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Logistic regression is a powerful technique for fitting models to data with a binary
response variable, but the models are difficult to interpret if collinearity, nonlinearity,
or interactions are present. Besides, it is hard to judge model adequacy since there are
few diagnostics for choosing variable transformations and no true goodness-of-fit test.
To overcome these problems, we propose to fit a piecewise (multiple or simple) linear
logistic regression model by recursively partitioning the data and fitting a different
logistic regression in each partition. This allows nonlinear features of the data to be
modeled without requiring variable transformations. The binary tree that results from
the partitioning process is pruned to minimize a cross-validation estimate of the pre-
dicted deviance. This obviates the need for a formal goodness-of-fit test. The resulting
model is especially easy to interpret if a simple linear logistic regression is fitted to
each partition, because the tree structure and the set of graphs of the fitted functions
in the partitions comprise a complete visual description of the model. Trend-adjusted
chi-square tests are used to control bias in variable selection at the intermediate nodes.
This protects the integrity of inferences drawn from the tree structure. The method
is compared with standard stepwise logistic regression on thirty real datasets, with
several containing tens to hundreds of thousands of observations. Averaged across the
datasets, the results show that the method reduces predicted mean deviance by nine
to sixteen percent. We use an example from the Dutch insurance industry to demon-
strate how the method can identify and produce an intelligible profile of prospective
customers.
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1 INTRODUCTION

Logistic regression is a well-known statistical technique for modeling binary response
data. In a binary regression setting, we have a sample of observations on a 0-1 valued
response variable Y and a vector of K predictor variables X = (X1, . . . ,XK). The linear
logistic regression model relates the “success” probability p = P (Y = 1) to X via a linear
predictor η = β0 + β1X1 + β2X2 + . . . + βKXK and the logit link function η = logit(p) =
log{p/(1 − p)}. The unknown regression parameters β0, β1, . . . , βK are usually estimated
by maximum likelihood. Although the model can provide accurate estimates of p, it has two
serious weaknesses: (1) it is hard to determine when a satisfactory model is found, because
there are few diagnostic procedures to guide the selection of variable transformations and
no true lack-of-fit test, and (2) it is difficult to interpret the coefficients of the fitted model,
except in very simple situations.

A good example of the difficulties is provided by the low birth weight dataset of Hosmer
and Lemeshow (1989, Appendix 1). The data are from a study to identify the risk factors
associated with babies born with low birth weight (defined as less than 2500 grams). There
are 189 women in the data, with 59 giving birth to babies with low birth weight. The
variables are listed in Table 1 with low being the Y variable.

Hosmer and Lemeshow (1989) and Venables and Ripley (1999) use transformations and
stepwise variable selection techniques to fit logistic regression models to these data. Their
models are displayed in Table 2. Both find the transformed variable ptd = I(ptl > 0) to
be highly significant, but they differ in other respects. For example, race is included in
one but not the other, and similarly for ftv. The smoke variable appears in two places in
both models: as a main effect term and an interaction term. Although the main effect of
smoke is positive, it is dominated by a negative interaction term in both models. This leads
to the implausible conclusion that smoking reduces the probability of low birth weight in
some circumstances! The reasons for these difficulties in interpretation are well-known.
They are nonlinearity, collinearity, and interactions among the variables and bias in the
coefficients due to selective fitting. The latter makes it risky to judge the significance of a
variable by its t-statistic.

ptl = 0 ptl ≥ 1

41/159 18/30

Figure 1: A logistic regression tree with a multiple linear logistic model in age and lwt in
each of its two leaf nodes. The fraction beside each leaf node is the number of low birth
weight cases divided by the node sample size.
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Table 1: Variables for birth weight data

Name Values
low 1 if baby has low birth weight, 0 otherwise
age age of mother in years
lwt weight of mother (lbs) at last menstrual period
race 1 if white, 2 if black, 3 if other
smoke 1 if smoking during pregnancy, 0 otherwise
ptl number of previous premature labors
ht 1 if there is history of hypertension, 0 otherwise
ui 1 if presence of uterine irritability, 0 otherwise
ftv number of physician visits in first trimester

One way to avoid these problems without sacrificing estimation accuracy is to partition
the sample space and fit a linear logistic regression model containing only one or two
untransformed variables in each partition. We call this a logistic regression tree model.
Figure 1 shows the result for the present data. There are just two partitions, defined by
whether or not ptl is zero (note that this coincides with the definition of the human-
transformed variable ptd). One hundred fifty-nine women have ptl value zero and thirty
have values greater than zero. A logistic regression model linear in age and lwt is fitted
to each partition.

Figure 2 shows the data points and contour plots of the estimated probability p̂. Clearly
p̂ decreases with increase in age and lwt. Women with positive ptl values are two to
three times as likely to give birth to babies with low birth weight. These women tend to
be younger and have lower values of lwt. The different heights and orientations of the
contour lines indicate vividly that there is an interaction among the three variables. The
absence of the other predictors in the model suggests that their importance is secondary,
after ptl, age, and lwt are accounted for. Thus the model not only provides a prediction
formula for p̂, but it also conveys visually interpretable information about the roles of
the predictor variables. Note that the model complexity is being shared between the tree
structure and the regression models in the nodes. This division of labor helps to keep the
logistic regression tree model simple.

Algorithms for logistic regression trees (also known as hybrid trees or model trees
in the machine learning literature) evolved from attempts to obtain predictions of class-
membership probabilities from classification trees. A naive approach would use the sample
proportions at the leaf nodes of the trees but this has two major disadvantages. First,
because the estimate of p is piecewise-constant, it will not be accurate unless the tree is
large. But a large tree is harder to interpret than a small one. This problem is worse when
the class proportions are highly unequal, for the tree may have no splits after pruning.
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Table 2: Two logistic regression models fitted to birth weight data. The derived variables
are: ptd = I(ptl > 0), lwd = I(lwt < 110), race1 = I(race = 2), race2 = I(race = 3),
ftv1 = I(ftv = 1), and ftv2+ = I(ftv ≥ 2).

Hosmer and Lemeshow (1989, p. 101) Venables and Ripley (1999, p. 224)
Variable Coeff. S.E. t-value Variable Coeff. S.E. t-value
Intercept -0.512 1.088 -0.47 Intercept -0.583 1.419 -0.41
age -0.084 0.046 -1.84 age 0.076 0.054 1.40
lwd -1.730 1.868 -0.93 lwt -0.020 0.007 -2.73
ptd 1.232 0.471 2.61 ptd 1.560 0.500 3.15
smoke 1.153 0.458 2.52 smoke 0.780 0.419 1.86
ht 1.359 0.662 2.05 ht 2.066 0.747 2.76
ui 0.728 0.480 1.52 ui 1.818 0.665 2.73
race1 1.083 0.519 2.09 ftv1 2.921 2.279 1.28
race2 0.760 0.460 1.63 ftv2+ 9.242 2.632 3.51
age×lwd 0.147 0.083 1.78 age×ftv1 -0.162 0.096 -1.68
smoke×lwd -1.407 0.819 -1.72 age×ftv2+ -0.411 0.118 -3.50

smoke×ui -1.916 0.971 -1.97

Second, linear trends in p are notoriously difficult for a piecewise-constant tree to model
(Steinberg and Cardell 1998).

Quinlan’s (1992) M5 is a regression tree algorithm designed for a continuous-valued
Y variable. An M5 tree is basically a classification tree with linear regression functions
at the leaf nodes. First, an ordinary classification tree is constructed, with the standard
deviation of the Y values used as node impurity function. Then the tree is pruned, with a
stepwise linear regression model fitted to each node at every stage. Although this method is
applicable to data where the values of Y are 0 or 1, it does not guarantee that the estimated
probabilities lie within these limits. The obvious solution of substituting logistic regression
for linear regression has not been attempted. A possible difficulty is the conflicting aims of
classification and logistic regression—classification trees prefer splits that cleanly separate
the classes but such splits yield datasets that cannot be fitted by logistic regression.

Steinberg and Cardell (1998) proposed the hybrid CART-Logit model to improve the
prediction accuracy of logistic regression by combining its strengths with that of CART
(Breiman, Friedman, Olshen and Stone 1984). First they build a CART tree model. Then
the original predictor variables and information from the CART tree, such as leaf node
identifiers and predicted probabilities, are used as inputs to a stepwise logistic regression
model. While it is unclear whether this approach produces more accurate probability
estimates, it is clear that the model is much more complex and hence harder to interpret
than a standard logistic regression model.
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Figure 2: Data and contour plots of p̂ in the leaf nodes of the tree in Figure 1.

Both M5 and CART-Logit require the building of a classification tree as a preliminary
step. A second school of thought aims at recursively partitioning the data and fitting
logistic regression models to the partitions formed at each step. Although this is a more
natural approach, very few such algorithms have appeared in the literature. The main
reason is that the usual exhaustive search technique (as practiced in CART and M5) is very
compute-intensive for logistic models—two logistic models must be fitted to the partitions
induced by each candidate split. Chaudhuri, Lo, Loh and Yang (1995) solve this problem by
adapting a residual-based approach proposed by Chaudhuri, Huang, Loh and Yao (1994)
for least squares regression trees. The latter selects the variable for which the signs of
the residuals appear most non-random, as determined by the significance probabilities of
two-sample t tests. In binary regression, however, the signs of the residuals, Y − p̂, do not
change with the fitted model. Chaudhuri et al. (1995) overcome this difficulty by using
the signs of “pseudo-residuals”, defined as p̃ − p̂, where p̃ is a smoothed nearest-neighbor
estimate of p. Although this solves the problem, it creates two new problems of its own:
(1) the method is sensitive to the degree of smoothing and (2) the smoothing requirement
renders it inapplicable to datasets with categorical (i.e., unordered) variables.

In the opposite direction, linear logistic regression has also been used as a classifier to
predict Y instead of estimating p. For this purpose, Lim, Loh and Shih (2000) find that its
classification accuracy is excellent compared to other classification methods on many real
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datasets. Perlich, Provost and Simonoff (2003) show, however, that there is a cross-over
effect between logistic regression and C4.5, a classification tree algorithm. The classification
accuracy of logistic regression is very good for small to moderate sized datasets but it levels
off as the sample size increases. On the other hand, the accuracy of C4.5 begins lower but
keeps increasing with sample size. The reason for the difference in performance may be due
to the number of variables in a logistic regression model being fixed whereas the number
of nodes in a C4.5 model grows with the sample size.

In this article, we present a new method called LOTUS (for Logistic T ree with U nbiased
Selection) for the automatic construction of logistic regression trees. By allowing the option
of fitting only simple linear logistic regressions in the nodes, the tree model is visualizable
and hence more comprehensible than standard multiple linear logistic regression. Further,
because the number of parameters in a LOTUS model increases with sample size, it is
not expected to have the leveling effect observed by Perlich et al. (2003). LOTUS fits
a linear logistic model where the latter is best—in each node, where the sample size is
never large. In addition, LOTUS has five properties that make it desirable for analysis and
interpretation of large datasets: (1) negligible bias in split variable selection, (2) relatively
fast training speed, (3) applicability to quantitative and categorical variables, (4) choice of
multiple or simple linear logistic node models, and (5) suitability for datasets with missing
values.

The remainder of the paper is organized as follows. Section 2 describes the roles a pre-
dictor variable can take in LOTUS and the types of logistic regression models that can be
fitted at the nodes. Section 3 discusses the selection bias problem and details our solution.
Section 4 presents simulation results to demonstrate its effectiveness under various condi-
tions. Section 5 considers split point selection and Section 6 deals with missing values and
pruning. Section 7 compares the predictive accuracy and training time of LOTUS with that
of stepwise logistic regression on thirty real datasets, some with hundreds of thousands of
observations. Averaged across the datasets, LOTUS reduces the predicted mean deviance
of stepwise logistic regression by nine to sixteen percent. LOTUS is sometimes faster but
no more than thirty times slower on these datasets. Section 8 shows how LOTUS is used
to identify and create an intelligible profile of caravan policy holders in a dataset from the
Dutch insurance industry. Finally, Section 9 concludes the article with some remarks.

2 PREDICTOR ROLES AND NODE MODELS

LOTUS can use categorical as well as quantitative variables. Categorical variables may
be ordinal (called o-variables) or nominal (called c-variables). The traditional method of
dealing with nominal variables is to convert them to vectors of indicator variables and then
use the latter as predictors in a logistic regression model. Since this can greatly increase
the number of parameters in the node models, LOTUS only allows categorical variables
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to participate in split selection; they are not used as regressors in the logistic regression
models.

LOTUS allows the user to choose one of three roles for each quantitative predictor
variable. The variable can be restricted to act as a regressor in the fitting of the logistic
models (called an f-variable), or be restricted to compete for split selection (called an s-
variable), or be allowed to serve both functions (called an n-variable). Thus an n-variable
can participate in split selection during tree construction and serve as a regressor in the
logistic node models. For example, we ensured that each node model is relatively simple
in Figure 1 by setting age and lwt as n-variables, race, smoke, ht, and ui as c-variables,
and ptl and ftv as s-variables.

LOTUS can fit a multiple linear logistic regression model to every node or a best simple
linear regression model to every node. In the first option, which we call LOTUS(M), all f
and n-variables are used as linear predictors. In the second, which we call LOTUS(S), each
model contains only one linear predictor—the one among the f and n-variables that yields
the smallest model deviance per degree of freedom. Deviance is a standard measure of
variation in the literature of generalized linear models; see, e.g., McCullagh and Nelder
(1989). It is also the impurity measure used in the S-PLUS tree function (Clark and
Pregibon 1992). Suppose that �M and �S denote the maximized log-likelihood values for
the model of interest and the saturated model (i.e., the most complex model having as
many parameters as observations), respectively. Then the deviance of a generalized linear
model is defined as D = −2(�M − �S). For logistic regression, the deviance simplifies to

D = −2
n∑

i=1

[yi log(p̂i/yi) + (1 − yi) log{(1 − p̂i)/(1 − yi)}] (1)

where p̂i is the estimated probability for the ith observation. This function behaves like the
residual sum of squares for least squares regression models; it is non-negative and decreases
as more variables are added to the model. The total impurity for a tree is obtained by
summing the deviances in all the partitions. Degrees of freedom is defined as the number
of fitted observations minus the number of estimated parameters, including the intercept
term. The tree in Figure 1 is obtained with the LOTUS(M) option. The algorithm for
LOTUS(S) may be stated as follows.
Algorithm 1 Best simple linear logistic model option (LOTUS(S))
Suppose X1, . . . ,XK are the f- or n-variables. The following steps are carried out at each
node.

1. For each k = 1, . . . ,K, fit the model log{p/(1 − p)} = β0 + β1Xk. Let Dk denote
its deviance as defined in (1), and let νk denote its degrees of freedom. Compute
D̄k = Dk/νk. If the data are pure with respect to the Y values or if the model does
not converge, define D̄k = ∞.

2. Let k∗ be the smallest k that minimizes D̄k.
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(a) If D̄k∗ = ∞, delete the node and its sibling and turn its parent into a leaf node.

(b) Otherwise, select the simple linear logistic model with predictor Xk∗.

LOTUS(S) has the advantage of permitting the estimated logistic function in each node
to be visualized via a plot against the selected predictor (see Section 8 for an example). It is
computationally faster than LOTUS(M) when there are very large numbers of observations
or large numbers of predictor variables. Further, because only one predictor variable is
employed in each node, LOTUS(S) is much less likely to encounter problems with complete
or quasi-complete separation of the data (Allison 1999, p. 41) than LOTUS(M).

3 UNBIASED SPLIT VARIABLE SELECTION

It is critically important for a classification or regression tree method to be free of
selection bias. If it is not, grossly misleading conclusions about the effects of predictor
variables may result. We first give an example of selection bias in the CART algorithm
and then show how the problem is controlled in LOTUS. Our example employs the bands
dataset from the UCI data repository (Blake and Merz 2000). The problem is to predict
cylinder banding during rotogravure printing. The original dataset consists of observa-
tions on 40 variables from 512 cylinders. Half of the variables are quantitative and half
categorical. The response variable is band type, which takes values band (Y = 0) and
noband (Y = 1). To avoid confounding selection bias effects with missing value effects,
we restrict ourselves here to the subset of 277 cases with complete values. We also drop
two variables, timestamp and cylinderID because they are unique or almost unique case
identifiers. This leaves 19 quantitative and 18 categorical predictor variables. Two of the
latter take many values, namely, jobno and customer with 148 and 51 values, respectively.

jobno
∈ S

161/170 17/107

Figure 3: CART tree for the bands data. The set S contains 89 out of 148 job numbers.
At each decision node, a case goes into the left branch if and only if the stated condition
is true. The predicted value of P (Y = 1) is given beneath each leaf node as the number
of cases with Y = 1 divided by the node sample size. The cross-validation estimate of
misclassification cost is 0.296.

Figure 3 shows the CART 1-SE tree constructed with the 37 predictor variables. It
splits only once, on jobno which has 2147 − 1 ≈ 1044 allowable splits. If we remove jobno,
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customer
∈ S1

inkpct
≤ 64

127/145 1/7

customer
∈ S2

unitnum
∈ {2, 9}

press ∈ {802, 813, 821, 828}

21/25

anode
≤ 103.2

2/14

roller
≤ 39

viscosity ≤ 49

6/9 0/7

13/16

solventpct
≤ 40.95

4/29 3/3

1/22

Figure 4: CART tree for the bands data without jobno. S1 and S2 are sets of customer
names. The predicted value of P (Y = 1) is given beneath each leaf node as the number
of cases with Y = 1 divided by the node sample size. The cross-validation estimate of
misclassification cost is 0.300.

we obtain the tree shown in Figure 4. It has 10 leaf nodes and splits first on customer
which has 250 − 1 ≈ 1015 allowable splits. Finally, if we remove both jobno and customer,
we get the tree in Figure 5. It splits first on press, which has 27−1 = 127 allowable splits.
The interesting question is whether the selection of jobno and customer in the first two
trees is due to their importance in predicting Y or to bias from their having inordinately
large numbers of splits. One answer can be found in the cross-validation estimates of
misclassification costs of the trees. If jobno, customer, and press are indeed the three
top predictors in order of importance, we would expect the estimated misclassification
costs to increase as the variables are removed. But this does not happen. The estimates
are 0.296, 0.300, and 0.271, respectively. This strongly suggests that selection bias is the
culprit here.
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press
∈ {815, 821}

current
≤ 36

18/22

viscosity
≤ 44.5

type = yes

15/18 1/9

6/48

roller
≤ 34.5

84/95

anode
≤ 101.6

speed ≤ 2150

temperature
≤ 14.85

humidity
≤ 87

11/14 0/5

0/14

5/5

38/47

Figure 5: CART tree for the bands data without jobno and customer. The predicted
value of P (Y = 1) is given beneath each leaf node as the number of cases with Y = 1
divided by the node sample size. The cross-validation estimate of misclassification cost is
0.271.

Selection bias is always present in any algorithm that uses exhaustive search for vari-
able selection. One way to ameliorate this is to include a weight factor in the search
criterion to decrease the influence of variables that have many splits. This approach is
problematic, however, for two reasons. First, there is no universal weighting formula—the
weights must depend on the number and types of variables in the dataset as well as the
sample size. Second, the computational complexity of recursively partitioning the data and
using exhaustive search to find logistic regression leaf models is too overwhelming in real
applications.

A practical approach is to break the task of split selection into two parts: first select
the variable and then find the split values. This solution is used in the QUEST (Loh
and Shih 1997) and CRUISE (Kim and Loh 2001) classification tree algorithms, where
statistical tests are used for variable selection. It is applied to regression in the GUIDE
algorithm (Loh 2002) by means of “curvature tests”. Basically, a curvature test is a chi-
square test of association for a two-way contingency table where the rows are determined
by the signs of the residuals (positive versus non-positive) from a fitted regression model.
If the variable is categorical, the columns are defined by the category names. Otherwise,
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if the variable is quantitative, its values are discretized into four interval groups using the
sample quartiles as endpoints; the groups are then used as columns for the table. The idea
is that if a model fits well, its residuals should have little or no association with the values
of the predictor variable and the significance probability of the chi-square test should be
approximately uniformly distributed. On the other hand, if the effect of the variable is not
fully accounted for, the significance probability is expected to be small. Thus one way to
choose a variable for splitting is to select the one with the smallest significance probability.

This technique is not immediately applicable to linear logistic regression. As mentioned
previously, the value of Y determines the sign of the residual, Y − p̂. Thus the chi-square
test of association between the signs of the residuals and the values of X is the same as the
test of association between Y and X. But the latter is independent of the model! Hence the
test cannot distinguish between the linear and nonlinear effects of X. Simulation results
to be presented later will show that if X1 has a strong linear effect and X2 has a weak
quadratic effect, the test will erroneously select X1 instead of X2 with high probability.

To distinguish nonlinear from linear effects, we use a trend-adjusted chi-square test due
to Cochran (1954) and Armitage (1955). Consider a 2 × J contingency table with rows
being the values of Y and columns being some grouped scores X = xj, j = 1, . . . , J . Let
nij denote the number of cases with Y = i (i = 0, 1) and X = xj . Then the sample size is
n =

∑
i

∑
j nij. Denote the sample proportion of each cell by pij = nij/n. The conditional

proportion of times that observations in column j have response i is pi|j = pij/p+j =
nij/n+j , where n+j = np+j =

∑
i nij. Let π1|j denote the conditional probability that

Y = 1 given X = xj. For the linear probability model

π1|j = α + βxj (2)

a least squares fit gives the fitted values π̂1|j = p1+ + b(xj − x̄), where p1+ = n−1 ∑
j n1j ,

x̄ = n−1 ∑
j n+jxj and

b =
∑

j
n+j(p1|j − p1+)(xj − x̄)

/∑
j
n+j(xj − x̄)2.

Cochran (1954) and Armitage (1955) show that the Pearson chi-square statistic, χ2, for
testing independence can be decomposed as χ2 = z2 + χ2

L, where

z2 = b2
∑

j
n+j(xj − x̄)2/(p0+p1+)

χ2
L =

∑
j
n+j(p1|j − π̂1|j)2/(p0+p1+).

The statistic z2 is called the Cochran-Armitage trend test statistic. If model (2) holds, z2

has an asymptotic chi-square distribution with one degree of freedom. It tests for a linear
trend in the proportions. The statistic χ2

L is asymptotically chi-square distributed with
J − 2 degrees of freedom. It tests for independence between X and Y after adjusting for
any linear trend. We call χ2

L the trend-adjusted chi-square statistic and use it to obtain a
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significance probability for each n-variable, after first discretizing its values into five groups
at the sample quintiles.

Since categorical (c- and o-) variables are used for splitting the nodes only, no similar
trend adjustment is necessary. Therefore we simply use the ordinary chi-square test be-
tween Y and the categorical variable. The null distribution of the statistic is approximated
with a chi-square distribution with C(t)− 1 degrees of freedom, where C(t) is the number
of category values of the variable at node t. A similar method is used to treat s-variables,
except that their values are first discretized into five groups at the sample quintiles.

We thus obtain a significance probability for each s-, n-, c- and o-variable. The vari-
able with the smallest significance probability is selected to split the node. The following
algorithm details the steps performed at each node.

Algorithm 2 Variable Selection Algorithm

1. For each n-variable X, divide its values into five groups at the sample quintiles.
Construct a 2× 5 contingency table with the Y values as rows and the five groups as
columns. Count the number of cases in each cell. If X is used in the linear logistic
regression model fitted to the node, compute the trend-adjusted chi-square statistic;
otherwise, compute the ordinary chi-square statistic. The column scores used in the
trend-adjusted chi-square statistic are the sample means of the X values in their
respective groups. The degrees of freedom for the with and without trend-adjusted
statistics are (2− 1)(5− 1)− 1 = 3 and (2− 1)(5− 1) = 4, respectively. Compute the
corresponding significance probability.

2. Repeat the 2×5 contingency table construction procedure in step 1 for each s-variable
X. Compute the significance probability of the ordinary chi-square statistic based on
4 degrees of freedom.

3. For each c- and o-variable X, construct a contingency table using the Y values as
rows and the categories of X as columns. Compute the corresponding significance
probability of the ordinary chi-square statistic based on C − 1 degrees of freedom,
where C is the number of distinct values of X at the node.

4. Select the variable with the smallest significance probability to split the node.

Figure 6 shows the result of applying the LOTUS(S) method to the bands data. The
tree has only one split, on the variable press. This is the same as the variable selected
as the top split in the CART tree in Figure 5. Note that current and roller, the linear
predictors in the two leaf nodes in the LOTUS(S) tree are also chosen by the CART tree as
the next most important variables. The most interesting difference between the two trees
is, however, hidden—the LOTUS(S) tree is constructed using all the variables whereas the
CART tree requires manual removal of jobno and customer.
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press
∈ {815, 821}

current roller

Figure 6: LOTUS(S) tree for the bands data. The best linear predictor is given beneath
each leaf node.

4 SIMULATION EXPERIMENTS

There are two obvious sources of approximation error in Algorithm 2. First, the linear
probability model (2) is at best a rough approximation to the linear logistic regression
model logit(π1|j) = α + βxj . Second, the chi-square distributions used in the computation
of the significance probabilities are not exact. We report here the results of some simulation
experiments to evaluate the effects of these approximations.

4.1 Selection bias and power

Our first experiment compares the selection bias and selection power of the trend-adjusted
method versus the same method without the adjustment (called the “unadjusted method”
henceforth). We employ five mutually independent predictor variables with marginal dis-
tributions and simulation models shown in Table 3. Predictors X1 and X5 have different
degrees of discreteness, X3 is symmetric while X2 is skewed, and X4 has a bimodal distri-
bution. Predictor X5 is used as an s-variable while the others are used as n-variables. A
multiple linear logistic model is fitted to each node.

The Null, Linear, and Linlin models in Table 3 are used to evaluate the success of
our bias correction method. In the Null model, Y is distributed independently of the five
predictors. An unbiased variable selection procedure should therefore select each variable
with equal probability of 1/5. The Linear, Linquad, Linlin, and Linlinquad models are
designed to show the bias of the unadjusted method. The Jump, Quadratic, and Cubic
models are nonlinear in X1. They show how often each method detects the nonlinearity
by choosing X1 as split variable. The simulation results are based on 1000 iterations with
sample size 500 in each iteration. This yields simulation standard errors of approximately
0.015.

Figure 7 shows bar graphs of the estimated selection probabilities. Selection bias is not
apparent in both methods for the Null model. Despite differences in degrees of discreteness,
skewness, and multi-modality of the predictor variable distributions, both methods select
the predictors with roughly equal probabilities. For the Jump, Quadratic, and Cubic
models, both methods select the correct variable X1 most of the time. The selection power
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Figure 7: Simulated probabilities of variable selection for the unadjusted (white) and trend-
adjusted (gray) methods under the models in Table 3. Simulation standard errors are
approximately 0.015.
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Table 3: Variables and models for selection power experiment. N(µ, σ2) denotes a normal
distribution with mean µ and variance σ2; Exponential(µ) denotes an exponential distri-
bution with mean µ; Uniform{a1, . . . , an} denotes a uniform distribution on the integers
a1, . . . , an.

Variable Type Distribution Model logit(p)
X1 n Uniform{−3,−1, 1, 3} Null 0
X2 n Exponential(1) Jump 1 + 0.7I(X1 > 0)
X3 n N(0, 1) Quadratic 1 + 0.08X2

1

X4 n 0.5N(0, 1) + 0.5N(1, 1) Cubic 1 + 0.02X3
1

X5 s Uniform{0, 1} Linear 1 + 0.8X2

Linquad −1.5 + X2 + X2
3

Linlin −1 + X2 + X3

Linlinquad −1 − 0.1X2
1 + X2 + X3

of the trend-adjusted method may appear weaker than that of the unadjusted method at
the Jump and Cubic models, but they perform equally well at the Quadratic model. One
explanation is that the jump and cubic effects can partly be accounted for by a linear effect.
Thus, when the trend-adjusted method is used, the strength of these nonlinear effects is
reduced.

For the Linear and Linlin models, an unbiased selection procedure should select each
variable with equal probability since the correct model is being fitted. Figure 7 shows that
the unadjusted method does not possess this property. Because it does not take model
fitting into consideration, it selects X2 (in the Linear model) and X2 or X3 (in the Linlin
model) much more frequently than the other variables. Note that this abnormality is not
a concern (and is not apparent) if the tree after pruning has no splits. It becomes serious
if the true model contains variables with linear and nonlinear effects. As the Linquad
and Linlinquad models illustrate, the variables with linear effects may be selected more
frequently than those with quadratic effects. Now pruning will yield a tree that either
has splits on the wrong variables or has no splits at all. In contrast, the trend-adjusted
method takes the linear effects into account and selects each variable with roughly equal
probability in the Linear and Linlin models. In the Linquad and Linlinquad models, it
ignores the linear effects and correctly selects the variable in the quadratic term most of
the time.
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4.2 Effect of variable type and collinearity

We performed two more simulation experiments to examine the effect of variable type
and multicollinearity on the selection bias of LOTUS with different node models. The
experiments employ three numerically ordered (X1,X2,X3) and two nominal (X4,X5)
variables. Three dependence structures are studied: (1) the “independence” case where
the variables are mutually independent, (2) a “weak dependence” case where some of the
variables are not independent, and (3) a “strong dependence” case where the correlation
between X2 and X3 is 0.995. The distributions of the variables are given in Tables 4 and 5
and the joint distribution of X4 and X5 in Table 6. The response variable is independently
and identically distributed Bernoulli with probability 0.5 in all cases.

Table 4: Marginal distributions of the X variables

Variable Distribution
T Discrete Uniform{−3,−1, 1, 3}
W Exponential(1)
Z Normal(0, 1)
U Uniform(0, 1)
C5 Discrete Uniform{1, 2, . . . , 5}
C10 Discrete Uniform{1, 2, . . . , 10}

Table 5: Dependence structures of the X variables. The symbol �·� denotes the greatest
integer function.

Variable Type Independence Weak Dependence Strong Dependence
X1 Continuous T T T
X2 Continuous W W W
X3 Continuous Z T + W + Z W + 0.1Z
X4 Categorical C5 �UC10/2� + 1 �UC10/2� + 1
X5 Categorical C10 C10 C10

The first experiment uses X3 as an n-variable while the second employs it as an s-
variable. The simulations are based on 1000 runs and sample size of 500 observations in
each run, yielding simulation standard errors of approximately 0.015. The estimated selec-
tion probabilities are given in Table 7. All the entries lie within three simulation standard
errors of 0.2 (the value for unbiased selection) regardless of mix of variable types, degree
of multicollinearity and differences in node models. This shows that the unbiased selection
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Table 6: Joint distribution of X4 and X5 in the weak and strong dependence situations

X5

X4 1 2 3 4 5 6 7 8 9 10
1 1/10 1/10 2/30 1/20 2/50 1/30 2/70 1/40 2/90 1/50
2 1/30 1/20 2/50 1/30 2/70 1/40 2/90 1/50
3 1/50 1/30 2/70 1/40 2/90 1/50
4 1/70 1/40 2/90 1/50
5 1/90 1/50

property of LOTUS is robust.

5 SPLIT POINT SELECTION

After X is selected to split a node, the next step is to find the split point (if X is
ordered) or the split set (if X is nominal). For an ordered X, the most obvious way to
choose a split of the form X ≤ c is to search for the c that minimizes the total deviance
of the logistic regression models fitted to the two data subsets defined by the split. This is
computationally prohibitive for logistic regression models. A much faster method uses the
sample mean or median of X for c, but this may be ineffective if the true logit function is
not smooth. As a compromise, LOTUS restricts the search to a set of sample quantiles of
X. In the examples here, the search is over the sample 0.3, 0.4, 0.5, 0.6, and 0.7-quantiles
of X at the node. The one that minimizes the total (logistic) deviance is selected.

If the selected X is a nominal variable, we need to find a set A of its values for a split
of the form X ∈ A. Again, exhaustive search is computationally prohibitive. Instead,
we limit the search to five candidates that are obtained by treating the problem as one
of classification as follows. Let {a1, a2, . . . , am} denote the set of unique values taken by
X at the node. Let q(a) be the proportion of cases with Y = 1 among those in the
node with X = a. Let b1, b2, . . . , bm be the ordered values of a according to q(a), i.e.,
q(b1) ≤ q(b2) ≤ . . . ≤ q(bm). By a result in Breiman et al. (1984, p. 101), the value A∗

that minimizes the sum of the Y -variance in the two data subsets created by the split
X ∈ A∗ can be found by searching over the m − 1 splits X ∈ Ai, where Ai = {b1, . . . , bi},
i = 1, . . . ,m − 1. Denote A∗ = {b1, . . . , bl}. For j = ±1,±2 such that 1 ≤ l + j ≤ m − 1,
define A∗

j = {b1, . . . , bl+j}. LOTUS evaluates the five nearby splits X ∈ A with A = A∗−2,
A∗−1, A∗, A∗

1, A∗
2 and selects the one that minimizes the sum of the logistic deviances in

the two subnodes.
If none of the candidate splits for the selected variable is suitable (e.g., when one or
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Table 7: Estimated probabilities of variable selection for LOTUS under different model
and dependence situations

Multiple linear logistic Best simple linear logistic
Weak Strong Weak Strong

Experiment Xi Type Indep. Dep. Dep. Indep. Dep. Dep.
X1 n .189 .188 .213 .197 .183 .195
X2 n .201 .219 .167 .206 .209 .182

1 X3 n .212 .188 .185 .193 .199 .186
X4 c .208 .209 .220 .207 .199 .214
X5 c .190 .196 .215 .197 .210 .223

X1 n .196 .189 .208 .194 .173 .200
X2 n .200 .214 .182 .204 .206 .175

2 X3 s .207 .196 .179 .219 .215 .192
X4 c .211 .201 .218 .198 .199 .211
X5 c .186 .200 .213 .185 .207 .222

more subnodes have zero variance or the parameter estimates fail to converge), LOTUS
searches for the next best variable and its corresponding split values. This procedure is
necessary to prevent premature termination of the tree growing process.

6 MISSING VALUES AND PRUNING

We have assumed thus far that the dataset has no missing values. If values are missing
from the training sample, we use only the cases that are non-missing in the variables under
consideration for regression modeling and split selection. That is, we fit a logistic regression
model using only the cases that are non-missing in the designated set of regressors for the
node model. For split selection, the significance probability of each candidate variable is
computed from the non-missing cases of that variable. Once a split variable X is selected,
the split point or split set is determined from the non-missing X-values. To send the cases
with missing X-values through the split, we temporarily fill the missing values with the
node sample X-mean (if X is an n or s-variable) or node sample X-mode (if X is a c
or o-variable). After passing through the split, all imputed values are deleted and their
missing status restored.

Missing values in a case to be predicted by a logistic regression tree present two prob-
lems: (1) how to pass the case through the splits for which the split variables are missing,
and (2) how to compute the estimated logit value when one or more regressors in the node
model are missing. For the first problem, we estimate any missing values with the training
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sample node mean (if X is numerical) or mode (if X is categorical) as in the previous
paragraph. After the case passes through the splits, the imputed values are erased.

Our solution to the second problem depends on the model being fitted. If it is a
multiple linear logistic model, we estimate the values of the missing regressors with the
training sample node means. If it is a best simple linear logistic model and the required
regressor is missing, we use the next best simple linear logistic model containing a non-
missing regressor, where “best” refers to smallest deviance per degree of freedom.

LOTUS recursively partitions the sample space until there are too few observations in
each partition to fit a non-trivial logistic regression model. It then employs the CART
minimal cost-complexity technique to prune away branches, with “cost” being estimated
predicted deviance. If an independent test sample is available, it may be used to estimate
the latter; otherwise, ten-fold cross-validation is employed. The subtree with the lowest
estimated predicted tree deviance is selected. The reader is referred to Breiman et al.
(1984, Chap. 3) for details on the pruning procedure.

7 ACCURACY AND TRAINING TIME

We use thirty real datasets to compare LOTUS with stepwise linear logistic regression
with respect to prediction accuracy and training time. Many of the datasets are from
StatLib (http://lib.stat.cmu.edu), the University of California, Irvine, data repository
(Blake and Merz 2000, UCI), and L. Torgo’s website (http://www.liacc.up.pt/~ltorgo/
Regression/DataSets.html, TRD). Some are derived from datasets whose response vari-
ables take more than two values. For example, the Letter-A and Letter-V datasets are
derived from the UCI letter dataset by defining Y = 1 for the letter “A” and the class
of vowels, respectively. Tables 8 and 9 contain brief descriptions of each dataset, including
the source, number of observations, percentage of cases with missing values, number of
predictor variables of each type, total number of variables for stepwise logistic regression,
and percentage of cases with Y = 1.

We study both LOTUS(S) and LOTUS(M). All quantitative variables are treated as n-
variables. Stepwise linear logistic regression models (denoted by LOGIST) are fitted using
the glm and step functions of S-PLUS (Venables and Ripley 1999). Each categorical
variable in LOGIST is first converted into a set of m − 1 dummy variables, where m is
the number of categories. Further, since there is no provision for ordinal variables in
glm, they are treated as quantitative in LOGIST. The step function uses the AIC criterion
(Akaike 1974), AIC = −2(maximized log-likelihood) + 2(number of parameters). Starting
with a full model, variables are dropped or added sequentially until AIC is minimized.

The predicted mean deviance (i.e., deviance divided by number of predicted cases) and
the predicted mean square error are used as measures of accuracy. We estimate them by
ten-fold cross-validation as follows. Each dataset is randomly divided into ten roughly
equal-sized subsamples. One subsample (called evaluation sample) is removed in turn
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Table 8: Brief descriptions of the datasets

ID Name Definition of event Y = 1 Source
1 Abalone Age of abalone ≤ 10 UCI
2 Adult Income > $50,000 UCI
3 Ailerons Control action on ailerons of F16 ≤ -0.0009 TRD
4 Annthyroid Presence of hypothyroid disease UCI
5 Birth Low birth weight Hosmer and Lemeshow (1989)
6 Boston Median value of houses ≥ $22,500 UCI
7 Breast Presence of malignant tumor UCI
8 Bupa Presence of liver disorder UCI
9 California Median value of houses > $130,000 StatLib

10 Car American-made car StatLib
11 Contracep Contraceptive use in Indonesian women UCI
12 Covertype Lodgepole Pine versus Spruce-Fir UCI
13 Cow Survival of recumbent cows Cook and Weisberg (1999, p. 467)
14 Credit Approval of Australian credit card UCI
15 German Approval of German credit card StatLog, UCI
16 Heart Presence of heart disease UCI
17 Housing8 Median price of house > $33,200 TRD
18 Housing16 Median price of house > $33,200 TRD
19 Letter-A Letter ‘A’ versus non-‘A’ UCI
20 Letter-V Vowel versus non-vowel UCI
21 Otitis Presence of otitis media in babies Le (1998, pp. 233–238)
22 Pageblock Text block versus non-text block UCI
23 Pendigit Digit ‘0’ versus others UCI
24 Pima Diabetes in Pima Indian women UCI
25 Prostate Tumor penetration of prostatic capsule U. of Massachusetts dataset archive
26 Sick Presence of hypothyroid disease UCI
27 Teaching Teaching assistant score in upper-third Authors
28 Telecom Telecommunication pole > 0 Weiss and Indurkhya (1995), TRD
29 Wage Wage in upper-third of wage earners Schafgans (1998)
30 Yeast Cytosolic, nuclear, or mitochondrial site UCI
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Table 9: Characteristics of the datasets. The column labeled “#LOGIST parameters” refers
to the number of variables after transformation of categorical variables to 0-1 variables; it
is only relevant to LOGIST.

Dataset Number of variables #LOGIST Percent
ID Name Size %Missing Quantitative Nominal Ordinal parameters Y = 1
1 Abalone 4177 0.0 7 1 0 9 65.4
2 Adult 48842 7.4 6 8 0 97 23.9
3 Ailerons 13750 0.0 12 0 0 12 42.4
4 Annthyroid 7200 0.0 6 15 0 21 92.6
5 Birth 189 0.0 2 4 2 9 31.2
6 Boston 506 0.0 12 1 0 13 41.9
7 Breast 699 2.3 9 0 0 9 34.5
8 Bupa 345 0.0 6 0 0 6 58.0
9 California 20640 0.0 8 0 0 8 71.4

10 Car 406 3.4 5 1 1 18 62.6
11 Contracep 1473 0.0 2 4 3 11 42.7
12 Covertype 495141 0.0 10 2 0 47 57.2
13 Cow 435 85.7 6 3 0 9 38.2
14 Credit 690 5.4 6 9 0 37 44.5
15 German 1000 0.0 7 13 0 48 30.0
16 Heart 303 2.0 6 7 0 18 45.9
17 Housing8 22784 0.0 8 0 0 8 49.8
18 Housing16 22784 0.0 16 0 0 16 49.8
19 Letter-A 20000 0.0 16 0 0 16 3.9
20 Letter-V 20000 0.0 16 0 0 16 19.4
21 Otitis 199 0.0 2 4 0 6 48.2
22 Pageblock 5473 0.0 10 0 0 10 89.8
23 Pendigit 10992 0.0 16 0 0 16 10.4
24 Pima 768 0.0 8 0 0 8 34.9
25 Prostate 380 1.1 4 3 0 9 40.3
26 Sick 3772 29.9 6 20 0 29 6.1
27 Teaching 324 0.0 2 4 0 73 33.3
28 Telecom 15000 0.0 48 0 0 48 37.7
29 Wage 3380 0.0 3 4 0 8 33.3
30 Yeast 1484 0.0 8 0 0 8 76.5
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and the models are built by pooling the observations in the other nine subsamples (called
training sample). The evaluation sample is then applied to each model to obtain the
estimated predicted mean deviance

DEV = −2n−1
n∑

i=1

[yi log(p̂i/yi) + (1 − yi) log{(1 − p̂i)/(1 − yi)}]

and estimated predicted mean square error MSE = n−1 ∑n
i=1(yi − p̂i)2. Here yi and p̂i are

the response and predicted probability for the ith observation in the evaluation set and n
is its sample size. The final estimates of predicted mean deviance and mean square error
are obtained by averaging the ten DEV and MSE values, respectively.

For LOGIST, cases with missing predictor values in the training sample are omitted.
Further, in the computation of its DEV and MSE values, any missing quantitative or
categorical values in the evaluation samples are replaced with their training sample means
or modes, respectively. Categorical values that appear in an evaluation sample but not
in the training sample are treated as missing values. LOGIST is programmed in S-PLUS
2000 Professional Edition and LOTUS in Fortran 90. The computations for all except one
dataset are obtained on a Windows XP Pentium III 700Mhz PC with 256MB of memory.
Those for dataset 12 are from a Windows XP Pentium IV 2.4Ghz PC with 1GB of memory,
because S-PLUS needed more memory.

Table 10 gives the results. The last row of the table shows that by both accuracy
measures, LOTUS(M) is better on average than LOTUS(S)which is turn is better than LOGIST.
To find out whether the differences are statistically significant, we follow Lim et al. (2000)
and Kim and Loh (2001) and fit a mixed effects model separately to the mean deviance
and the mean square error numbers in the table. The methods are treated as fixed effects
and the datasets and the dataset-method interactions as random effects. The hypothesis
of no method effects is strongly rejected in both cases—the significance probabilities are
0.003 for mean deviance and 0.01 for mean square error. Application of 90% simultaneous
confidence intervals based on Tukey’s studentized range (Miller 1989, pp. 37–48) reveals
the difference in mean deviance between LOTUS(S) and LOTUS(M) to be not statistically
significant, but both are significantly better than LOGIST. A similar analysis of the mean
square error results shows that only LOTUS(M) is significantly better than LOGIST.

How much do LOTUS(S) and LOTUS(M) improve upon the prediction accuracy of LOGIST
in percentage terms? Figure 8 shows barplots of the estimated predicted mean deviance of
LOTUS(S) and LOTUS(M) relative to that of LOGIST. (The graph for predicted mean square
error is not shown because it is very similar.) A method is more accurate than LOGIST at
a given dataset if its bar has length less than 1. LOTUS(S) and LOTUS(M) are better than
LOGIST in eighteen and twenty-three, respectively, out of thirty datasets. The average
relative mean deviances for LOTUS(S) and LOTUS(M) are 0.916 and 0.863, respectively.
Thus on average, LOTUS(S) and LOTUS(M) reduce the mean deviance of LOGIST by nine
and sixteen percent, respectively. Ninety-five percent confidence intervals for the average
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Table 10: Ten-fold cross-validation estimates of predicted mean deviance and mean square
error

Dataset Mean Deviance Mean Square Error
ID Name LOGIST LOTUS(S) LOTUS(M) LOGIST LOTUS(S) LOTUS(M)
1 Abalone 0.915 0.953 0.864 0.149 0.158 0.141
2 Adult 0.643 0.658 0.638 0.103 0.105 0.102
3 Ailerons 0.549 0.635 0.531 0.086 0.099 0.083
4 Annthyroid 0.266 0.220 0.210 0.026 0.023 0.025
5 Birth 1.255 1.224 1.233 0.214 0.210 0.212
6 Boston 0.651 0.722 0.638 0.094 0.110 0.092
7 Breast 0.206 0.320 0.205 0.027 0.040 0.027
8 Bupa 1.250 1.306 1.254 0.215 0.224 0.212
9 California 0.649 0.478 0.485 0.101 0.071 0.071

10 Car 0.545 0.538 0.585 0.089 0.084 0.097
11 Contracep 1.218 1.156 1.134 0.210 0.195 0.191
12 Covertype 0.953 0.813 0.673 0.156 0.130 0.104
13 Cow 1.691 1.160 1.285 0.244 0.198 0.200
14 Credit 0.912 0.709 0.678 0.106 0.106 0.101
15 German 1.035 1.086 1.091 0.169 0.181 0.182
16 Heart 0.828 1.071 0.956 0.125 0.165 0.153
17 Housing8 0.945 0.786 0.731 0.147 0.124 0.115
18 Housing16 0.941 0.799 0.720 0.145 0.125 0.111
19 Letter-A 0.071 0.067 0.041 0.008 0.007 0.005
20 Letter-V 0.868 0.392 0.359 0.139 0.056 0.045
21 Otitis 1.265 1.298 1.303 0.218 0.224 0.230
22 Pageblock 0.304 0.206 0.281 0.039 0.024 0.037
23 Pendigit 0.115 0.055 0.057 0.012 0.006 0.008
24 Pima 0.974 1.021 0.965 0.158 0.166 0.156
25 Prostate 1.071 1.129 1.084 0.180 0.191 0.182
26 Sick 0.212 0.154 0.183 0.027 0.017 0.022
27 Teaching 1.199 1.238 1.236 0.205 0.214 0.214
28 Telecom 0.655 0.279 0.212 0.098 0.039 0.029
29 Wage 0.923 0.915 0.890 0.149 0.146 0.142
30 Yeast 0.562 0.497 0.508 0.081 0.069 0.070

Average 0.789 0.729 0.701 0.124 0.117 0.112
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relative mean deviance for LOTUS(S) and LOTUS(M) are (0.827, 1.005) and (0.787, 0.938),
respectively. A two-sided paired t-test of the relative mean deviances of LOTUS(S) and
LOTUS(M) has a significance probability of 0.0504.
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Figure 8: Predicted mean deviance of LOTUS(S) and LOTUS(M) relative to that of LOGIST

Table 11 gives the total execution times over the ten cross-validation runs. LOGIST is
slowest on six and fastest on twenty-one datasets. LOTUS(S) is slowest on on fifteen and
fastest on one. LOTUS(M) is slowest on nine and fastest on six. The speed of each method
is affected by different factors. Recall that LOGIST first converts each categorical variable
into a set of dummy variables and then uses stepwise variable selection. This puts it at a
disadvantage when there are categorical variables with many levels, because LOTUS uses
neither categorical variables nor stepwise variable selection in its node modeling. A good
example is dataset 2, which has 6 quantitative and 8 categorical variables. After conversion
to dummy variables, the effective number of variables for LOGIST is 97 (see Table 9). As a
result, the execution time for LOGIST is twice as long as that for the two LOTUS methods.

Figure 9 plots the execution times of LOTUS(S) and LOTUS(M) relative to that of LOGIST
against the sample size of each dataset. The relative times range from 0.13 to 28.7, in-
creasing roughly linearly at the rate of the square root of sample size. The dependence
on sample size is mainly due to large datasets requiring correspondingly large trees to be
grown and then pruned. LOTUS(S) and LOTUS(M) are both faster than LOGIST for sample
sizes less than 350. LOTUS(S) takes longer than LOTUS(M) for sample sizes up to about
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Table 11: Total execution time of the cross validation runs for each dataset-method pair.
The letters ‘s’, ‘m’ and ‘h’ denote seconds, minutes and hours, respectively. The times for
dataset 12 are obtained on a faster machine than for the other datasets.

ID Name LOGIST LOTUS(S) LOTUS(M) ID Name LOGIST LOTUS(S) LOTUS(M)
1 Abalone 41s 15.0m 8.4m 16 Heart 19s 14s 7s
2 Adult 4.4h 2.2h 2.4h 17 Housing8 6.8m 1.1h 1.2h
3 Ailerons 4.4m 54.2m 1.1h 18 Housing16 7.1m 2.1h 3.4h
4 Annthyroid 3.5m 12.4m 9.2m 19 Letter-A 9.5m 55.8m 1.5h
5 Birth 11s 5s 4s 20 Letter-V 8.1m 1.4h 2.2h
6 Boston 18s 1.4m 25s 21 Otitis 15s 2s 2s
7 Breast 16s 40s 19s 22 Pageblock 1.0m 16.7m 18.0m
8 Bupa 6s 34s 21s 23 Pendigit 3.2m 27.7m 59.2m
9 California 5.7m 1.2h 1.3h 24 Pima 13s 1.8m 1.3m

10 Car 13s 20s 12s 25 Prostate 13s 23s 13s
11 Contracep 35s 58s 46s 26 Sick 2.7m 4.8m 3.2m
12 Covertype 40.5m 17.0h 16.1h 27 Teaching 26s 10s 9s
13 Cow 15s 32s 11s 28 Telecom 9.7m 1.8h 3.8h
14 Credit 43s 40s 18s 29 Wage 1.2m 4.5m 2.9m
15 German 49s 1.8m 1.1m 30 Yeast 18s 3.6m 1.9m

5000. For larger datasets, LOTUS(M) almost always takes longer.

8 INSURANCE EXAMPLE

We now use a dataset from the Dutch insurance industry to illustrate how LOTUS(S) can
identify and produce an intelligible profile of the prospective customers from a database.
The dataset comes from the UCI Knowledge Discovery in Databases (KDD) archive. It
was used to compare data mining packages at the Computational Intelligence and Learning
(CoIL) Challenge 2000 competition (van der Putten, de Ruiter and van Someren 2000).
The training set contains 5822 customer records. Each record consists of 85 predictor
variables, representing socio-demographic data derived from area ZIP codes (variables 1–
43) and product usage data (variables 44–85). All customers living in areas with the same
ZIP code have the same socio-demographic values. Two variables are categorical: customer
subtype (mostype, forty categories) and customer main type (moshoofd, ten categories).
The rest are quantitative. The Y variable, caravan, equals 1 if a customer owns a caravan
insurance policy, and 0 otherwise. Of the 5822 customers in the training set, only 348 (or
six percent) own caravan insurance policies. A test set containing 4000 customer records
is also given. The two goals of the CoIL challenge were: (1) to build a model from the
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Figure 9: Plot of training time relative to LOGIST versus sample size. LOTUS(S) and
LOTUS(M) are indicated by the plot symbols ‘s’ and ‘m’, respectively. The axes are in
logarithmic scale.

5822 training records and use it to find the top 20% of customers in the test set who are
most likely to own caravan insurance policies and (2) to provide insight into why some
customers have caravan insurance policies and how they differ from other customers.

There are 238 caravan policy owners in the test set. If we randomly select twenty
percent, we would expect to get about 48 of them. Of the 43 participants in the CoIL
Challenge, the top two solutions use naive Bayes methods to correctly identify 121 and 115
policy owners. The third best solution uses an evolutionary algorithm to correctly identify
112 policy owners. Other solutions employed neural networks, genetic programming, fuzzy
classifiers, classification and regression trees, support vector machines, and inductive logic
programming. The worst solution correctly identifies only 37 caravan policy owners. A
marketing expert who served as a contest judge remarked that “almost all entries lacked
a good description in words: participants seemed to forget that most marketeers find it
difficult to read statistics (and understand them!)” (van der Putten et al. 2000).

Since caravan policy owners make up only six percent of the training set, it is difficult
for many classification algorithms to beat the simple rule that predicts every customer
as a caravan policy non-owner. CART, for example, yields a trivial tree with no splits.
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We can force the tree to split by not pruning, but this runs the risk of increasing the
misclassification rate. Alternatively, we can employ unequal misclassification costs, but
then we face the problem of what cost ratio to use and the possibility that different ratios
lead to different tree structures. Cost ratios of 2:1, 10:1, and 20:1 yield trees with one,
four, and two leaf nodes, respectively. The tree with cost ratio 20:1 splits on contribution
to car policies (ppersaut), giving a p̂ of 86/3459 if ppersaut ≤ 5, and 262/2363 otherwise.
This model is too crude, however, for identifying the caravan policy owners because there
are 1617 test cases with ppersaut > 5.

Number of
car policies

(apersaut) = 0 > 0

72/2845 1
One-car ownership

rate (maut1)

Customer
main type
(moshoofd) ∈ S �∈ S

139/1019 2
Contribution to fire
policies (pbrand)

Contribution to
boat policies

(pplezier) = 0 > 0

Contribution to fire
policies (pbrand) ≤ 2 ≥ 3

43/1114 3
Contribution to

car policies
(ppersaut)

84/826 4
Lower level
education

(mopllaag)

10/18 5
Contribution to

third party insurance
(pwapart)

Figure 10: LOTUS(S) tree for the insurance data. At each leaf node are given the name
of the selected regressor and the number of caravan policy holders divided by the training
sample size. The set S = {“successful hedonists,” “driven growers,” “average family”}.

A more refined solution that is also easy to interpret is the five-leaf LOTUS(S) model
displayed in Figure 10. The predictor variables chosen at the splits are number of car poli-
cies (apersaut), customer main type (moshoofd), contribution to boat policies (pplezier),
and contribution to fire policies (pbrand). Three other variables also appear as regressors
in the leaf nodes: one-car ownership rate (maut1), contribution to car policies (ppersaut),

27



lower level education (mopllaag), and contribution to third party insurance (pwapart).
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Figure 11: Fitted logistic regression functions in the leaf nodes of the LOTUS(S) tree in
Figure 10. The dotted line marks the threshold value for identification of caravan policy
owners in the test sample.

Plots of the p̂ functions in the leaf nodes are shown in Figure 11. Theoretically, the top
800 (i.e., twenty percent) of the test cases most likely to own caravan policies are those for
which p̂ ≥ p̂0, where p̂0 = 0.0877 is the 0.8-quantile of the p̂-values for the test set. The
value of p̂0 is indicated by a dotted line in each plot. The Figure allows us to characterize
the customers who own caravan policies as follows. Leaf node 1 customers do not own
car policies and are least likely to own caravan policies. Leaf node 5 customers are most
likely to own caravan policies, but they comprise only 0.3% of the training sample. They
have one or more car policies, contribute to boat policies at level 1 or higher, and are not
of type S, where S is the set of categories “successful hedonists,” “driven growers,” and
“average family.” The most likely places to find caravan policy owners are in leaf nodes 2
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and 4, which contain approximately one-sixth and one-seventh, respectively, of the training
sample. The customers in node 2 own one or more car policies and belong to type S. Those
in node 4 also own one or more car policies, contribute to fire policies at level 3 or higher,
but are not of type S and do not contribute to boat policies. Leaf node 3 contains about
one-fifth of the training sample, but only thirteen customers have p̂ > p̂0 and none has
p̂ = p̂0. These customers own one or more car policies, are not of type S, do not contribute
to boat policies, contribute to fire policies at level 2 or lower, and contribute to car policies
at level 7 or higher.

Now we can select the 800 test cases most likely to own caravan policies. First we
include every test case for which p̂ > p̂0. This nets 0, 415, 9, 284, and 7 cases from leaf
nodes 1–5, respectively. The numbers of caravan policy owners among them are 0, 70, 0,
31, and 1, respectively. This yields 715 test customers of which 102 own caravan policies.
There are 123 test customers with p̂ = p̂0, all belonging to leaf node 4 and having lower
level education 6. Among them, 12 own caravan policies. Depending on which 85 of the
123 test cases are selected, we can have between 102 and 114 caravan policy owners.

A simple way to break the ties is to apply stepwise logistic regression to the tied
observations. That is, we fit a stepwise logistic regression model (using the S-PLUS step
function and starting with a constant model) to the 166 training cases in leaf node 4 that
have p̂ = p̂0. The estimated probabilities from this model induce an ordering of the 123 tied
test cases. The top 81 cases according to this ordering contain 10 caravan policy owners.
The next 5 cases are tied and have 1 caravan policy owner among them. Thus we select
the top 81 test cases and randomly choose 4 from the 5 ties. This yields a total of 112 or
113 caravan policy owners, with probabilities 0.2 and 0.8, respectively.

For comparison, stepwise logistic regression applied to the entire training sample of
5822 cases correctly identifies 110 test cases as caravan policy owners. Thus it has about
the same accuracy as our method. On the other hand, the stepwise logistic model is much
harder to interpret because it employs twenty predictor variables. Finally, we note that
although our predicted number of 112 or 113 is lower than the 121 found by the naive
Bayes method, the difference is not statistically significant because the standard errors of
the predictions are approximately equal to 10.

9 CONCLUSION

Linear logistic regression is a well-understood and powerful technique for obtaining
probability estimates in binary regression problems. Its main weaknesses are difficulties
in model fitting and interpreting the regression coefficients when there are many predictor
variables. Classification trees solve this problem by moving the model complexity entirely
to the tree structure. But because they yield piecewise-constant estimates of p, large
tree structures are often required to match the prediction accuracy and fine granularity of
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logistic regression models. Very large trees, however, are also very difficult to comprehend.
Logistic regression trees try to combine the prediction accuracy of logistic models with

the interpretability of tree structures. By allowing the model complexity to be shared
between a tree structure and a set of logistic regression node models, the user can balance
tree structure complexity with node model complexity. For example, if multiple linear
logistic regression is employed to model the data in the nodes, the tree may be kept short.
If a richer tree structure is desired, simple linear logistic models may be fitted to the nodes.
A clear advantage of a simple linear logistic model is that the regression coefficient can be
interpreted directly without worry of collinearity and other complications.

Since selection bias can cause a tree structure to suggest incorrect conclusions about
the effects of variables, special attention is paid to overcoming this problem in the LOTUS
algorithm. Like the GUIDE linear regression tree method, LOTUS does this by separating
the task of variable selection from that of split point selection. Unlike GUIDE, however,
LOTUS cannot use the patterns of signs of the residuals from a fitted model for variable
selection. This is because the signs of the residuals are independent of the fitted model.
Instead LOTUS uses a trend-adjusted chi-square test to allow for linear effects in the
model. A welcome side-effect of separating variable selection from split point selection is
a substantial reduction in computation.

Besides model interpretation, prediction accuracy and computation speed are often
equally important in practical applications. The results from the empirical study of real
datasets in Section 7 show that LOTUS is on average more accurate than stepwise logistic
regression. It is faster than the latter for sample sizes up to around 350 and is not more
than thirty times slower for sample sizes up to a half million. Thus it is accurate and
sufficiently fast for most practical applications.

Compiled binaries (for Windows, Linux, Sun Solaris and Digital Unix) and a user man-
ual of the LOTUS computer program may be obtained from http://www.stat.nus.edu.
sg/~kinyee/lotus.html.
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