 (a) Enter the matrix into S-PLUS.
 (b) What is the probability that a woman in her first pregnancy who is 4 cm dilated will have given birth within six hours?
 (c) How much time after first being 4 cm dilated will 95% of all women in their first deliveries have given birth?

2. Do problem 2.3.

4. Suppose that a matrix P may be decomposed into

 $$ P = UDU^{-1} $$

 where D is a diagonal matrix and U^{-1} is the inverse matrix of U, namely $U^{-1}U = UU^{-1} = I$ where I is the identity matrix. (This decomposition is called the spectral decomposition of a matrix. Matrices which may be decomposed in this way are called diagonalizable. Matrices P and D in this example are similar matrices.)

Find an expression for P^n.

5. Consider the transition matrix

 $$ P = \begin{bmatrix}
 0.8 & 0.2 & 0 & 0 \\
 0 & 0 & 0.5 & 0.5 \\
 0.5 & 0.5 & 0 & 0 \\
 0 & 0 & 0.2 & 0.8
 \end{bmatrix} $$

 Use the function `eigen` in S-PLUS to decompose $P = UDU^{-1}$ as in the previous problem.

 > e <- eigen(P)
 > U <- e$vectors
 > Uinv <- solve(U)
 > D <- diag(e$values)

 (a) What is $\lim_{n \to \infty} D^n$?
 (b) What is the exact expression of $\lim_{n \to \infty} P^n$?
 (c) What is the exact expression of $\lim_{n \to \infty} \pi^{(0)} P^n$ where $\pi^{(0)} = (1, 0, 0, 0)$?
 (d) Find a vector π such that $\pi P = \pi$.
6. For the gambling problem in lecture where the initial stakes are \(a = 1 \) and \(b = 5 \) and the probability that \(A \) wins a single round is \(p = 1/6 \), find the expected number of times that \(A \)'s fortune is two before the game ends. (You may solve this numerically or analytically.)

7. For the fish bowl problem, 2.19, classify each state as recurrent or transient when there are five fish in the bowl initially.

8. (a) The integers 0, 1, 2, 3, 4 are written in order around a circle. You begin at 0. At each time step, you are equally likely to move clockwise or counter-clockwise one position. Find the period of each recurrent class.

(b) The integers 0, 1, 2, 3, 4, 5 are written in order around a circle. You begin at 0. At each time step, you are equally likely to move clockwise or counter-clockwise one position. Find the period of each recurrent class.