2W, trait–species

values might be correlated if species are phylogenetically

related. They might also be correlated if the two traits

involved in the trait–species values have experienced corre-

lated evolution along the phylogenetic tree. Although the

structure we assume for the covariance matrix is flexible to

include different strengths of phylogenetic signal and differ-

ent trait correlations, it nonetheless imposes constraints on

the covariances. For example, it assumes that closely related

species are at least as likely to share similar trait values as

more distantly related species. This assumption might be vio-

lated, however, if there is convergent evolution, in which dis-

tantly related species have become similar in multiple traits.

Although the structure of the covariance matrix r2W cannot

accommodate convergent evolution, it can nonetheless be

used to provide a null hypothesis that no convergence exists.

This could be done, for example, by fitting the covariance

matrix r2W to a data set, using the fitted model to simulate

data, and then looking for patterns of convergence in the

observed data that are not found in the simulated data; meth-

ods to do this, however, will require further development. In

general, by fitting an explicit model to the covariance struc-

ture of a data set, our approach provides an avenue to investi-

gate complex evolutionary hypotheses about the variation in

multiple traits among phylogenetically related species.

Acknowledgements

We thank especially Stacey Smith for comments and help with this

project. It was supported in part by NSF grants DEB-0816613 to

ARI andDEB-0416085 toD.N.Reznick,M.S. Springer and T.G.

References

Ackerly, D.D. (1999) Comparative plant ecology and the role of phylogenetic

information.Physiological Plant Ecology (edsM. Press, J. Scholes &M. Bar-

ker), pp. 391–413. Blackwell Science, Oxford.

Ackerly, D.D. & Donoghue, M.J. (1998) Leaf size, sapling allometry, and Cor-

ner’s rules: phylogeny and correlated evolution in maples (Acer).The Ameri-

can Naturalist, 152, 767–791.

Ackerly, D.D. & Reich, P.B. (1999) Convergence and correlations among leaf

size and function in seed plants: a comparative test using independent con-

trasts.American Journal of Botany, 86, 1272–1281.

Arnold, S.J., Burger, R., Hohenlohe, P.A., Ajie, B.C. & Jones, A.G. (2008)

Understanding the evolution and stability of the G-matrix. Evolution, 62,

2451–2461.

Blomberg, S.P. & Garland, T., Jr (2002) Tempo and mode in evolution: phylo-

genetic inertia, adaptation and comparative methods. Journal of Evolution-

ary Biology, 15, 899–910.

Blomberg, S.P., Garland, T., Jr & Ives, A.R. (2003) Testing for phylogenetic

signal in comparative data: behavioral traits are more labile. Evolution, 57,

717–745.

Butler, M.A. & King, A.A. (2004) Phylogenetic comparative analysis: a

modeling approach for adaptive evolution. The American Naturalist,

164, 683–695.

Butler,M.A. &King, A.A. (2005) Ouch! An improvedmethod for phylogenetic

tests of adaptive evolution. Integrative and Comparative Biology, 45, 973–

973.

Clobert, J., Garland, T., Jr&Barbault, R. (1998) The evolution of demographic

tactics in lizards: a test of some hypotheses concerning life history evolution.

Journal of Evolutionary Biology, 11, 329–364.

Diaz-Uriarte, R. &Garland, T., Jr (1996) Testing hypotheses of correlated evo-

lution using phylogenetically independent contrasts: sensitivity to deviations

fromBrownianmotion. Systematic Biology, 45, 27–47.

Dohm, M.R. & Garland, T., Jr (1993) Quantitative genetics of scale counts in

the garter snakeThamnophis sirtalis.Copeia, 4, 987–1002.

Felsenstein, J. (1985) Phylogenies and the comparative method. The American

Naturalist, 125, 1–15.

Felsenstein, J. (1988) Phylogenies and quantitative characters. Annual Review

of Ecology and Systematics, 19, 445–471.

Freckleton, R.P., Harvey, P.H. & Pagel, M. (2002) Phylogenetic analysis and

comparative data: a test and review of evidence. The American Naturalist,

160, 712–726.

Garland, T., Jr, Bennett, A.F. & Rezende, E.L. (2005) Phylogenetic approaches

in comparative physiology. Journal of Experimental Biology, 208, 3015–

3035.

� 2009 The Authors. Journal compilation � 2009 British Ecological Society, Functional Ecology, 23, 1059–1069

1068 L. Zheng et al.



Garland, T., Jr & Dı́az-Uriarte, R. (1999) Polytomies and phylogenetically

independent contrasts: an examination of the bounded degrees of freedom

approach. Systematic Biology, 48, 547–558.

Garland, T., Jr, Dickerman, A.W., Janis, C.M. & Jones, J.A. (1993) Phyloge-

netic analysis of covariance by computer-simulation. Systematic Biology, 42,

265–292.

Grafen, A. (1989) The phylogenetic regression. Transactions of the Royal Soci-

ety of London B, Biological Sciences, 326, 119–157.

Hansen, T.F. (1997) Stabilizing selection and the comparative analysis of adap-

tation.Evolution, 51, 1341–1351.

Hansen, T.F., Pienaar, J. & Orzack, S.H. (2008) A comparative method for

studying adaptation to a randomly evolving environment. Evolution, 62,

1965–1977.

Housworth, E.A., Martins, E.P. & Lynch, M. (2004) The phylogenetic mixed

model.The AmericanNaturalist, 163, 84–96.

Ives, A.R.,Midford, P.E. &Garland, T., Jr (2007)Within-species variation and

measurement error in phylogenetic comparative methods. Systematic Biol-

ogy, 56, 252–270.

Judge, G.G., Griffiths,W.E., Hill, R.C., Lutkepohl, H. & Lee, T.-C. (1985)The

Theory and Practice of Econometrics. JohnWiley and Sons, NewYork.

Lavin, S.R., Karasov, W.H., Ives, A.R., Middleton, K.M. & Garland, T., Jr

(2008) Morphometrics of the avian small intestine, compared with non-fly-

ing mammals: a phylogenetic approach.Physiological and Biochemical Zool-

ogy, 81, 526–550.

Martins, E.P. &Hansen, T.F. (1997) Phylogenies and the comparative method:

a general approach to incorporating phylogenetic information into the anal-

ysis of interspecific data. The American Naturalist 149, 646–667. Erratum

153:448.

Mathworks, Inc. (1996)MATLAB. TheMathWorks, Inc., Natick,MA.

Morales, E. (2000) Estimating phylogenetic inertia in Tithonia (Asteracea): a

comparative approach.Evolution, 54, 475–484.

Ornelas, J.F., Ordano, M., De-Nova, A.J., Quintero, M.E. & Garland, T., Jr

(2007) Phylogenetic analysis of interspecific variation in nectar of humming-

bird-visited plants. Journal of Evolutionary Biology, 20, 1904–1917.

Pagel, M. (1997) Inferring evolutionary processes from phylogenies. Zoologica

Scripta, 26, 331–348.

Revell, L.J., Harmon, L.J. & Collar, D.C. (2008) Phylogenetic signal, evolu-

tionary process, and rate.Systematic Biology, 57, 591–601.

Revell, L.J. &Harrison,A.S. (2008) PCCA: a program for phylogenetic canoni-

cal correlation analysis.Bioinformatics, 24, 1018–1020.

Ricklefs, R.E. & Starck, J.M. (1996) Applications of phylogenetically indepen-

dent contrasts: a mixed progress report.Oikos, 77, 167–172.

Rohlf, F.J. (2006) A comment on phylogenetic correction. Evolution, 60, 1509–

1515.

Scales, J.A., King, A.A. & Butler, A.M. (2009) Running for your life or running

for your dinner: what drives fiber-type evolution in lizard locomotor

muscles?The AmericanNaturalist, 173, 543–553.

Schmitz, S., Cherny, S.S. & Fulker, D.W. (1998) Increase in power through

multivariate analyses.Behavior Genetics, 28, 357–363.

Swofford, D.L. (1999) PAUP: Phylogenetic Analysis Using Parsimony (*and

OtherMethods). Sinauer Associates, Inc., Sunderland,MA.

Uhlenbeck, G.E. & Ornstein, L.S. (1930) On the theory of Brownian motion.

Physical Review, 36, 823–841.

Valladares, F. & Sanchez-Gomez, D. (2006) Ecophysiological traits associated

with drought in Mediterranean tree seedlings: Individual responses versus

interspecific trends in eleven species.Plant Biology 8, 688–697.

Willig,M.R. & Owen, R.D. (1987) Univariate analyses of morphometric varia-

tion do not emulate the results of multivariate analyses. Systematic Zoology,

36, 398–400.

Xia, C. & Zhenghai, H. (2000) Comparative studies on leaf structure and oil

cells of the Magnaliaeae in China. Acta Phytotaxonomica Sinica, 38,

218–230.

Zanne, A.E., Chapman, C.A. & Kitajima, K. (2005) Evolutionary and ecologi-

cal correlates of early seedling morphology in East African trees and shrubs.

American Journal of Botany, 92, 972–978.

Received 20 January 2009; accepted 19May 2009

Handling Editor: James Cresswell

Supporting information

Additional supporting information may be found in the online

version of this article:

Appendix S1. Methodological details of the common-garden experi-

ments and AFLP analysis for phylogenetic tree construction for nine

Manglietia species.

Appendix S2. AFLP data for nine Manglietia species and the out-

group Liriodendron chinense used to construct the phylogenetic tree

(Fig. 2), including the phylogenetic tree inNexus form.

Appendix S3.Data for 13 traits for the nineManglietia species.

Appendix S4. Derivations for the statistical methods used in the

analyses.

Please note: Wiley-Blackwell is not responsible for the content or

functionality of any supporting information supplied by the authors.

Any queries (other than missing material) should be directed to the

corresponding author for the article.

� 2009 The Authors. Journal compilation � 2009 British Ecological Society, Functional Ecology, 23, 1059–1069

Multivariate phylogenetic statistical tests 1069


