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Abstract

This paper poses the problem of estimating and validating phylogenetic trees in statistical terms. The problem is hard enough to

warrant several tacks: we reason by analogy to rounding real numbers, and dealing with ranking data. These are both cases where,

as in phylogeny the parameters of interest are not real numbers. Then we pose the problem in geometrical terms, using distances and

measures on a natural space of trees. We do not solve the problems of inference on tree space, but suggest some coherent ways of

tackling them.
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1. Introduction

I will present a statistician’s view of some of the

difficulties biologists have had to overcome in dealing

with the phylogenetic analysis of DNA sequences. In

addition to ‘‘noise’’ of various kinds, the foremost

difficulty is the number of conflicting signals contained

in sequence data, many characters conflict with each

other in terms of phylogenetic information. We will see

that one possible solution is to let the output of such

analysis be distributions on the space of possible rooted

binary trees, rather than a unique tree. Distributions on

trees are also useful for formulating the Bayesian

perspective as well as for constructing confidence

regions in a frequentist sense. One barrier to such an

approach has been that distributions can be difficult to

represent or summarize. Publication standards in the

biological journals have dictated the presentation of a

unique tree with ‘‘Bootstrap values’’ on the branches to

try and give an indication of how sure one is of that

particular edge. Statistical procedures have been used in

other situations to address such difficulties. In particu-

lar, basic ingredients such as distances and probability

distributions remain available, even if the classical

mean-variance summaries are harder to define.

The statistical approach developed below allows for a

seamless extension to consensus and supertree problems

that are currently a preoccupation in the phylogenetic

literature (Sanderson et al., 1998; Page and Holmes,

2000).

There have been long and painfully contentious

polemics in the literature on the ‘‘right’’ method for

estimating a phylogenetic tree given a DNA sequence

(Kluge and Farris, 1969; Farris, 1983; Felsenstein,

1983). Section 2 shows that the statistical perspective

sees the differences between maximum likelihood,

maximum parsimony and distance-based methods as

much more a matter of ‘‘degrees of freedom’’ allowed in

the model than a matter for religious wars.

1.1. The one tree?

It seems that the biologist’s dream of a unique ‘‘tree of

life’’ for all the genomes and all species is not going to be

realized as such. When molecular data started to become

available, the hope was that the conflicting picture

induced by morphological data would be clarified and

there would emerge a unique, correct ‘‘species tree.’’

Nothing so simple has occurred. Even when each gene is
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taken separately, the data are difficult to coax into a

unique tree.1 Taken together the genes do not

currently tell a clear story and definitely ‘‘The one

tree’’ dream does not prevail (see Penny and Holmes,

2001, for some actual examples). Variability in this

context has often been perceived as noise. In fact, it may

be source of information if it is not eliminated too

quickly. Trees can still be considered as a most useful

unit of summary information and the best coding for

each gene.

Statisticians only find this natural: what set of

measurements concur in real data? Variability is the

rule, not the exception. The study of the variability

provides additional information. Statisticians have

long elaborated methods for dealing with such varia-

bility both with the objective of answering precise

questions through hypothesis testing and decision

making as well as providing confidence regions

instead of unique values.2 Suppose data is summarized

by a set of different trees as suggested by a set of

different genes. Analyzing these, the new data are trees

themselves. Much can be gleaned by analogy to other

statistical problems, however, the very simple statistical

algorithm:

1. estimate the parameter,

2. find the sampling distribution of the estimator

needs a sophisticated viewpoint as we venture

away from the real line and all that is known in the

classical paradigm of real parameters and real-valued

vectors.

Phylogenetic trees have both a discreteness and a

complexity that justify recourse to quite a battery of

tools from statistics and geometry. We will investigate

alternatives to simulation studies to access the intricacy

of the various challenges raised by phylogenetics. We

also emphasize using the correct terminology for various

concepts. This helps find statistical resources on the

internet or elsewhere where similar issues have already

been addressed, instead of having to make up a theory

from scratch every time.

1.2. Rounding

There is a tension between discrete combinatorial

objects that are the trees as they define the branching

order of the taxa and a continuous space of metric trees

that come with edge lengths. Combining the combina-

torial trees themselves seems to give better answers than

using all the data combined to build just one tree. There

is a tension in the choice of when the tree building steps

should occur. Let us take a similar but simpler situation

where this occurs.

Take the example where the parameter of interest is

known to be integer mAN (number of taxicabs in

Barcelona), we seek to find an estimate #m for m: The

data are measurements X ¼ fx1; x2;y; xkg; maybe

estimates from various authorities, gas stations, taxi

companies, each of these observations might be either

already be integer, or might have come from some sort

of group average (with groups being of different size

n1;y; nk), in which case it need not be an integer but

more generally may be real. One can imagine various

procedures for estimating m:

* Taking the weighted arithmetic average of various

estimates is optimal under a parametric approach3

but it will not give an integer. A frequentist may just

round %x to the nearest integer.
* A completely nonparametric approach might be to

take the median value, few would take the mode, as

there are probably few repetitions.
* What will a Bayesian do? With no informative

prior, one could put a uniform prior point mass on

a basis of a realistic range of possible numbers, say

1000–10,000, then use the data to update the prior,

making some distributional assumptions along the

way.
* If the data given are the successive taxicab numbers

Y ¼ fy1; y2;y; yng noted by a traveler, taking the

maximum yi will automatically be downward biased,

and several authors have suggested schemes for

reducing such bias (Lo, 1992).

If the measurements themselves do not come in as

integers, but as real numbers, is it better to start by

rounding them and then combine them into a mean or is

it better to use all the information by directly computing

the mean? Some authors have studied the problems

involved in such a grouping of data and (Lehmann and

Casella, 1998, p. 140) give an account of how to use the

fact that one knows that a parameter is a integer with a

normally distributed noise, as for as instance in

chemistry (Hammersley, 1950). Several papers followed

up on Hammersley’s study of integer-valued parameters,

Hammersley himself showed that the variance of the

rounded mean is exponentially small. A discussant of

1Maximum likelihood estimation often provides indistinguishably

close likelihoods (Steel, 1994), thus making the choice of a unique tree

impossible. In parsimony-based methods, finding several most

parsimonious trees is quite common.
2There is only one value for the speed of light, but there were many

measurements, they even had disjoint confidence intervals, Youden

(1972).

3Averages are justified by the parametric assumption of the bell-

shaped curve. They are also nonparametric method of moments

estimators, valid for all distributions with a mean.
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the paper points out that efficiency4 may not be the right

criteria for comparing estimators. Even in this simple

problem, there are several solutions to the statistical

estimation problem. One can imagine that the much

more complex tree problem is not going to be easy to

settle.

The question of how data should be grouped when

estimating an integer has also given rise to substantial

discussions. This is of interest here because it is

analogous to the discussions regarding the ‘‘total

evidence’’ controversy in systematics (Page and

Holmes, 2000, Chapter 8 or Page, 1996). Should all

the data be combined into one long sequence and one

tree built or should the information be cut into

functional parts, each part then producing a tree and

those trees then combined using some averaging or

consensus method? In statistics, combining all the data

into one sample is known to decrease the bias and make

the estimation of the estimator’s variance harder. The

same tension occurs here with a more intricate bias-

variance tradeoff. When doing nonparametric regres-

sion for image analysis with a large number of possible

features, Amit and Geman (1997) noticed that for

training set data, where the response is known, taking

subsets of features, making the trees and then averaging

them to get a final model, performed better than using

all the features at once. This is also the heuristic behind

contemporary statistical methods called bagging (Brei-

man, 1996).

1.3. Finding tree summaries for DNA-data

When dealing with integers under very weak assump-

tions, we can usually give a confidence interval

surrounding the %x and a discrete probability mass to

the few integers contained in the interval. This helps

mitigate the discreteness of the parameter and the

averaging process. The estimate has a different state

space than the final parameter. This is unimportant and

will also happen for trees.

The essential ‘‘rounding’’ procedure dealt within

phylogenetics is the replacement of one functional

stretch of DNA (usually a gene) by the gene tree.

This is obtained by estimation according to a

treebuilding mechanism chosen by the biologist

depending on personal preferences. After giving some

statistical pointers to how to compare these different

estimation mechanisms, we look at how to assess the

estimate with confidence statements, either frequentist

or Bayesian.

In order to formulate the problem in slightly more

precise terms, we will give details about the two essential

components in the statistical setting, the data and the

parameter space.

1.4. The data

Given an observed data set made on s species and k

genes each of nk characters we may obtain a set of k

trees (or networks) and even more (when one gene

points to several trees). The data are sequences of

DNA or amino acids, one for each species, having

been aligned previously.5 We thus decompose the

problem sequentially. For simplicity’s sake, the aligned

sequences will be considered of equal length thus

providing a matrix-block, for which each column is

often called a pattern or a character. Below is a little

artificial example

Homo G A T A C C T G G

Pan G A T G C A T G G

Gorilla A C T G C C T G G

Orang G C T G T A T G G

Lemur A C T G T A A G G

Rana A C A G T A A T C

Biologists then distill the data into frequencies for

each column pattern, often called the spectrum (see Page

and Holmes, 2000, Chapter 5) losing the spatial

information about the differences between mutation

patterns in different zones. For most biologically

meaningful models, this constitutes another loss of

information. For instance, the second and sixth column

are said to be incompatible, because they define

incompatible partitions, the second column grouping

Homo and Pan together, whereas column 6 separates

them.

Unless the data are perfectly treelike, even the case of

one gene-sequence will contain incompatibilities that

can either be treated as noise or information. For

instance if the characters can be considered as a mixture

of two different treelike processes, they may conflict, but

not necessarily be noisy. Each column defines a partition

of the taxa into at most four groups. In most cases, the

partition is a dichotomy, and each character can be seen

as defining an edge in Fig. 1.

Seen this way, combining characters is the same as

combining trees and an associative methodology might

be more coherent if the actual sequences are not

4For statisticians, an estimator is efficient if its variance is the

smallest possible.

5Sankoff and Cedergren (1983), Schwikowski and Vingron (1997),

Hein (1989) have proposed procedures for making the tree and the

alignment at the same time, and this makes a lot of sense (see a

complete review in Durbin et al., 1998).
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meaningful entities. If they are, one also has the option

of associating not one single tree but a set of trees with

weights, called a mixture or distribution of trees.

The reverse operation of coding each edge by a binary

character was initially suggested by Farris (1973).

Brooks (1981) used it as a way of transforming a tree

into a set of binary characters and then combining trees

(host and parasite) or combining a tree and other

information (biogeographical or morphological). This

same coding was used earlier in network addressing by

Graham and Winkler (see Van-Lint and Wilson, 1992,

Chapter 9 for a nice summary). It is natural to try and

apply some of the mathematical development from

coding theory to biology.

The inverse problem6 has been treated in a parametric

framework by Steel and Szekely (1999, 2002) who

consider this as the inversion of a random function.

1.5. A first transformation: from data to distances

Whichever method is used to go from the aligned

sequences to the phylogenetic trees, the basic informa-

tion between sequences is then coded into distances. The

changes that are shared by a monophyletic group in the

tree, called a clade, are called homologous substitutions.

They provide the information that makes tree-building

work. If the system were perfect, there would only be

just enough substitutions to define the clades and never

any ‘multiple hits’ or changes occurring on the same

characters several times. This is exactly what the code of

Brooks–Graham–Winkler does. Biology is much mes-

sier and there are several difficulties that the estimation

mechanisms have to address:

* Some of the changes remain invisible, because a

character mutated and then mutated back. This is

called a reversal.

* Some changes will be invisible because a second

change occurs at the same position, erasing evidence

of the first mutation.
* Some changes occur in parallel on different branches

of the tree, making nonmonophyletic taxa seem more

similar than they actually are. This is called

parallelism or convergence.

One way around these problems is to give a

Markovian mutation model and use distances that re-

correct for the number of changes. The classical

mutation models are parametric and vary in the number

of degrees of freedom allowed in the 4� 4 transition

matrix (see Page and Holmes, 2000 or Li, 1997 for

details). The sequences are supposed to be in their

stationary distribution for the transition matrix. Thus,

the characters occur at the root with some probability p:
They are then submitted to possible changes along any

given branch with probabilities depending on the length

of those inner edges or branch lengths.

Given a tree and a mutation matrix, if the probabil-

ities of mutations are all the same in any branch in the

tree, the distribution of the sequences will be stationary

and all the same. This is rarely observed in practice.

Different taxa seem to have different stationary

distributions for the nucleotides. Various suggestions

for more believable models have been included into

different procedures:

* Hidden Markov model for rate variation along the

sequences (first introduced by Yang, 1995; Durbin

et al., 1998 contains a review of these models in even

wider contexts than phylogeny).
* A Gamma distribution of rate variation along

sequences is used with much success by Yang

(1994).
* Fitch and Markowitz (1970) introduced the

concept of concomitantly variable codons (covar-

ions), which asserts that at any one point in time and

in any one branch, there are constraints on how many

amino acid can be replaced. Covarion models are

used for rate changes as in Lockhart et al. (1996,

1998).
* LogDet distances allow for different stationary

distributions for different taxa in Lockhart et al.

(1994) and Lake (1994).

2. Choosing an estimation method

The data are ‘‘rounded’’ off into trees by an

estimation process that chooses trees according to one

of several criteria (see Holmes, 1999 for a review):

Fig. 1. One edge defined by the first column of the above data.

6Going from an observed distribution of characters to a tree.
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1. Closest tree (by a spectral analysis developed in

Hendy, 1991).

2. Maximum parsimony.

3. Maximum likelihood.

4. A difference between the distances along the tree and

the original distances between sequences.7

From a statistical perspective, the first two methods are

nonparametric—they do not pre-suppose a finite dimen-

sional parametric model, but are based on optimizing

potentially infinite dimensional criteria, in the same way

nonparametric density or regression methods minimize

a smoothness penalty as we will explain in Section 2.1.

Likelihood estimation postulates a finite dimensional

model, here this is given by specifying the mutation

transition matrix (although it seems common practice to

both estimate the mutation model parameters and the

tree from the same data without further ado).

Distance-based methods are in fact semiparametric.

They use a parametric model for the estimation of

distances between sequences which allows for correc-

tions for multiple hits on a same character using the

Jukes-Cantor, Kimura, or F81 models and a nonpara-

metric hierarchical clustering heuristic to build the

actual tree.

In Fig. 2, we schematize the three main approaches as

a continuum from the right where there are infinitely

many parameters to the left where the parametric model

is of a small fixed dimension. Then Jukes-Cantor is the

leanest and meanest with only one parameter for the

mutation model, then the Kimura 2-parameter model.

As the mutation model is made more flexible, the

number of parameters increases to six in the General

Reversible model. We can increase further the number

of parameters by allowing different mutation rates in

different parts of the tree. The two approaches,

parametric and nonparametric, meet where the number

of parameters overtakes the amount of information

available in the data. This picture has been formally

justified in the case of binary characters by Tuffley and

Steel (1997)’s observation that parsimony and likelihood

estimates coincide when rates are allowed to differ on

different edges of the tree for each combination of edge

and character.

As a community, statisticians are less polarized on the

absolute choice of a method and do not currently have

the acrimonious debates present in the biological

literature on which method to use for the estimation

procedure. The best estimation procedure depends on

the data and question at hand. Further, theory often

shows many different estimation procedures lead to the

same answer, at least to good approximation. Statisti-

cians are pragmatic, there is no unique right answer to

which method to use. If the study is in the exploratory

stages, with little knowledge of the model, a nonpara-

metric procedure is preferred; it will be robust and

informative. If sufficient knowledge of the model

becomes available8 more precise parametric models

may be used. These may incorporate commonly

accepted mutation rates for those particular genes.

Using the same data to estimate the mutation rates

and then using them on the tree is a tricky statistical

problem often confronting those who practice empirical

Bayes (Robbins, 1985).

A lot of energy has gone into comparing the methods

in worst-case scenarios, this is actually quite wasteful,

one really wants a method that works best most of the

time or on average, and in the same context as the actual

data appear. Thus, the enormous discussion on con-

sistency (see Steel and Penny, 2000; pp. 843–846 for a

useful review) should have been minimized, since there

are never infinite data especially relative to the dimen-

sion of the underlying parameter space which is very

large. Other measures of performance seem somewhat

heavy handed: one such index was the probability

rðM;T; yÞ of the method M being right or wrong given

the tree T: As a comparison in the taxicab example

above, imagine scoring #m as either right or wrong. Given

the enormous size of the state space, one can see that such

a clear cut appraisal is not informative, and it seems

much more reasonable to consider the average squared

distance between the true tree and the estimated one as an

analog of the mean square error MSE ¼ Eðy� #yÞ2 that

statisticians routinely use for real-valued parameters. In

our setting this would mean using some distance between

trees dðy; #yÞ and knowing how to define a probability

measure on tree space so as to be able to compute either

the expected value, Edðy; #yÞ2 or from a more Bayesian

viewpoint Epdðy; #yÞ2 with regards to the posterior p:

Fig. 2. The meeting of methods.

7The so-called Distance-based methods.

8Here I am thinking of validation of the molecular clock and

independence assumptions.
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Note that the analysis of even one data set may give a

probability distribution on trees rather than a unique

tree. A different way of dealing with disparity from a

perfect tree may be to propose confidence regions for the

trees or a weighted consensus of the trees compatible

with the data.

More general graphs such as the Splitstree network

championed by Dress et al. (1996); Huson (2000) or

networks as developed in Von Haeseler and Churchill

(1993) and Strimmer and Moulton (2000) are also

interesting alternatives when the data are far from treelike.

Both of these extensions, the probability distribution

on trees perspective and the network graph offer the

advantage of a painless transition from one gene to k

genes.

If we start by considering the combinatorial trees

where only the branching order is of importance, the size

of the space is the first hurdle. If the data set is forced to

fit into only one tree, it will look as if we have an

exponential amount of information in the data. State-

ments a posteriori, such as: we had one chance in the

1012 to obtain this tree among all trees are definitely

misleading and are of the same caliber as the blade of

grass argument.9

2.1. Between parametric and nonparametric estimation

Treebuilders have seemed polarized, at least in the

past, by the likelihood parsimony debate over which

criteria/method is the ‘‘right’’ one. It may seem

surprising that a statistician should also see Maximum

Parsimony as a feasible estimation procedure, however,

it can be seen as a nonparametric statistical estimate, in

spite of the many assertions to the contrary Felsenstein

(1983), Steel and Penny (2000).

From a statistical viewpoint, this is the usual

nonparametric/parametric dilemma. When should one

be using a restrictive parametric model and estimate the

parameters by maximum likelihood and when should a

more flexible approach be taken?

Just to give an example of the differences between the

two methods, think of a regression context, where a

response variable needs to be predicted from some

explanatory variable x; and the scatter plot is given in

Fig. 3.

If there is some prior information allowing for a

parametric model, say: y ¼ ax3 þ bx þ c þ e; then a

quadratic is fit to the data, or maybe a cubic or other

polynomial. On the other hand, the data may be fit by a

nonparametric smoother defined by minimizing

PRESS10 + non-smoothness penalty. The smoothness

penalty is important, without it the final fit interpolates

the data perfectly. Of course the problem is that it will

not extend well to predict a response from a new x

(Figs. 4–6).

Fig. 3. Scatter plot.

Fig. 4. Cubic polynomial.

Fig. 5. With smoothness.

Fig. 6. No smoothness.

9Suppose I am sitting on the grass and pick out one blade. I can

always ask afterward, what were the chances that I chose that blade?

The chances will be very small given the enormous numbers of blades,

it will not mean anything about that blade, I had to pick one. It is as if

I draw a target around the dart after I threw it on the wall. 10Predicted error sum of squares.
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Of course as the degree of the polynomial increases,

and thus the parametric model becomes more flexible

because it has more parameters it will become closer and

closer to the nonparametric smooth regression curve.

Many are the discussions relevant to this quandary.

Some contributions from theory are surprising: Hodges

and Lehmann (1961) showed that nonparametric tests

were almost as powerful as the best parametric tests,

even if the parametric assumptions were valid. If the

parametric assumptions were violated, the nonpara-

metric tests were still valid whereas the parametric tests

can be wildly off (Lehmann, 1975). But all statisticians

will agree, if the model has already been validated by

previous experiments, parametric modeling is more

powerful (stricto sensu statisticae). However, if the aim

of the study is in any way exploratory, trying to uncover

unexpected mutation patterns, irregularities in the

molecular clock, interspecies differences in DNA fre-

quencies, a nonparametric approach11 is in order, this is

especially the case when in fact the study is aimed at

validating some part of the model, because using the

model would lead to a circular argument.

Having spoken a little about the original data and the

estimation procedures, I would like to pose some of the

problems associated with the very particular structure of

the parameter space. The question ‘‘What are the

chances that this tree is the true evolutionary tree?’’

comes up soon after an estimated tree has been

provided. Unfortunately, this question seems to imply

a likelihood-based framework for many biologists,

especially traditional cladists (Kluge and Farris, 1969;

Farris, 1983). Maximum likelihood estimation with a

finite dimensional parametric model is a choice at the

estimation level that gives a possible answer to this

question. However, it seems to escape many researchers

in the field that this question can be posed in any

framework, encompassing Bayesian posterior probabil-

ity computations as well as validation of a nonpara-

metric model. We will see that to answer this question

we have to define both a notion of distance and a

probability distribution in tree space, but the maximum

likelihood framework is not a pre-requisite.

3. What to do when data are trees?

When summarizing conflicting edges into one tree,

standard practice discards in some sense the characters

that are not compatible with the tree chosen, whereas

these characters could in turn be used to construct

complementary trees or even networks (as in Bandelt

et al., 1995 or Dress et al., 1996) and the data thus would

point to several trees at the same time, so that building a

unique tree from one data set of conflicting sequences

can be seen as a consensus problem. It would seem more

satisfactory to decompose the data into successive

complementary trees, equivalent to providing a distribu-

tion or a mixture of trees as the output instead of a

unique tree. In the same way regression provides a

decomposition into an estimate and a residual.

3.1. Probability distributions on trees

Building a probability distribution on trees is a

complex procedure. We know that choosing optimal

trees cannot in general be decomposed into simpler

problems. This is the essence of what constitutes

computationally intractable problems such as are the

maximum likelihood tree and parsimony tree. Most

biologists agree that the simplest possible probability

distribution on tree space, the uniform distribution is

not relevant, a slightly more realistic one is the Yule

process, see Aldous (2001) for history and some

consequences relevant to balance and depth of phylo-

genetic trees.

Here we are going to give an analog of the

nonstandard splits-and-trees data and look at ways

statisticians have dealt with these difficulties. The

following example involves data that do not belong to

the real line R: Commonly called rank data, these come

from different observers providing rankings for their

preference in chocolates, wine, political candidates, PTA

leaders, etc. In the simplest case, we have permutations

of the same n objects, say if n ¼ 4; x1 ¼ ðc2; c4; c1; c3Þ;
x2 ¼ ðc1; c4; c2; c3Þ;y; xn ¼ ðc4; c2; c1; c3Þ; a little more

difficult but very related, is the case of partial rankings

y1 ¼ ðc2; c4; c3Þ; y2 ¼ ðc1; c2; c3Þ;y; yn ¼ ðc4; c2; c1Þ that
we would also like to summarize. This data actually

occurs in genetics now that gene order data is becoming

available (for a review see Pezner, 2000, Chapter 10, an

application in Blanchette et al. (1999) or for their use in

phylogeny, see Sankoff and Blanchette, 1999).

The ranking data example is a useful analogy because

there are several books (Critchlow, 1985; Diaconis,

1988; Marden, 1995; Fligner and Verducci, 1992) on the

subject of the statistical analysis of permutation data,

with many deep mathematical developments. The

simplest example is Mallow’s model (Mallows, 1957),

defined for rankings obtained from different judges. It

assumes that there is a central ranking in the sense of a

modal ranking. The mode is the value preferred by the

most judges, and suppose that most judges are expected

to have ranking around this central one. The relevant

probability measures here is centered at the mode and11Or a parametric model with a very large number of parameters.
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the probability of a ranking would depend on some

distance to this central value. The probability of a given

ranking is of the form

PðwÞ ¼ Me�ldðw;w0Þ;

where M is a normalizing constant. This will of course

depend on the choice of the center of the distribution w0;

the distance, which can be Spearman’s distance,

Kendall’s or another more refined distance. The para-

meter l fixes how tightly the trees are around w0 and will

thus depend on how refined d is. Of course, the simplest

possible distribution is the uniform provided by l ¼ 0:

(Marden, 1995, Chapter 6) is completely dedicated to

this type of model—often a first approximation because

it supposes so much symmetry in the probability

distribution.

This idea can be used to define a probability

distribution that carries over to the space of all trees

that I will abbreviate T: First, one needs a notion of

central tree t0 for a configuration of trees. It could be the

first tree in the Hadamard decomposition (Hendy and

Penny, 1993) or the majority rule consensus tree of

many bootstraps of the data (Berry and Gascuel, 1996),

or it could be some type of centroid or center of gravity

of the trees, from a statistical perspective it should be an

estimator of the center of the distribution of trees in T:

Second, one must choose a distance between trees

(there are many such distances available see Critchlow

et al. (1996) or Dasgupta et al. for reviews), we will also

see in Section 5 that a continuous geometry will provide

a refined measure of distance that can take into account

both branch lengths and branching patterns. The

probability distribution proposed will be of the form:

for t in Tn; the space of trees with n leaves, let

PðtÞ ¼ Le�ldðt;t0Þ:

For fixed distance and t0; this distribution is said to

belong to an exponential family with l as a parameter.

Exponential families play a special role in statistics

because of the notion of sufficiency, Section 3.2. When

l ¼ 0; we have the uniform distribution, for large l; the
distribution becomes highly concentrated on t0: Of

course t0 and even d can also be treated as parameters.

Many other models and data analytic procedures

have been proposed to analyze ranking data; see the

references above, these happily coexist without con-

troversy in the statistical community. Many can be

carried over to trees.

Before we leave the rank data, I would also like to

point out another similarity with the tree data summary

problem. The ranking world has been plagued by

Arrow’s paradox. Arrow (1963) proves that a ‘‘sensible’’

consensus ranking cannot exist under quite a reasonable

set of required conditions. His work has given rise to a

whole field in economics and political science called

social choice theory. One way economic theorists have

proposed to resolve this difficulty has been to incorpo-

rate a continuum in the space, thus filling in the discrete

rankings and then using geometry to solve the paradox

(see Chichilnisky, 1980; Baryshnikov, 1997). The same

paradox pertains in phylogenetic consensus problems as

proved in Steel et al. (2000). We will see that the

geometrical representation and metric trees developed

below provide just such a filling-in scheme, with the

same consequences: we will have clear geometrical

notions of consensii and supertree at our fingertips.

Now we will come back to actually trying to

summarize a distribution on trees, a Bayesian posterior

distribution, or a distribution that could be used to build

a frequentist confidence region. In order to do this

rigorously, a statistician needs the following baggage, a

concept that specifies how to replace a whole distribu-

tion by a few summaries, the sufficient statistics.

3.2. Sufficiency

Roughly, sufficiency is a statistical property of a

statistic used to estimate a parameter, that ensures that

if the problem presents certain symmetries, one can

ignore part of the original information. Surveys about

sufficiency can be found in Diaconis (1992) or Lehmann

and Casella (1998). We present the simplest possible

sufficiency model, which most people will recognize. We

consider the space of binary n-tuples with probability of

having a 1 as the parameter p of the probability

distribution on X ¼ f0; 1gn: Do we have to keep all

the complexity of the observations as x ¼
ðx1;x2;y; xnÞ ¼ ð0; 1; 0; 0; 0; 1;y; 0Þ? or can we reduce

x to t ¼ x1 þ x2 þ ? xn ¼ 0þ 1þ 0þ 0þ 0þ 1?þ 0:

In this case we observe one such x and want to estimate

y where pyðxÞ ¼ ytð1� yÞn�t: Here, the probability at x

only depends on t and we can compress the information

in x down to t:

Formally, S :X-Y is called sufficient for a family of

probability distributions defined on X if the conditional

probability

If TðxÞat; PðxjTðxÞ ¼ tÞ ¼ 0 and if TðxÞ ¼ t;

PðxjTðxÞ ¼ tÞ is the same for all PAP:

This provides significant decrease in the complexity of

the problem. It can also be seen as an invariance

property (see Diaconis, 1992). If the problem is

parametric,12 then the definition of sufficiency just boils

12 In the sense that the family P is determined by a finite dimensional

parameter y;P ¼ fPy; yAOg:
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down to the fact that

PyðxjSðxÞ ¼ tÞ

is independent of y: Thus, the parameter y of the model

only makes contact with the data through the function

S: This can be shown to be equivalent to the existence of

two functions CðtÞ and byðtÞ such that

PyðxÞ ¼ cðxÞbyðtÞ ¼ cðxÞbyðSðxÞÞ:

This is called Fisher’s factorization theorem.

In our example of the exponential family model

defined in analogy to Mallow’s model, the sufficient

statistic is

Xk

i¼1

dðti; t0Þ ¼ Sk

for a collection of k trees and a central tree t0: So the

computations of an estimate of y will only depend on the

distances between trees. This reduces the data to one

number Sk: Of course, without the assumption of the

symmetrical distribution sufficient statistics can be more

complex. For example, to estimate the mean of a

distribution on ½0; 1� with no parametric assumptions,

the sufficient statistic is the full set of ordered observa-

tions.

It is to be noted that if we are given a distribution on

trees such as the bootstrap distribution obtained either

by nonparametric resampling or parametric Monte

Carlo, it is often summarized by just the frequencies of

edges. These numbers collected in a vector, do not

constitute a sufficient statistic for the complete boot-

strap distribution. This has been implicitly understood

by several authors who work on trees. For instance,

Penny and Hendy have proposed a nearest neighbor

(NN) bootstrap which counts how many times an edge

or a neighboring split occurs (for an example of its use

see Cooper and Penny, 1997). We will see later that the

geometrical enhancement of the mathematical picture of

tree space make such a NN bootstrap natural.

Different models for the distribution will

have different sufficient statistics. Sometimes the ex-

ponential model going through a certain number of

statistics chosen to be the essential summaries is

built. For instance, one could take the average graph

distance Dn of a tip to the root and the height of the tree

Hn and use those as sufficient statistics, the model would

then be:

PðtÞ ¼ K expðl1Dn þ l2HnÞ

(See Diaconis, 1989 for many examples in the rankings

data problem.) For a k dimensional parameter y with

sufficient statistics S1;y;Sk)

PyðtÞ ¼ exp
X

yjSj

� �

Just considering the clade frequencies as a first order

approximation can be justified by considering another

decomposition of a set of trees X by a Fourier-type

analysis in tree space.13

Diaconis and Holmes (1998, 2001) show that the

space of all combinatorial trees on n leaves Tn is

equivalent to the quotient of the symmetric group on

2ðn � 1Þ by the subgroup B2ðn�1Þ that leaves the pairs

fð1; 2Þð3; 4Þð5; 6Þyð2n � 3; 2n � 2Þg invariant:

This is called the matching representation of trees where

the tree is replaced by all its sibling pairs, including the

inner nodes.

This representation provides a useful way of enumer-

ating all trees without using a branch-and-bound

algorithm. The passage from one tree to the next is

done by choosing two sibling pairs and switching one of

them. Such a path through all trees is called a

Hamiltonian path or a Gray code. In computational

applications, it has the advantage that large parts of the

tree remain unchanged. However, the distance induced

on the number of such moves, although simple to

compute is not biologically natural.

The decomposition of functions on tree space is given

in Diaconis and Holmes (1998). It is a direct sum

decomposition of all functions on tree space into

subspaces S2l:

Here, the sum is over all partition l of n � 1; 2l ¼
ð2l1; 2l2;y; 2lkÞ and S2l is the associated irreducible

representation of the symmetric group G2ðn�1Þ: The first

few terms in the decomposition can be interpreted as

follows:

* For l ¼ ðn � 1Þ;S2l is the space of constant func-

tions. The projection onto S2l counts the number of

trees in the data set.
* For l ¼ ðn � 2; 1Þ; the projection onto S2l counts the

number of times each particular sibling occurs.
* For l ¼ ðn � 3; 1; 1Þ; the projection onto S2l counts

the number of times the sibling pair ði; jÞ occurs at the
same time as the pairs ðk; lÞ:

* For l ¼ ðn � 3; 2Þ; the projection onto S2l counts the

number of times the sibling pair ði; j; k; lÞ occurs as a
clade.

It is in this sense that the sibling pair frequencies are a

first order approximation to the complete distribution

on trees. It would be useful to be able to say what

13This Fourier analysis is not the same as that proposed by Hendy

and Penny (1993) and Hendy et al. (1994).
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proportion of the information contained in the data set

can be reconstructed just by the sibling pair counts. This

Fourier-type decomposition follows closely the analysis

of ranking data provided by Diaconis (1989). It is most

useful for large sets of trees on a small number of

species, and provides the basis for the theoretical

analysis of times to convergence for the simple random

walk on tree space induced by doing transpositions on

the matchings (Diaconis and Holmes, 2001).

4. Confidence statements, Bayesian distributions and the

need for distances

Trees are high-dimensional parameters, even if they

do not lie naturally in an Euclidean space. The best

frequentist confidence statements that can be made

about them are ones that rely on the notion of a

confidence region Ra defined by statements of the form:

PðtARaÞ ¼ 1� a:

Much interest in the biological literature has concen-

trated on ‘‘stability’’ of the estimated tree and it often

appears that the question biologists are trying to answer

with the bootstrap is one of continuity14 rather than an

inferential one.

In order to discuss the continuity-sensitivity issues,

various Bayesian prior and posterior distributions, and

the probability measures on tree space that may be

relevant to biologists, we have to decide on a satisfac-

tory metric on trees.

If enough prior information is available, it makes

sense to use the Bayesian paradigm. This was already

suggested by Edwards (1970), then by Wheeler (1991),

and more recently implemented by Li et al. (2000), Mau

et al. (1999) and Yang and Rannala (1997). They have

provided Bayesian algorithms, all set in the parametric

framework with posterior probabilities computed using

Monte Carlo Markov chains on tree space. Huelsenbeck

and Ronquist (2001) provide some software for actually

using these ideas.

Finding a unique resulting tree has its own share of

difficulties, the mode of the posterior distribution has

been suggested Steel and Penny (2000) mainly for its

simplicity,15 however, a more satisfactory result would

be a posterior confidence region. This would be a

geometric representation of a region containing 95% of

the posterior probability. To avoid uniqueness pro-

blems16 usually the smallest region containing 95% is

used.

A prior distribution on trees could incorporate the

information that an outlier was included to root the tree,

thus, we would put a very high probability on the space

of trees with an outlier as an outgroup.

A current challenge would be a semiparametric

Bayesian method. Such methodology could use Mal-

low’s model extension as in Section 2, with a prior

distribution for t0 and l; or could be given by a more

general exponential distribution with statistics such as

those suggested by Aldous (2001) that could incorporate

statistical data17 collected from large databases of trees

such as Sanderson et al. (1994).

More flexible priors can be generated using geometric

priors defined using a sensible notion of distance

between trees. Let us look at the most useful representa-

tion for trees; the geometrical one.

5. Geometrical representation

We have seen that the definition of a distance and a

central tree enables a symmetric exponential probability

distribution to be defined. In this section, we are going

to fill in the set of combinatorial trees, a discrete set, so

that various notions of averages can be more refined

than in the simple consensus methods. This work is

presented in its mathematical technicality Billera et al.

(2001) and some of the applications to biological

problems are given in Billera et al. (2002).

We start by explaining intuitively what we would like

our geometrical representation to provide. For each

different tree, a separate region would be contained by a

boundary (Fig. 7).

The boundary represents an area of uncertainty of the

exact branching order. Two neighboring regions repre-

sent neighboring trees. The notion of ‘‘neighboring’’ we

have chosen is NN interchange (nni), the rotation

distance in Tn: This seems to be the most widely

accepted neighborhood relation, although other dis-

tances can also be used to define a metric tree space in

the same way. The natural way of varying closeness to

the boundary or unresolved tree is to make the edge

lengths e decrease linearly in the direction of the

boundary. This provides a geometrical justification for

edge lengths which are not biologically meaningful such

as the number of mutations or a ‘‘time span’’ as is the

case for trees built under the Markovian models with
14 In the mathematical sense, continuity of an estimator means that

small changes in the data never result in ‘‘large jumps’’ of the

estimator.
15This is a majority rule type consensus.

16Similar to the shortest confidence interval, symmetrical confidence

interval, and so on.
17Such as measures of tree height, tree balance, etc.
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constant mutation rates such as Jukes-Cantor or

Kimura models. We will work with rooted trees.

There are three binary semilabeled trees on three

terminal nodes (leaves). We arrange them along three

half lines meeting at the origin which represents the star

tree (Fig. 8).

In fact, to make our geometrical space slightly

simpler, we restrict ourselves to trees with finite branch

lengths, here taken to be in ½0; 1�: By standardizing the

combinatorial trees to all having edge lengths one, we

can build the space of trees with n leaves edge lengths as

the product of a cube complex Tn that represents the

trees without the pendant edges and the pendant edges

½0; 1�n:
For rooted binary trees with four leaves, T4 is a set of

squares pasted together by two edges each. Each square

corresponds to a different branching order and the

position within the square is determined by the

coordinates, each representing one of the two inner

edge lengths (Figs. 9 and 10).

Note that the boundary is shared by two other trees.

The pendant branch lengths do not appear in this

geometrical representation. To obtain a complete

coordinate system of binary semilabeled trees, one

would have to take the product of T4 with ½0; 1�4:
All quadrants have to have the star tree as one of their

corners. So the star tree will have 15 neighboring

quadrants. This generalizes to Tn and explains that at

the star tree, the origin of our space, there are

exponentially many cubes attached. On the other hand,

a tree with only one edge is represented as a segment

boundary to three quadrants, thus its neighborhood will

contain three ‘‘flaps.’’

Fig. 9. Trees with four leaves in the same quadrant.

Fig. 10. Three neighboring quadrants.

Fig. 8. Trees with three leaves meeting at the star tree point.

Fig. 7. Two tree regions separated by a boundary—a degenerate tree.
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In fact, if we have a four-leafed tree, but are sure what

the outgroup is, the relevant space is the space of rooted

trees on three leaves. This embedding is shown

geometrically in Fig. 11. Zharkikh and Li (1995) did a

simulation study to find how many trees neighbor a

given tree. This has consequences for the quality of the

bootstrap estimate as is also pointed out also in Efron

et al. (1996). We can see that for a tree on four leaves/

tips, there can be either no neighbors except trees with

the same branching pattern, two neighboring combina-

torial trees as in Fig. 13, or 14 neighboring trees (if all

the edges are small and we are close to the star tree)

(Fig. 12). Of course, for a tree with only two inner edges,

this is the only possible way of having these two edges

small. This same notion of neighborhood containing 15

different branching orders applies to all trees on as

many leaves as necessary, but who have two contiguous

‘‘small edges’’ and all the other inner edges significantly

bigger than 0. This picture of tree space frees us from

having to use simulations to find out how many different

trees are in a neighborhood of a given radius r around a

given tree. All we have to do is check how many

contiguous edges in the tree are smaller than r; say there

is only set of size nr; then the neighborhood will contain

ð2nr � 3Þ!! ¼ ð2nr � 3Þ � ð2nr � 5Þ � ? 3� 1

different types of trees. Thus, a point very close to the

star tree at the origin will have an exponential number of

neighbors. This explosion of the volume of a neighbor-

hood at the origin provides for interesting math

problems.

The last element necessary to make a rigorous picture

of tree space is the probability measure. We can define

such a measure through its probability density or

likelihood. A picture of the likelihood contours in the

four leaf case is available through the use of the

polynomials developed by Chor and Snir (2002),

however, the problem of representing more general

probability measures on this space is still open.

6. The philosophical question of coherence

A more difficult issue is that of overall coherence in a

study, not in the formal statistical sense of de Finnetti,

but a more pragmatic one of mixing oranges and apples.

Here is an example.

Fig. 12. One tree in the neighborhood.

Fig. 13. A tree with two neighbors.

Fig. 11. Embedding of T3 in T4:
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From a statistical viewpoint, the use of the multi-

nomial bootstrap resampling procedure in the maximum

likelihood estimation setting is not coherent. Given a

parametric model, one should use that model both at the

estimation and the validation stages of the analyses.

Thus, the parametric bootstrap as implemented in Seq-

Gen and Treevolve by Rambaut and Grassly (1997) is

coherent when doing a maximum likelihood estimation.

A justification for using the multinomial bootstrap may

be for more general model testing, but this leads to

confusing conclusions because the alternative is not

explicitly defined.

Can we allow ourselves to switch paradigms as we

deem fit? Starting with a parametric model for evolu-

tion, such as Jukes-Cantor, does it make sense, after a

tree has been estimated, to switch to a different

paradigm at the validation stage and use a nonpara-

metric bootstrap to compute confidence levels on the

tree? This is an open problem in statistics as well as in

phylogenetics. Some statisticians often switch paradigms

in the middle of their studies, from parametric to

nonparametric, usually what can be actually proved is

that if the parametric model is correct there is a loss in

power (sensu statisticae strictu) when switching to a

nonparametric procedure. Other statisticians abhor this

paradigm switching; see the discussion to Efron (1986)’s

Why isn’t everyone a Bayesian?

As to the mixture Bayesian-frequentist, empirical

Bayes (Robbins, 1985, 1980, 1983) is a typical example

of loose boundaries that exist when choosing different

paradigms at different stages of an analysis. The current

resolution within statistics of the problems posed by

Empirical Bayes goes as follows; frequentists treat it as

just another method to be evaluated by its long-term

frequency. Bayesians react with amusement or horror.18

6.1. Validation procedures and their implementation

There has been much interest in the stability of an

analysis, and much of the use of the bootstrap in

phylogeny is aimed at answering the question: If my data

were slightly perturbed, how much would the estimated

tree have changed’? This poses the question of the

continuity of the estimator used rather than the broader

question of inference to a larger possible population of

characters.

Little progress has been made on the robustness of the

results to the underlying assumptions implicit in various

methods, however, there are many simulation tools

available that can be combined to provide useful

approximate statements.

6.2. Bootstrapping phylogenies

One of the simulation tools most commonly used has

been the bootstrap, introduced to the field by Felsen-

stein (1985).

In the statistical literature, the theorems that justify

the use of the bootstrap usually state that the distribu-

tion of the distance between the true parameter and the

estimate can be well approximated by the distribution

between the estimate and the bootstrap resampled

estimate, something that can be summarized as

DistributionðdðT; #TÞÞEDistributionðdð #T; #TnÞÞ:

However, most of the theoretical work involves an

assumption of independent, identically distributed vari-

ables and some strong assumptions on the properties of

the distance. No actual theory in the phylogenetic

context exists at present, although referring to theore-

tical arguments in other cases does provide useful insight

into the most sensible simulations to undertake.

As pointed out in Efron et al. (1996), the bootstrap

performs better when the number of neighboring trees is

not too large, the calculations in the previous section

give the indication that this will be linked both to the

number of continguous small branches and the prob-

ability measure on the tree space.

Care should be taken to simulate problems of a

comparable size as the real data, as conclusions from a

study on four-leaved trees may not be generalized to

trees with hundreds of leaves pointed out by Hillis’

study of the effects of long branch attraction have

shown (Hillis, 1996). We conclude with three key points.

* The bootstrap procedure as used by statisticians

supposes that the observations are independent. That

means that the columns should be independent of

each other. Hidden Markov models secondary/

tertiary structure models seem more believable. An

alternative to the independent bootstrap should thus

be preferred, PHYLIP Felsenstein (1993) and Seq-

gen Rambaut and Grassly (1997) are tools that cater

to these extended dependent models.
* Covarion models lean towards models where the

observations (columns of the sequence matrix) are

not identically distributed either but depend on a

covariable. In their studies, a binary one, that could

be either on or off. This, is also modeled by

‘‘hotspots’’ along the sequences, see Tang and

Lewontin (1999).
* For a practical implementation of Bayesian proce-

dures, providing posterior probabilities using Monte

Carlo Markov chains, Huelsenbeck and Ronquist

(2001) is a useful tool, that needs to be extended to

more general models.18Dennis Lindley wrote ‘‘there is no less Bayesian thing to do!’’
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7. Summary

Staying within a coherent framework runs counter

some biologists’ method of multitasking their assump-

tions in parallel. Many like to keep all eventualities

concurrently in mind. This does not allow for a linear

analysis, and unless more biologists decide to carry forth

their analyses within a Bayesian paradigm, giving each

contingent assumption a prior probability and then

looking at the posterior probabilities, this leads to very

confusing conclusions.

Perhaps the biggest change in statistics over the last 20

years has been the decrease in the use of p-values. Tukey

and his co-workers in Exploratory Data Analysis (see

Tukey, 1975) have shown us the importance of keeping

as much of the data in mind as possible. A picture is

worth a thousand words, and geometry has much to

offer in this complex multidimensional analysis of DNA

sequences through trees, graphs and their assorted

confidence regions. As remarked by Felsenstein (2001),

there are far more interesting problems than statistical

consistency to address at this point.

Some open problems for my mathematically inclined

colleagues would include

* Giving an indication of the order of magnitude of the

number of simulations necessary in the MCMC-type

methods to ensure that the stationary distribution is

attained.
* Study of robustness of the conclusions of a phyloge-

netic analysis to the assumptions would help calibrate

the level of detail within which one should stay, given

that uncertainty is involved at every level of such a

complex analysis.
* Can we extend some of the work on trees to

networks? This would be useful, both for analysing

regulatory networks, but also would enable one to

test whether data are actually treelike.19

Acknowledgments

I would like to thank all the participants of the Doom

2001 New Zealand phylogenetics meeting for their

stimulating discussions and Sam Karlin for his patience.

Hua Tang, Persi Diaconis, Joe Felsenstein and the

anonymous referees carefully read previous versions of

this piece and provided invaluable references and

corrections.

References

Aldous, D., 2001. Stochastic models and descriptive statistics

for phylogenetic trees, from Yule to today. Statist. Sci. 16,

23–34.

Amit, Y., Geman, D., 1997. Quantization and recognition with

randomized trees. Neural Comput. 9, 1545–1588.

Arrow, K., 1963. Social Choice and Individual Values. Wiley, NY.

Bandelt, H.J., Foster, P., Sykes, B.C., Richards, M.B., 1995.

Mitochondrial portraits of human populations using median

networks. Genetics 141, 743–753.

Baryshnikov, Y.M., 1997. Topological and discrete social choice: in a

search of a theory. Soc. Choice Welf. 14, 199–209.

Berry, V., Gascuel, O., 1996. Interpretation of bootstrap trees:

threshold of clade selection and induced gain. Mol. Biol. Evol.

13, 999–1011.

Billera, L., Holmes, S., Vogtmann, K., 2001. The geometry of tree

space. Adv. Appl. Math. 27, 771–801.

Billera, L., Holmes, S., Vogtmann, K., 2002. A geometrical perspective

on the phylogenetic tree problem. Technical Report xx, Statistics,

Sequoia Hall, Stanford, CA 94305.

Blanchette, M., Kunisawa, T., Sankoff, D., 1999. Gene order

breakpoint evidence in animal mitochondrial phylogeny. J. Mol.

Evol. 49, 193–203.

Breiman, L., 1996. Bagging predictors. Mach. Learning 24, 123–140.

Brooks, D.R., 1981. Hennig’s parasitological method: a proposed

solution. Syst. Zool. 30, 229–249.

Chichilnisky, G., 1980. Social choice and the topology of spaces of

preferences. Adv. Math. 37, 165–176.

Chor, B., Snir, S., 2002. Four taxon ML fork under molecular clock:

analytic solutions. Whitianga-New Zealand Phylogenetics Meeting,

Whitianga, New Zealand.

Cooper, A., Penny, D., 1997. Mass survival of birds across the

cretaceous-tertiary boundary: molecular evidence. Science 275,

1109–1113.

Critchlow, D.E., 1985. Metric Methods for Analyzing Partially

Ranked Data. Springer-Verlag, Berlin.

Critchlow, D.E., Pearl, D.K., Qian, C., 1996. The triples

distance for rooted bifurcating phylogenetic trees. Syst. Biol. 45,

323–334.

Dasgupta, B., He, X., Jiang, T., Li, M., Tromp, J., Wang, L., Zhang,

L., Computing distances between evolutionary trees. Proceedings

of the Eighth Annual ACM-SIAM Symposium on Discrete

Algorithms, 5–7 January 1997, New Orleans, LA.

Diaconis, P., 1988. Group Representations in Probability and

Statistics. Institute of Mathematical Statistics.

Diaconis, P., 1989. A generalization of spectral analysis with

application to ranked data. Ann. Statist. 17, 949–979.

Diaconis, P., 1992. Sufficiency as statistical symmetry. In: American

Mathematical Society Centennial Publications, Vol. II (Providence,

RI, 1988), American Mathematical Society, F. Browder (Ed.),

Providence. RI, pp. 15–26.

Diaconis, P., Holmes, S., 1998. Matchings and phylogenetic trees.

Proc. Natl. Acad. Sci. USA 95, 14600–14602 (electronic).

Diaconis, P., Holmes, S., 2001. Random walks on trees and matchings.

Technical Report, Statistics Department, Stanford, CA 94305.

Dress, A., Huson, D., Moulton, V., 1996. Analysing and visualizing

sequence and distance data using splitstree. Appl. Math. 71,

95–109.

Dress, A., Holland, B., Huber, K., Koolen, J., Moulton, V., Weyer-

Menkhoff, J., 2001. Delta additive and Delta ultra-additive maps,

Gromov’s trees, and the Farris transform. Discrete Appl. Math.,

submitted for publication.

Durbin, R., Eddy, S., Krogh, A., Mitchison, G., 1998.

Biological Sequence Analysis. Cambridge University Press, Cam-

bridge, UK.

19Theoretical exploration of treelikeness has been undertaken by

Dress et al. (2001).

S. Holmes / Theoretical Population Biology 63 (2003) 17–3230



Edwards, A., 1970. Estimation of the branch points of a branching

diffusion process (with discussion). J. R. Statist. Soc. B 32,

155–174.

Efron, B., 1986. Why isn’t everyone a Bayesian? (c/r: P5-11;

p 330–331). Am. Statist. 40, 1–5.

Efron, B., Halloran, E., Holmes, S., 1996. Bootstrap confidence

levels for phylogenetic trees. Proc. Natl. Acad. Sci. USA 93,

13429–13434.

Farris, J., 1973. On comparing the shapes of taxonomic trees. Syst.

Zoo. 2, 50–54.

Farris, J.S., 1983. The logical basis of phylogenetic analysis. In:

Platnick, N., Funk, V. (Eds.), Advances in Cladistics. Columbia

University Press, New York, pp. 7–36.

Felsenstein, J., 1983. Statistical inference of phylogenies (with

discussion). J. R. Statist. Soc. A 146, 246–272.

Felsenstein, J., 1985. Confidence limits on phylogenies: an approach

using the bootstrap. Evolution 39, 783–791.

Felsenstein, J., 1993. PHYLIP, (Phylogeny Inference Package) version

3.5c. Department of Genetics, University of Washington, Seattle,

version 3.5c. edition.

Felsenstein, J., 2001. The troubled growth of statistical phylogenetics.

Syst. Biol. 50, 465–467.

Fitch, W.M., Markowitz, E., 1970. An improved method for

determining codon variability in a gene and its application to the

rate of fixation of mutations in evolution. Biochem. Genetics 4,

579–593.

Fligner, M.A., Verducci, J.S.E., 1992. Probability Models and

Statistical Analyses for Ranking Data. Springer-Verlag, Berlin.

Hammersley, J., 1950. On estimating restricted parameters (with

discussion). J. R. Statist. Soc. Ser. B 12, 192–240.

Hein, J., 1989. A new method that simultaneously aligns and

reconstructs ancestral sequences for any number of homologous

sequences, when the phylogeny is given. Mol. Biol. Evol. 6,

649–668.

Hendy, M.D., 1991. A combinatorial description of the closest tree

algorithm for finding evolutionary trees. Discrete Math. 96, 51–58.

Hendy, M.D., Penny, D., 1993. Spectral analysis of phylogenetic data.

J. Classification 10, 5–23.

Hendy, M.D., Penny, D., Steel, M.A., 1994. A discrete fourier analysis

for evolutionary trees. Proc. Natl. Acad. Sci. 91, 3339–3343.

Hillis, D.M., 1996. Inferring complex phylogenies. Nature 383, 130.

Hodges, J.L.J., Lehmann, E.L., 1961. Comparison of the normal

scores and Wilcoxon tests. In: Proceedings of the Fourth Berkeley

Symposium on Mathematical Statistics and Probability, Berkeley,

CA, Vol. 1, pp. 307–317.

Holmes, S., 1999. Phylogenies: an overview. In: Halloran, E., Geisser,

S. (Eds.), Statistics and Genetics, IMA, Vol. 81. Springer-Verlag,

NY.

Huelsenbeck, J., Ronquist, F., 2001. Mr Bayes. Bayesian inference of

phylogenetic trees. Bioinformatics 17, 754–755.

Huson, D., 2000. Splitstree. Web address. URL:http://www.mathe-

matik.unibielefeld.de/~huson/phylogenetics/splitstree.html.

Kluge, A.C., Farris, J.S., 1969. Quantitative phylogenetics and the

evolution of Anurans. Syst. Zool. 18, 1–32.

Lake, J.A., 1994. Reconstructing evolutionary trees from DNA and

protein sequences: paralinear distances. Proc. Natl. Acad. Sci. 91,

1455–1459.

Lehmann, E.L., 1975. Nonparametrics: Statistical Methods Based on

Ranks. Holden-Day, San Francisco, CA.

Lehmann, E.L., Casella, G., 1998. Theory of Point Estimation, 2nd

Edition. Springer, Berlin.

Li, S., Pearl, D.K., Doss, H., 2000. Phylogenetic tree construction

using mcmc. J. Am. Statist. Assoc. 95, 493–503.

Li, W.H., 1997. Molecular Evolution. Sinauer, Boston.

Lo, S.-H., 1992. From the species problem to a general coverage

problem via a new interpretation. Ann. Statist. 20, 1094–1109.

Lockhart, P.J., Steel, M.A., Hendy, M., Penny, D., 1994. Recovering

evolutionary trees under a more realistic model of sequence

evolution. Mol. Biol. Evol. 11, 605–612.

Lockhart, P.J., Larkum, A.W.D., Steel, M.A., Waddell, P.J., Penny,

D., 1996. Evolution of chlorophyll and bacteriochlorophyll: the

problem of invariant sites in sequence analysis. Proc. Natl. Acad.

Sci. 93, 1930–1934.

Lockhart, P.J., Steel, M.A., Barbrook, A.C., Huson, D.H., Howe,

C.J., 1998. A covariotide model describes the evolution of oxygenic

photosynthesis. Mol. Biol. Evol. 15, 1183–1188.

Mallows, C.L., 1957. Non-null ranking models. I. Biometrika 44,

114–130.

Marden, J.I., 1995. Analyzing and Modeling Rank Data. Chapman &

Hall, London.

Mau, B., Newton, M.A., Larget, B., 1999. Bayesian phylogenetic

inference via Markov chain Monte Carlo methods. Biometrics 55,

1–12.

Page, R., 1996. On consensus, confidence and total evidence. Cladistics

12, 83–92.

Page, R., Holmes, E., 2000. Molecular Evolution, A Phylogenetic

Approach. Blackwell Science, Oxford.

Penny, D., Holmes, S., 2001. Doom01: biological mathematics in

evolutionary processes. Trends Ecol. Evol. 16, 275–276.

Pezner, P., 2000. Computational Molecular Biology, an Algorithmic

Approach. MIT press, Cambridge, MA.

Rambaut, A., Grassly, N.C., 1997. Seq-Gen: an application for the

Monte Carlo simulation of DNA sequence evolution along

phylogenetic trees. Comput. Appl. Biosci. 13, 235–238.

Robbins, H., 1980. An empirical Bayes estimation problem. Proc.

Natl. Acad. Sci. 77, 6988–6989.

Robbins, H., 1983. Some thoughts on empirical Bayes estimation.

Ann. Statist. 11, 713–723.

Robbins, H., 1985. Linear empirical Bayes estimation of means and

variances. Proc. Natl. Acad. Sci. 82, 1571–1574.

Sanderson, M.J., Donoghue, M.J., Piel, W., Eriksson, T., 1994.

Treebase: a prototype database of phylogenetic analyses and an

interactive tool for browsing the phylogeny of life. Am. J. Bot. 81,

183.

Sanderson, M., Purvis, A., Henze, C., 1998. Phylogenetic supertrees:

assembling the trees of life. Trends Ecol. Evol. 13, 105–109.

Sankoff, D., Blanchette, M., 1999. Phylogenetic invariants for genome

rearrangements. J. Comput. Biol. 6, 431–445.

Sankoff, D., Cedergren, R., 1983. Simultaneous comparison of three

or more sequences related by a tree. In: Time Warps, String Edits,

and Macromolecules: the Theory and Practice of Sequence

Comparison. Addison-Wesley, New York, pp. 253–264.

Schwikowski, B., Vingron, M., 1997. The deferred path heuristic

for the generalized tree alignment problem. J. Comput. Biol. 4,

415–431.

Steel, M.A., 1994. The maximum likelihood point for a phylogenetic

tree is not unique. Syst. Biol. 43, 560–564.

Steel, M., Penny, D., 2000. Parsimony, likelihood and the role of

models in molecular phylogenetics. Mol. Biol. Evol. 17, 839–850.

Steel, M.A., Szekely, L.A., 1999. Inverting random functions. Ann.

Combin. 3, 103–113.

Steel, M.A., Szekely, L.A., 2002. Inverting random functions (II):

explicit bounds for discrete maximum likelihood estimation, with

applications. SIAM J. Discrete Math. 15 (4), 562–575.

Steel, M., Dress, A., Bockner, S., 2000. Some simple but fundamental

limits for supertree and consensus tree methods. Syst. Biol. 42,

363–368.

Strimmer, K., Moulton, V., 2000. Likelihood analysis of phylogenetic

networks using directed graphical models. Mol. Biol. Evol. 17,

875–881.

Tang, H., Lewontin, R., 1999. Locating regions of differential

variability in DNA and protein sequences. Genetics 153, 485–495.

S. Holmes / Theoretical Population Biology 63 (2003) 17–32 31

http://www.mathematik.unibielefeld.de/~huson/phylogenetics/splitstree.html
http://www.mathematik.unibielefeld.de/~huson/phylogenetics/splitstree.html


Tuffley, C., Steel, M., 1997. Links between maximum likelihood and

maximum parsimony under a simple model of site substitution.

Bull. Math. Biol. 59, 581–607.

Tukey, J., 1975. Mathematics and the picturing of data. In:

Proceedings of the International Congress of Mathematicians,

Vol. 2, Vancouver, pp. 523–531.

Van-Lint, J., Wilson, R., 1992. A Course in Combinatorics. Cam-

bridge University Press, Cambridge.

Von Haeseler, A., Churchill, G., 1993. Network models for sequence

evolution. J. Mol. Evol. 37, 77–85.

Wheeler, W., 1991. Congruence among data sets: a Bayesian approach in

phylogenetic analysis of DNA sequences. MiyamotoM.M., Cracraft,

J. (Eds.). Phylogenic Analysis of DNA Sequences. Wiley, NY.

Yang, Z., 1994. Maximum likelihood phylogenetic estimation from

DNA sequences with variable rates over sites: approximate

methods. J. Mol. Evol. 39, 306–314.

Yang, Z., 1995. A space–time process model for the evolution of DNA

sequences. Genetics 139, 993–1005.

Yang, Z., Rannala, B., 1997. Bayesian phylogenetic inference using

DNA sequences: a Markov chain Monte Carlo method. Mol. Biol.

Evol. 14, 717–724.

Youden, W.J., 1972. Enduring Values. Technometrics. 14, 1–11.

Zharkikh, A., Li, W.H., 1995. Estimation of confidence in phylogeny:

the complete and partial bootstrap technique. Mol. Phylogenet.

Evol. 4, 44–63.

S. Holmes / Theoretical Population Biology 63 (2003) 17–3232


	Statistics for phylogenetic trees
	Introduction
	The one tree?
	Rounding
	Finding tree summaries for DNA-data
	The data
	A first transformation: from data to distances

	Choosing an estimation method
	Between parametric and nonparametric estimation

	What to do when data are trees?
	Probability distributions on trees
	Sufficiency

	Confidence statements, Bayesian distributions and the need for distances
	Geometrical representation
	The philosophical question of coherence
	Validation procedures and their implementation
	Bootstrapping phylogenies

	Summary
	Acknowledgements
	References


