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Abstract

A tree-structured classifier is a decision tree for predicting a class variable from
one or more predictor variables. THAID [15, 7] was the first such algorithm.
This article focuses on the CART R© [2], C4.5 [17], and GUIDE [12] methods.
The algorithms are briefly reviewed and their similarities and differences com-
pared on a real data set and by simulation.

In a typical classification problem, we have a training sample L = {(X1, Y1),
(X2, Y2), . . . , (XN , YN )} of N observations, where each X = (X1, . . . , XK) is a
K-dimensional vector of predictor variables and Y is a class variable that takes
one of J values. We want to construct a rule for predicting the Y value of a
new observation given its value of X. If the predictor variables are all ordered,
i.e., non-categorical, some popular classifiers are linear discriminant analysis
(LDA), nearest neighbor, and support vector machines. (Categorical predictor
variables can be accommodated by transformation to vectors of 0-1 dummy
variables.) Although these classifiers often possess good prediction accuracy,
they act like black boxes and do not provide much insight into the roles of the
predictor variables.

A tree-structured classifier (or classification tree) is an attractive alternative be-
cause it is easy to interpret. It is a decision tree obtained by recursive partition-
ing of the X-space. An observation in a partition is predicted to belong to the
class with minimum estimated misclassification cost. Classification trees have
been demonstrated to possess high prediction accuracy compared to many
other methods; see, e.g., Lim et al. [11], Perlich et al. [16], and Loh [12]. They
do not require categorical predictor variables to be transformed. THAID [15, 7]
is the first published algorithm. We review here the CART R© [2], C4.5 [17], and
GUIDE [12] algorithms and illustrate their similarities and differences on a real
data set and by simulation.
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CART

All classification tree algorithms have to address two common problems: how to split
a nodet and when to stop splitting it? The first problem is usually solved by means
of a node impurity functioni(t), with the best split being the one that minimizes a
function of the impurities in the subnodes. LetNj be the number of training samples
belonging to classj and letπj denote the prior probability of classj, which may
be known or estimated from the training sample, in which caseπj = Nj/N (j =
1, 2, . . . , J). Let Nj(t) be the number of training samples in nodet belonging to class
j and definep(j, t) = πjNj(t)/Nj , p(t) =

∑
j p(j, t), andp(j|t) = p(j, t)/p(t). If

the misclassification cost is equal for all classes, CART uses the Gini impurity function
i(t) = 1 −

∑
j p2(j|t) and splitst into two subnodestL and tR. The best split is

the one that minimizesp(tL)i(tL) + p(tR)i(tR). If X is an ordered variable, the split
has the formX ≤ c, with c being the mid-point of two consecutive order statistics
of X . Otherwise, ifX is a categorical variable, the split isX ∈ S with S being a
subset of the values ofX . Searching for the latter type of split can be computationally
expensive ifX takes a large number of distinct values. IfX hasa distinct values, there
are(2a−1 − 1) splits of the formX ∈ S. When there are missing values, only the
observations non-missing inX are used to evaluate the impurity function. CART uses
surrogate splits to send observations with missing values through a split. A surrogate
split is one on another variable that is most similar to the selected split in its partitioning
of the data. Unlike THAID, which uses stopping rules to control splitting, CART first
grows a large tree and then uses cross-validation to prune itto a smaller size.

To illustrate, consider a data set on cylinder banding in rotogravure printing from the
UCI repository [1]. The data, described in Evans and Fisher [6], consist of 540 obser-
vations on 33 predictor variables, of which 14 are categorical. The class variable takes
two values: “band” and “noband,” with 228 and 312 observations, respectively. Ta-
ble 1 lists the variable names and the values they take, with numbers of missing values
in parentheses. The left side of Figure 1 shows the pruned tree obtained from RPART
[20], an R implementation of CART. The first split is onpress with observations tak-
ing values 815, 816, and 821 going to the left node and other values to the right, which
is terminal and predicted to be “noband.” The left node is split on speed, with values
less than 2035 predicted to be “band,” and otherwise “noband.” The sample size in
each terminal node is given on its left and the estimated error rate (proportion of train-
ing samples misclassified) beneath it. Overall, 163 training samples are misclassified.

C4.5

C4.5 uses the entropy functioni(t) = −
∑

j p(j|t) log
2
p(j|t). Let s denote the split

of t on X into subnodest1, t2, . . . , tm and letf(t) be the proportion of observations
with no missingX-values int. Let t0 denote the set of observations missingX ; t0
is empty iff(t) = 1. Let q(tk) = N(tk)/N(t), for k = 0, 1, . . . , m, and define the
weighted sum of entropiesis(t) =

∑m

k=0
q(tk)i(tk). Thengs(t) = f(t){i(t) − is(t)}

2



Table 1 Variables for banding data, with number of missing values in parentheses.

Categorical Description Ordered Description

grain grain screened: yes, no (49) proofcut proof cut: 0–100 (55)
proof proof on ctd ink: yes, no (57) viscosity viscosity: 0–100 (5)
blademfg blade manufacturer: Benton, caliper caliper: 0–1.0 (27)

Daetwyler, Uddeholm (60) hardener hardener: 0–3.0 (7)
paper paper type: uncoated, temp ink temperature: 5-30 (2)

coated, super (0) inkpct ink percent: 0–100 (56)
inktype ink type: uncoated, coated, humid humidity: 5–120 (1)

cover (0) current current density: 20–50 (7)
direct direct steam: yes, no (25) rough roughness: 0–2 (30)
solvent solvent type: xylol, lactol, pressure blade pressure: 10-75 (63)

naptha, line, other (55) varnish varnish percent:
type type on cylinder: yes, no (18) 0–100 (56)
presstype press type: albert, motter70, speed press speed: 0–4000 (10)

motter94, woodhoe (0) anode anode space ratio:
press press: 821, 802, 813, 824, 70–130 (7)

815, 816, 827, 828 (0) chrome chrome content:
unitnum unit number: 1, 2, 3, 4, 5, 6, 7, 80–120 (3)

8, 9, 10 (0) roller roller durometer:
size cylinder size: catalog, spiegel, 15–120 (55)

tabloid (3) solvpct solvent percent:
location mill location: north US, south 0–100 (56)

US, Canadian, Scandanavian,voltage voltage: 0-16 (57)
mid European (156) amp amperage: 0–10 (55)

tank plating tank: 1910, 1911, wax wax: 0–4.0 (6)
other (18)

press = 815,
816, 821

speed
< 2035

217

0.35

52

0.31

271

0.26

inkpct = ?

56

0

press = 815,
816, 821

231

0.48

253

0.21

Figure 1: RPART (left) and GUIDE (right) trees with nodes predicted as “band” and
“noband” colored dark and light gray, respectively. At eachintermediate node, an
observation goes to the left branch if and only if the posted condition is satisfied. The
sample size and error rate are printed on the left and bottom of each terminal node.
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≤ 2200
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8
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0.25

viscosity
≤ 52

31
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> 52

89.6

0.30
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motter94

23

0.06

super uncoated

viscosity
≤ 61

112.3

0.28

press =
802,813,
827,828 816

20

0.4

anode
≤ 103

25.9

0.43

> 103

821

27

0.42

pressure
≤ 23

27

0.26

> 23

39

0.40

815,824

29

0.21

> 61

76.4

0.14

> 2200

Figure 2: C4.5 tree with nodes predicted as “band” and “noband” colored dark and light
gray, respectively. The sample size and error rate are printed on the left and bottom of
each terminal node.

is the reduction in entropy attributable to the non-missingobservations. The split that
maximizes thegain ratio, −gs(t)/

∑m

k=0
q(tk) log2 q(tk), is selected. After the split is

chosen,t0 is removed and each observation missingX is sent to everytk, with weight
proportional toq(tk), (k = 1, 2, . . . , m).

C4.5 uses a binary split of the formX ≤ c, if X is an ordered variable. But ifX
is categorical, C4.5 creates one branch for each category. As a result, C4.5 is very
fast in splitting on categorical variables. On the other hand, if X has many categories,
the branches may be so thinly populated that no further splits are possible. To protect
somewhat against this contingency as well as to prune the tree, C4.5 uses a heuristic
formula to estimate the error rates of each intermediate node and its branches. A node
is pruned if its error rate increases with splitting. Further, it is replaced by its most
frequently used branch if the error rate of the branch is smaller than if the node is split.

Figure 2 shows the C4.5 tree for the banding data, after terminal nodes having the
same predicted class are combined. The first split is onspeed, with values> 2200
predicted as “noband.” Subsequent splits are onpaper, presstype, viscosity,
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andpress. Three nodes are split into three or more branches and the tree misclassifies
116 training samples.

GUIDE

GUIDE is the latest in an evolution that started with FACT [14] and progressed through
QUEST [13] and CRUISE [9, 10]. Instead of simultaneously searching forX and the
split pointc or split setS, FACT breaks the task into two steps: select theX that has the
most significant analysis of variance (ANOVA)F -test and apply LDA to the selected
X to find c or S. To allow categorical variables, each is first converted to an ordered
one by mapping it to a dummy vector and then projecting the latter onto the largest dis-
criminant coordinate. Because LDA is used twice on each categorical variable but only
once on each ordered variable, a selection bias toward categorical variables results.
QUEST corrects the problem by using chi-square tests for thecategorical variables in-
stead ofF -tests and it employs quadratic discriminant analysis to find c. CRUISE uses
chi-square tests throughout, after discretizing each ordered variable into a categorical
one. It tests for main effects as well as interactions between pairs ofX variables at
each node, and it splits each node into several branches, with one for each class.

GUIDE uses the same chi-square tests as CRUISE, but it controls for the multiplicity
of the main effect and interaction tests. Unlike CRUISE and QUEST, both of which
use imputation to deal with missing values, GUIDE solves theproblem of missing
categorical values by assigning a special category for them. A missing category is
also created for each ordered variable during computation of the chi-square tests, but
afterX is selected, its missing values are mapped to negative infinity for split point
selection. Thus missing values are always sent to the left branch by the splitX ≤ c,
with the choicec = −∞ equivalent to sending only missing values to the left. This
is useful for detecting whether a variable is missing at random. An example appears
in the GUIDE tree shown on the right side of Figure 1. Variableinkpct is chosen to
split the root node withc = −∞ because it has 56 missing values all belonging to class
“band.” The second split onpress has the same form as the first split of the RPART
tree. The GUIDE tree misclassifies 165 training samples.

Selection bias

Which classification tree is best? In terms of error rates, the RPART and GUIDE trees
are essentially even while C4.5 misclassifies about one third less. It is unwise, however,
to judge classifiers based on error rates that are estimated from the training samples,
because the rates can be driven arbitrarily low by over-partitioning the data. Published
empirical results indicate that the average error rate of C4.5 is slightly higher than that
of GUIDE and slightly lower than that of RPART [12]; see Lim etal. [11], where C4.5
is compared with TREE [18], another implementation of CART.
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What can we infer from the trees about the importance of the variables? After all,
one supposed advantage of classification trees is their ability to answer such questions.
For example, we may be tempted to conclude from the RPART treethatpress and
speed are the most important variables. Butspeed does not appear in the GUIDE
tree, which selectsinkpct first. The situation is made muddier by the C4.5 tree,
which selects five other variables instead ofinkpct. Ordering the variables by their
importance is a task fraught with difficulties. Chief among them is that the concept of
importance is not well defined. CART has a formula for assigning importance scores
based on surrogate splits and GUIDE has one based on chi-square statistics. But the
orderings usually do not agree completely. Even if the ordering is the same, we cannot
expect that the variables will be selected for the splits in that order. This is because
only one variable can be selected to split a node. If two variables are equally important
and are highly correlated, only one can be selected. Now if their effects are exhausted
by the split, the variable that is not selected may never appear in the tree.

Another difficulty with inferring the importance of variables from the trees is the se-
lection bias of CART and C4.5. Doyle [5] was the first to warn that greedy search
techniques are biased toward selecting variables with moresplits. For example, the
variablepress, which takes 8 categorical values, allows28−1 − 1 = 127 splits but
the variablespeed, which takes 83 ordered values, allows 82 splits. Even worse, a
binary-valued variable such asgrain has only one split. Therefore in the hypothetical
event that all the predictor variables are independent of the class variable,press is
more likely thanspeed, which in turn is more likely thangrain, to reduce the CART
node impurity by splitting the node.

An easy way to verify the selection bias is by simulation. Letthe class variable take
two equally likely values and let there be six predictor variables, withX1, X2, andX3

having 2, 6, and 10, respectively, equi-probable categorical levels,X4 andX5 ordered
and uniformly distributed on the integers 1–5 and 1–50, respectively, andX6 uniformly
distributed on the unit interval. Thus the numbers of splitsallowed byX1, . . . ,X6 are 1,
31, 511, 4, 49, and 499, respectively. Let all the variables,including class, be mutually
independent, so that each variable is selected to split the root node with probability
0.167 if there is no selection bias. Table 2 shows the actual probabilities for the three
algorithms, estimated from 100,000 simulation trials for sample sizeN = 500. The
results are reported for three situations: no missing values, 90% randomly missing
values inX1 andX4, and 90% randomly missing values inX3 andX6. Clearly, C4.5 is
strongly biased toward categorical variables, with the bias increasing with the number
of categories. Among ordered variables, C4.5 prefers thosewith fewer distinct values.
RPART is consistently biased toward variables with more splits, regardless of whether
they are categorical or ordered. But it, too, has a preference for categorical variables—
X3 is selected more than twice as often asX6, even though they have about the same
numbers of splits.

For C4.5, missing values inX1 andX4 (the categorical and ordered variables with the
fewest splits) appear to slightly increase their selectionprobabilities. But if the missing
values occur inX3 andX6 (the variables with the most splits), C4.5 overwhelmingly
selectsX3 with probability 0.965 and doubles its selection probability of X6 from
0.003 to 0.007. For RPART, missing values inX1 andX4 have little effect. But missing
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Table 2 Variable selection probabilities for a two-class prob-
lem with 500 observations, from 100,000 simulation trials.

Algorithm X1 X2 X3 X4 X5 X6

No missing values
C4.5 0.042 0.275 0.620 0.044 0.016 0.003
RPART 0.009 0.132 0.469 0.033 0.132 0.226
GUIDE 0.168 0.161 0.161 0.170 0.169 0.171

90% randomly missingX1 andX4

C4.5 0.049 0.274 0.609 0.054 0.015 0.003
RPART 0.009 0.134 0.471 0.029 0.133 0.224
GUIDE 0.163 0.165 0.161 0.165 0.174 0.173

90% randomly missingX3 andX6

C4.5 0.004 0.013 0.965 0.006 0.004 0.007
RPART 0.012 0.159 0.520 0.042 0.160 0.107
GUIDE 0.167 0.164 0.149 0.179 0.176 0.164

X1, X2, andX3 are categorical with 2, 6, and 10 equi-probable cat-
egories. X4, X5, andX6 are ordered, withX4 andX5 uniformly
distributed on the integers 1–5 and 1–50, respectively, andX6 is nor-
mal. All variables, including class, are mutually independent. An
unbiased method selects each variable with probability 0.167.

values inX3 andX6 increase the selection probability of the former from 0.469to
0.520 and decrease that of the latter from 0.226 to 0.107. GUIDE is considerably more
robust; its selection probabilities are all around the equi-probable value of 0.167, with
or without missing values.

Conclusion

We focused on three tree-structured classifiers to highlight their major features
and differences. Two of them are pioneers in the field and the third is repre-
sentative of a new generation of algorithms designed to guard against selec-
tion bias—see Hothorn et al. [8] and Strobl et al. [19] for other approaches. In
terms of tree structure, CART and GUIDE always produce binary trees while
C4.5 tends to give larger and more sprawling trees, especially when there are
categorical variables. For interpretability, the most desirable tree is one that is
neither too small (because it provides little information) nor too big (because it
can be challenging to follow the logic contained in several levels of splits). In
this respect, CART and GUIDE have the advantage.

Selection bias should be a serious concern for anyone wishing to interpret
a tree. But if prediction accuracy is all that matters, the bias often does no
harm, provided the sample size is large. This is because the damage due to
an uninformative split can be repaired by good splits later on. It is possible,
however, to get better accuracy by using an ensemble of trees. An increasing
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body of literature suggests that the majority vote from a large ensemble of
trees often makes better predictions than that from a single member of the
ensemble [3, 4]; see Loh [12] for some results on the extent of improvement
from ensembles of CART and GUIDE trees.
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CART R© is a registered trademark of California Statistical Software, Inc.
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