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Abstract
Natural heterogeneity in patient populations can make it very hard to develop treat-

ments that benefit all patients. As a result, an important goal of precision medicine

is identification of patient subgroups that respond to treatment at a much higher

(or lower) rate than the population average. Despite there being many subgroup

identification methods, there is no comprehensive comparative study of their statis-

tical properties. We review 13 methods and use real-world and simulated data to

compare the performance of their publicly available software using seven criteria:

(a) bias in selection of subgroup variables, (b) probability of false discovery,

(c) probability of identifying correct predictive variables, (d) bias in estimates of

subgroup treatment effects, (e) expected subgroup size, (f) expected true treatment

effect of subgroups, and (g) subgroup stability. The results show that many

methods fare poorly on at least one criterion.
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1 | INTRODUCTION

Because the effect of a treatment can vary substantially over a patient population, a central goal of precision medicine is iden-
tification of patient subgroups whose average response to a treatment is much higher or lower than the population average. To
be useful, the subgroups should be defined in terms of biomarkers (such as laboratory test results, genetic profiles, and history
and severity of illness) as well as demographic variables (such as age, gender, and race). A common approach in finding the
subgroups is analysis of data from a randomized clinical trial. Following popular terminology, a variable is said to be “prog-
nostic” if it conveys information on the likely outcome of a disease, independent of the treatment. Examples of such variables
include patient age, family history of disease, disease stage, and prior therapy. A variable is said to be “predictive” if it iden-
tifies the likely benefit resulting from the treatment (Italiano, 2011). Predictive variables are also known as “treatment modera-
tors” in some domains (Chen, Tian, Cai, & Yu, 2017). In statistical terms, a predictive variable has an interaction with the
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treatment variable. A variable can be both prognostic and predictive. Methods for identifying subgroups often identify predic-
tive variables as well.

There are few comparative studies of subgroup methods. Two studies compared some methods completed on one or two
sets of data (Doove, Dusseldorp, Van Deun, & Van Mechelen, 2014; Lipkovich, Dmitrienko, & D'Agostino Sr., 2017).
Another study used normally distributed simulated data (Alemayehu, Chen, & Markatou, 2017). The purpose of this article is
to review 13 methods and compare their statistical properties and performance on seven criteria: (a) bias in selection of sub-
group variables, (b) probability of false discovery, (c) probability of correctly identifying predictive variables, (d) bias in esti-
mates of subgroup treatment effects, (e) expected true treatment effect of subgroups, (f) expected subgroup size, and
(g) subgroup stability. The methods were selected because they have publicly available software that can be easily adapted for
the simulation experiments. Because many of the methods are inapplicable to data with missing values in the predictor vari-
ables, the comparison is limited to completely observed data.

For the sake of brevity and simplicity, the methods are described for a binary response variable (Y = 0, 1) and a binary
treatment variable (Z = 0, 1). Let X= X1,X2,…,Xp

� �
denote a vector of p predictor variables and let Yi,Zi,Xið Þ denote the

values taken by the ith observation. The methods here find subgroups with differential treatment effects, that is, the estimated
treatment effects in the subgroup are larger (in absolute value) than those in its complement. Predictive variables are identified
as those appearing in the definitions of the subgroups.

2 | SUBGROUP METHODS

2.1 | Tree methods

The model of Negassa, Ciampi, Abrahamowicz, Shapiro, and Boivin (2005) appears to be the earliest tree method for sub-
group identification, but its software is not available.

1. IT: Interaction trees (Su, Tsai, Wang, Nickerson, & Bogong, 2009; Su, Zhou, Yan, Fan, & Yang, 2008). This algorithm
quite faithfully follows the CART (classification and regression trees) approach (Breiman, Friedman, Olshen, & Stone,
1984). It recursively partitions the data with splits chosen to optimize an objective function and then prunes the resulting
tree using the AIC (Akaike information criterion). Given a node t and a split s on variable X, let tL and tR denote the left
and right subnodes of t. The split takes the form s = {X ≤ c} for a constant c if X is ordinal, and s = {X 2 A} for a subset
A of the levels of X if it is categorical. The value of c or A is that which maximizes the quantity

j �yL1−�yL0ð Þ− �yR1−�yR0ð Þ j
σ̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n−1
L0 + n−1

L1 + n−1
R0 + n−1

R1

p ð1Þ

where �yLz, �yRz, nLz and nRz are the mean responses and sample sizes in tL and tR of the observations with treatment Z= z
(z=0, 1), and σ̂ is a pooled estimate of the error SD. This is equivalent to minimizing the p-value from testing the hypoth-
esis that δ=0 in the model Y= η+ βZ+ γI(s) + δZI(s) + ϵ. Although the variables appearing in the subgroups may be iden-
tified as predictive, the aggressive search for splits makes their identification unreliable. This is because variables that
offer more ways to split a node have a higher chance to be chosen. Further, as shown later, maximizing quantity (1) pro-
duces biased estimates of treatment effects. The R functions in http://biopharmnet.com/subgroup-analysis-software/ were
used to perform the computations here.

2. SIDES: Subgroup identification based on differential effect search (Lipkovich, Dmitrienko, Denne, & Enas, 2011). SIDES
finds multiple alternative subgroups by identifying the best m splits of each node t that maximize a p-value criterion. In the

examples and simulations below, we use m = 2 and the “differential effect splitting” p-value 2 1−Φ jTL−TRj=
ffiffiffi
2

p� �� �
,

where TL and TR denote the test statistics for testing the one-sided hypothesis of treatment efficacy in tL and tR and Φ is the
standard normal distribution function. For each split, the procedure is repeated on the subnode with the larger estimated treat-
ment effect, up to a prespecified depth (we used depth=3 here). Heuristic adjustments are applied to the p-values to control
for multiplicity of splits and correlations among the p-values. Once a variable is selected to split a node, it is not used to split
subsequent nodes. As a result, SIDES cannot yield subgroups of the form {a<X≤ b} for finite values of a and b.
SIDEScreen (Lipkovich & Dmitrienko, 2014) extends SIDES by adding a preliminary variable selection step. This is carried
out by using SIDES to score the importance of the X variables first. Then those with high scores are applied to SIDES to find
the subgroups. In the examples and simulations below, the “adaptive SIDEScreen” default is used, where a high score is
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defined to be greater than 1 SD above the mean of the permutation null distribution of the maximum importance score. The
software was obtained from http://biopharmnet.com/subgroup-analysis-software/. As with IT, the variables in the subgroups
may be identified as predictive variables. But the multiplicity corrections for p-value adjustments do not completely remove
selection bias.

3. Virtual twins (Foster, Taylor, & Ruberg, 2011) uses random forest (Breiman, 2001) to estimate the treatment effect τ(x)
= P(Y = 1 j X = x, Z = 1) − P(Y = 1 j X = x, Z = 0) of each observation, with split variables Z, X1, … , Xp and their inter-
actions ZX1, … , ZXp, and (1 − Z)X1, … , (1 − Z)Xp. Categorical variables are converted to dummy 0–1 variables. Then
CART is applied to fit a classification or regression tree to the estimated τ(x) values to find the subgroups. If a classifica-
tion tree is used, the two classes are defined by the estimated τ(x) being greater or less than a prespecified constant. If a
regression tree is used, the subgroups are the terminal nodes with estimated treatment effect greater than φ + 0.05, where
ϕ is the estimated marginal treatment effect of the whole training sample. The examples and simulations below used
regression trees because classification trees often produced no subgroups. The trees were pruned with the default complex-
ity parameter value of 0.02. (The alternative 0-SE pruning rule slightly reduced the probability of discovery under both
null and non-null models.) Use of CART allows VT to be used for subgroup identification as well as identification of pre-
dictive variables, but the latter is unreliable due to the selection biases of CART (Loh, 2002; Loh & Shih, 1997). The R
functions in http://biopharmnet.com/subgroup-analysis-software/ were used to perform the computations here.

4. GUIDE: Generalized unbiased interaction detection and estimation (Loh, 2002, 2009). GUIDE recursively partitions the
data to form a binary tree whose terminal nodes define the subgroups. Here we consider only the Gi option, where at each
node t, an interaction test is performed on each X variable to select one to split the data in the node into two subnodes
(Loh, Fu, Man, Champion, & Yu, 2016; Loh, He, & Man, 2015; Loh, Man, & Wang, 2018). If X is a categorical variable
with d levels a1, a2, … , ad (missing categorical values are assigned their own level), the null hypothesis H0:

Y = τZ +
Pd

k=1γkI X = akð Þ+ ϵ is tested against the alternative hypothesis H1: Y =
Pd

k=1

P1
z=0δkzI X = ak,Z = zð Þ+ ϵ,

where ϵ is assumed to be independent and normally distributed with mean 0 and constant variance. If X is an ordinal vari-
able, it is first transformed into a categorical variable by bracketing its values at the node sample X-quartiles, with an addi-
tional level for missing values. The variable X with the smallest p-value from testing H0 versus H1 is selected to split the
node. If X is categorical, the split takes the form s={X2A}, where A is a subset of the levels of X. If X is ordinal, the split
takes the form s1 = X ≤ c or X =NAf g or s2 = X ≤ c andX 6¼NAf g, where NA denotes the missing value code. This
approach to variable selection ensures that GUIDE does not have selection bias. Therefore it can be used for identification
of subgroups and predictive variables.
The selected values of A or c depend on the complexity of the linear models fitted in the subnodes. There are three
choices: (a) Gcon: EY= β0 + τZ, (b) Glin: EY= β0 + βX* + τZ, where X* is the ordinal X variable yielding the smallest
residual sum of squares, and (c) Gstep: EY = β0 +

P
Xj2SβjXj + τZ, where S is the subset of variables yielding the smallest

residual sum of square, obtained by stepwise linear regression. Categorical variables are included via their dummy 0–1
variables.
Let SL and SR denote the residual sums of squares of the fitted models in the left and right subnodes tL and tR, respectively.
The selected split (and the value of A or c) is the one that minimizes SL+ SR. Partitioning continues recursively until the
sample size in each node falls below a given threshold. Then the CART cross-validation (CV) pruning method is
employed to reduce the size of the tree. Gcon and Glin employ the “0.5-SE rule,” which gives the smallest subtree with
CV estimate of mean squared error within 0.5 SE of the smallest CV estimate. Gstep uses the 0-SE rule. The software was
obtained from http://pages.stat.wisc.edu/loh/guide.html.

5. MOB: Model-based recursive partitioning (Seibold, Zeileis, & Hothorn, 2016; Zeileis, Hothorn, & Hornik, 2008). MOB
fits a parametric model (e.g., generalized linear model or Weibull accelerated failure time model) to the data in each node,
with parameter values estimated as solutions to the score equations, the scores being partial derivatives of the log-likeli-
hood. The variable selected to split a node is found by means of tests of independence between each X variable and the
scores corresponding to the intercept and the treatment effect. Observations with missing values are excluded (Seibold,
Zeileis, & Hothorn, 2017, Appendix 2). Given a prespecified level of statistical significance, Bonferroni adjustments are
employed to determine whether any test is significant. If there is none, the node is not split. Otherwise, the variable with
the smallest p-value is selected; the split point is chosen to minimize the sum of the negative log-likelihoods in the two
subnodes.
The examples and simulations below employ the glmtree function in the R package partykit. Because the objective
here is to find subgroups defined by predictive variables (instead of prognostic variables), the parm option was used to
restrict the independence tests to the scores for the treatment variable. There are two node models: (a) MOBc with log{P
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(Y = 1)/P(Y = 0)} = β0 + τZ and (b) MOBm with log{P(Y = 1)/P(Y = 0)} = β0 +
P

jβjXJ + τZ, where categorical
variables are converted to dummy 0–1 variables. The trees are pruned with an AIC. MOBc, and MOBm can be used
for identification of predictive variables but as shown below, MOBc has selection bias if there are prognostic
variables.

2.2 | Nontree methods

1. FindIt: Finding heterogeneous treatment effects (Imai & Ratkovic, 2013). FindIt uses a penalized support vector machine

to find predictive variables. Let Y* = (2Y − 1) and let U= X1,X2,…,Xp,X2
1,X

2
2,…,X2

p,X1X2,X1X3,…,Xp−1Xp

� �
be the

vector consisting of all linear, quadratic, and two-factor interactions of the predictor variables. Let

V= ZX1,…,ZXp,ZX2
1,…,ZX2

p,ZX1X2,…,ZXp−1Xp

� �
be the vector derived from U by multiplying its elements with Z.

FindIt fits the support vector machine model W Xð Þ= μ+ βU+ γV, where W is a latent variable, with two LASSO
penalties:

β̂, γ̂
� �

= argmin
X
i

1−Y*
i μ+ βU+ γVð Þ		 		2

+ + λ1
X
j

j βj j + λ2
X
k

j γk j :

The values of λ1 and λ2 are chosen by generalized CV. A variable Xi is considered to be predictive if at least one of ZXi,

ZX2
i , ZXiX1,ZXiX2,… has a nonzero γ component. Let Ŵ be the fitted value and Ŵ

*
= min max Ŵ ,−1

� �
,1

� �
be Ŵ trun-

cated at ±1. The estimated conditional average treatment effect at X= x is τ̂ xð Þ= Ŵ
*
X,Z =1ð Þ−Ŵ

*
X,Z =0ð Þ

n o
=2 and

the selected subgroup consists of the observations for which τ̂ xð Þ>0. The R package FindIt (Egami, Ratkovic, & Imai,
2017) was used in the examples and simulations.

2. ROWSi: Regularized outcome weighted subgroup identification (Xu et al., 2015). Let π =P(Z=1), ξ(x) = log(1 + exp

(−x)), and k�k denote the L1 norm of a vector. Subgroups are defined by the sign of X0β̂, where β̂ is the minimizer of

n−1
Xn
i=1

ξ 2Zi−1f gX0
iβYi

� �
π 2Zi−1ð Þ+ 1−Zið Þ + λ1jjβjj1 + λ2η βð Þ

and η βð Þ is a penalty imposed on ordinal variables that take more than two values. The solution rests on many assump-
tions, including that E Y jX,Zð Þ= h X, 2Z−1ð ÞX0βð Þ for some unknown function h satisfying certain properties. The com-
putations here used the R package personalized (Huling & Yu, 2018).

3. PRIM: Patient rule induction method (Chen, Zhong, Belousov, & Devanarayan, 2015). If Z is a binary treatment variable
and Y is an uncensored continuous variable, the model fitted in each node is

EY= β0 + β1Z + β2ZI Sð Þ ð2Þ

where S denotes a subgroup. If Y is binary or right-censored, the left side of the model is replaced by the log odds ratio

and log hazard ratio, respectively. Let β̂i denote the estimated value of βi (i=1, 2) and let �S denote the complement of S.
Assuming that treatment level Z=1 has a negative effect on EY, permissible subgroups are required to satisfy some con-
straints, including: (a) the estimated treatment effect in S is less than that in �S and (b) the statistical significance of the
treatment effect in S is stronger than that in �S. Subgroups are found by splitting the training sample into two subsets and
applying a bump-hunting procedure (Friedman & Fisher, 1999) to one subset with the p-value of the treatment effect as
objective function. The other subset is used to pick the final subgroup from the pool of candidates. The computations here
used the R package SubgrpID with the options cv.iter=100 and k.fold=5 (Huang et al., 2017).

4. SeqBT: Sequential bootstrapping and aggregating of threshold from trees (Huang et al., 2017). SeqBT uses the same
model (2) as PRIM. The subgroup S consists of intersections of half-lines {Xj ≤ cj} or {Xj > cj} for some subset of predic-
tor variables Xj, which is found iteratively. At each iteration, a search of the remaining Xj is carried out to find the value of
cj that optimizes the p-value for testing β2 = 0 with the current S replaced with S \ {Xj ≤ cj} and S \ {Xj > cj}; the Xj
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with the smallest p-value is selected. A bootstrap step is included in the search for cj. Iteration stops when the smallest p-
value exceeds a prespecified threshold. The procedure is implemented in the R package SubgrpID.

5. OWE: Outcome weighted estimation (Chen et al., 2017). OWE is a general framework for subgroup identification using
weighting or A-learning (Murphy, 2003). Assuming that the treatment variable Z = ± 1 and given a loss function M(y, v),
which may be squared error or logistic loss, OWE employs the potential outcome approach of causal inference to find a
score function f Xð Þ that minimizes the quantity

E
M Y ,Zf Xð Þð Þ

Zπ Xð Þ+ 1−Zð Þ=2 jX= x

 �

where π Xð Þ is a propensity score which is known in randomized trials. The function f may be estimated with splines, addi-
tive models, or linear combinations of X (the last is used here). A lasso-type regularization penalty term may be added if
the number of predictor variables is large. The subgroup with positive treatment effect (T=1 vs. T=−1) consists of the
observations with f xð Þ<0. The software is in the R package personalized.

3 | SIMULATION EXPERIMENTS

3.1 | Experimental design

Several simulation experiments were performed to evaluate the methods. Each experiment employed 2000 simulation trials
with training samples of 400 observations per trial. Where permitted by the software, subgroups were required to have at least
30 observations with at least five for each treatment level. The response and treatment variables Y and Z were chosen to be
binary so as to include as many methods as possible. Treatment assignment was independent of the covariates, mimicking ran-
domized clinical trials. Because it is often known a priori in such trials that a nonzero treatment effect is either positive or neg-
ative, all the nonnull simulation models here had positive treatment effects.

While the identified subgroups in nontree methods are well-defined, being typically half-spaces, it is not clear in tree
methods which terminal node (or union of terminal nodes) should be the identified subgroup. To reduce the number of poten-
tial subgroups, we defined a subgroup as inadmissible if it was the whole sample space (because it is not strictly a subgroup)
or if its treatment effect estimate was not positive. An admissible subgroup is one that is not inadmissible. We chose the
admissible subgroup with the largest positive estimated treatment effect as the identified subgroup in each trial. We did not
consider the union of all subgroups with positive estimates of treatment effect because doing so reduces the average treatment
effect of the union. Besides, the presumed use of the subgroup is to identify a target population for a future trial and a union
of disjoint subgroups is harder to interpret than a single subgroup. True subgroup sizes and treatment effects were estimated
with an independent test sample of 5,000 observations.

Ten predictor variables, X1, X2, … , X10, were employed. Their marginal distributions are given in Table 1, where N(0, 1)
denotes standard normal, Exp 1ð Þ exponential with mean 1, Ber 0:5ð Þ Bernoulli with success probability 0.5, and M(10) multi-
nomial with 10 equal-probability cells. All except the normally distributed X variables were mutually independent, and
cor X2,X3ð Þ=cor Xj,Xk

� �
=0:5 for j, k=7, 8, 9, 10, j 6¼ k.

The Y variable was generated by the logit models shown in Table 2, which have the form

logit= log
P Y =1ð Þ
P Y =0ð Þ = f xð Þ+ θI Z = zð Þg xð Þ:

Thus the true treatment effect of an observation with X = x is

TABLE 1 Distributions of X1, X2, … ,
X10, and Z. All are mutually independent
except cor X2,X3ð Þ=0:5 and

cor Xj,Xk
� �

=0:5 for j, k=7,

8, 9, 10, j 6¼ k

X1�N(0, 1) X2�N(0, 1) X3�N(0, 1) X4 �Exp 1ð Þ
X5 �Ber 0:5ð Þ X6�M(10) X7�N(0, 1) X8�N(0, 1)

X9�N(0, 1) X10�N(0, 1) Z�Ber 0:5ð Þ
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τ* xð Þ=E Y jX = x,Z =1ð Þ−E Y jX = x,Z =0ð Þ

=P Y =1 jX = x,Z =1ð Þ−P Y =1 jX = x,Z =0ð Þ

=
exp f xð Þ+ θg xð Þf g

1+ exp f xð Þ+ θg xð Þf g−
exp f xð Þf g

1+ exp f xð Þf g :

Given a subgroup G, the true treatment effect τ*G is estimated by the mean of τ*(x) among the test observations in G. The
estimated treatment effect τ̂G is obtained from the training observations in G as follows.

Gcon, IT and SIDES. These three methods fit the linear model E(Y) = β0 + β1I(Z = z) in each node and τ̂G is the least-
squares estimate of β1 for the training data in G.

Glin. This fits a simple linear model E(Y) = β0 + β*X* + θI(Z = z) to each node where X* is the best linear predictor in the
node. τ̂G is the least-squares estimate of θ for the training data in G.

Gstep. This fits a stepwise linear model E(Y) = β0 +
P

jβjXj + θI(Z = z) to each node and τ̂G is the least-squares estimate
of θ for the training data in G.

MOBc, PRIM, and SeqBT. These fit the logistic model log{P(Y = 1)/(Y = 0)} = β0 + θI(Z = z) in each node and

τ̂G =
exp β̂0 + θ̂
� �

1+ exp β̂0 + θ̂
� �− exp β̂0

� �
1+ exp β̂0

� � ,
where β̂0 and θ̂ are the MLEs of β0 and θ, respectively, for the training data in G.

MOBm. This fits the multiple linear logistic model log P Y =1ð Þ= Y =0ð Þf g= β0 +
P
j
βjXj + θI Z = zð Þ in each node and

τ̂G =

exp β̂0 +
P
j
β̂jXj + θ̂

 !

1+ exp β̂0 +
P
j
β̂jXj + θ̂

 !−

exp β̂0 +
P
j
β̂jXj

 !

1+ exp β̂0 +
P
j
β̂jXj

 ! ,

where β̂0, β̂1,…, θ̂
� �

are the MLEs of (β0, β1, … , θ) for the training data in G.
ROWSI, OWE, and VT. τ̂G is the difference between the training sample means of Y for the two treatment groups in G.
FindIt. τ̂G is the mean of the values of τ̂ xð Þ (defined in earlier description of FindIt) among the training observations in G.

TABLE 2 Three simulation models
without treatment effect and eight with
treatment effect

Models without treatment effect Prognostic Predictive

B00 logit = 0 None None

B01 logit = 0.5(X1 + X2) X1, X2 None

B02 logit = 0:5 X1 +X2
1−1

� �
X1 None

Models with treatment effect

B1 logit = 0:5 X1 +X2−X5ð Þ+2ZI X6 =oddð Þ X1, X2, X5 X6

B2 logit = 0.5X2 + 2ZI(X1 > 0) X2 X1

B3 logit = 0.3(X1 + X2) + 2ZI(X1 > 0) X1, X2 X1

B4 logit = 0.3(X2 + X3 − 2) + 2ZX4 X2, X3 X4

B5 logit = 0:2 X1 +X2−2ð Þ+2ZI X1 < 1,X6 =oddð Þ X1, X2 X1, X6

B6 logit = 0.5(X2 − 1) + 2ZI(| X1| <0.8) X2 X1

B7 logit = 0:2 X2 + 2X2
2−6

� �
+2ZI X1 > 0ð Þ X2 X1

B8 logit = 0.5X2 + 2ZX5 X2 X5
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3.2 | Results for models B00–B02
3.2.1 | Variable selection bias

Table 3 gives estimates of the probabilities that X1, … , X10 are selected by each method in models B00, B01 and B02.
Figure 1 shows plots of the values. For tree methods, the values are the probabilities that each variable is selected to split the
root node of a tree, before it is pruned (for SIDES, they are the probabilities that each variable is selected to split the root node
using parameter values width = depth = 1). For nontree methods, they are the probabilities that each variable has a non-
zero interaction with Z; frequencies of multiple variables with nonzero coefficients are divided equally, except for dummy var-
iables from the same categorical variable, which are counted only once. A method has unbiased variable selection if its
probabilities are all equal to 0.10. The results show that only Gcon, Glin and Gstep are unbiased—their selection probabilities
are all within two simulation standard errors of 0.10. The other methods have varying degrees of bias. IT and VT are the
worst. They are heavily biased against the binary variable X5 and in favor of the 10-level categorical variable X6; these are
properties inherited from CART (see Loh, 2002; Loh & Shih, 1997). OWE and ROWSi are also biased toward X6, although
not for the same reason. MOBc is unbiased under B00, but it is not under B01 and B02 where it is biased toward the prognos-
tic variables (X1 and X2 in B01 and X1 in B02). MOBm is biased under B02, because it tends to pick up the quadratic prognos-
tic effect of X1. SIDES is biased against binary (X5) and categorical (X6) variables. PRIM and SeqBT are biased against the
binary variable X5. FindIt is biased toward the exponential variable X4 and the categorical variable X6.

3.2.2 | Probability of false discovery

Table 4 gives the probabilities of false subgroup discovery (Type I error) of the methods under B00, B01, and B02. They are
estimated by the proportions of simulation trials yielding admissible subgroups. The results, presented graphically in Figure 2,
show that PRIM, ROWSi, SeqBT, and OWE have the largest probabilities of error (from 0.27 to 0.62). VT, SIDES, and FindIt
form the middle group, with probabilities of error ranging from 0.13 to 0.17. The methods with best control of probability of
Type I error are, in order, IT, Gstep, MOBm, Glin, MOBc, and Gcon.

3.3 | Results for models B1–B8
3.3.1 | Probability of selecting a predictive variable

Figure 3 plots the probability that each method correctly selects the predictive variable in models B1–B8. For tree methods,
this is the probability that the predictive variable (or variables in the case of B5) is selected to split the root node of the tree,
before it is pruned (for SIDES, it is the probability that a variable is selected to split the root node, using parameter values
width = depth = 1). For nontree methods, it is the frequency that the estimated regression coefficient of the predictive vari-
able is nonzero. The results show that IT, VT, SeqBT, MOBc, MOBm, Gcon, Glin, and Gstep are most likely to select the
right predictive variables; ROWSi, OWE, and FindIt are the least. SIDES and PRIM are in the middle, with probabilities
between 0.50 and 0.80.

3.3.2 | Mean subgroup size

Figure 4 plots the mean size of the subgroups for each method, conditional on a subgroup being found, where size is measured
by the proportion of test observations in the subgroup. The results show that FindIt, OWE and ROWSi tend to have the largest
subgroup size (at least 80%), followed by PRIM. VT tends to yield the smallest subgroups.

3.3.3 | True subgroup treatment effect

The large mean subgroup sizes of FindIt, OWE, and ROWSi are offset by their relatively small treatment effect sizes, as
shown in Figure 5 which plots the median true effects (estimated from the test samples) of their subgroups. VT, MOBc, Gcon,
Glin, Gstep, and IT have consistently the largest true treatment effects.

LOH ET AL. 7 of 21



TABLE 3 Variable selection probabilities for models without treatment effect; simulation SEs approximately 0.0067

Method X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Model B00: logit = 0

IT 0.106 0.081 0.088 0.090 0.003 0.285 0.079 0.091 0.093 0.082

Gcon 0.103 0.093 0.087 0.110 0.104 0.112 0.102 0.095 0.093 0.101

Glin 0.101 0.098 0.089 0.113 0.099 0.106 0.107 0.098 0.091 0.098

Gstep 0.097 0.098 0.087 0.111 0.104 0.110 0.102 0.096 0.094 0.101

MOBc 0.114 0.107 0.102 0.115 0.107 0.095 0.102 0.085 0.088 0.086

MOBm 0.108 0.106 0.107 0.113 0.113 0.081 0.102 0.083 0.091 0.096

SeqBT 0.118 0.114 0.121 0.117 0.026 0.105 0.104 0.095 0.099 0.100

PRIM 0.128 0.117 0.130 0.126 0.006 0.088 0.102 0.097 0.102 0.105

FindIt 0.095 0.089 0.092 0.138 0.091 0.176 0.068 0.087 0.079 0.086

ROWSi 0.098 0.097 0.094 0.090 0.096 0.149 0.092 0.094 0.096 0.094

OWE 0.097 0.095 0.099 0.086 0.087 0.172 0.089 0.092 0.094 0.089

SIDES 0.111 0.118 0.102 0.108 0.045 0.054 0.108 0.143 0.102 0.108

VT 0.048 0.046 0.040 0.028 0.001 0.642 0.050 0.050 0.048 0.048

Model B01: logit = 0.5(X1 + X2)

IT 0.078 0.068 0.084 0.099 0.001 0.300 0.084 0.094 0.103 0.088

Gcon 0.105 0.091 0.084 0.115 0.111 0.096 0.106 0.111 0.091 0.090

Glin 0.101 0.092 0.082 0.122 0.113 0.102 0.107 0.103 0.086 0.092

Gstep 0.099 0.091 0.090 0.123 0.105 0.092 0.115 0.099 0.09 0.096

MOBc 0.267 0.235 0.088 0.068 0.066 0.051 0.057 0.064 0.053 0.051

MOBm 0.104 0.093 0.108 0.110 0.112 0.096 0.100 0.093 0.084 0.100

SeqBT 0.101 0.109 0.118 0.107 0.030 0.130 0.098 0.101 0.101 0.106

PRIM 0.118 0.111 0.116 0.111 0.004 0.105 0.110 0.102 0.116 0.107

FindIt 0.090 0.090 0.087 0.163 0.077 0.169 0.082 0.079 0.082 0.081

ROWSi 0.097 0.096 0.094 0.091 0.097 0.150 0.098 0.092 0.092 0.092

OWE 0.091 0.082 0.088 0.072 0.079 0.247 0.087 0.087 0.085 0.084

SIDES 0.151 0.100 0.100 0.100 0.061 0.022 0.133 0.115 0.111 0.108

VT 0.082 0.076 0.046 0.022 0 0.610 0.046 0.036 0.042 0.038

Model B02: logit = 0:5 X1 +X2
1−1

� �
IT 0.063 0.103 0.087 0.105 0.005 0.280 0.090 0.087 0.078 0.103

Gcon 0.113 0.094 0.088 0.093 0.114 0.095 0.097 0.101 0.109 0.096

Glin 0.111 0.097 0.091 0.093 0.117 0.091 0.094 0.101! 0.108 0.097

Gstep 0.109 0.099 0.094 0.093 0.115 0.095 0.095 0.100 0.105 0.095

MOBc 0.378 0.074 0.073 0.078 0.073 0.071 0.064 0.063 0.064 0.061

MOBm 0.157 0.092 0.102 0.118 0.096 0.088 0.080 0.092 0.089 0.086

SeqBT 0.102 0.117 0.107 0.115 0.025 0.126 0.101 0.108 0.103 0.097

PRIM 0.115 0.108 0.115 0.129 0.006 0.090 0.119 0.102 0.105 0.110

FindIt 0.098 0.086 0.082 0.137 0.084 0.181 0.082 0.079 0.087 0.083

ROWSi 0.095 0.097 0.094 0.092 0.095 0.152 0.092 0.097 0.094 0.093

OWE 0.089 0.087 0.085 0.078 0.079 0.223 0.087 0.091 0.088 0.093

SIDES 0.118 0.131 0.093 0.137 0.053 0.069 0.084 0.087 0.097 0.131

VT 0.093 0.042 0.03 0.029 0 0.621 0.05 0.045 0.042 0.046
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FIGURE 1 Plots of variable
selection frequencies in Table 3.
Each frequency value is marked
with a short vertical bar;
horizontal lines connect the
smallest and largest selection
frequencies for each method;
dashed vertical lines mark two
simulation standard errors around
unbiasedness level of 0.10

TABLE 4 Estimated probabilities of
false discovery (Type I error)

Method B00 B01 B02 Method B00 B01 B02

Gcon 0.016 0.110 0.106 FindIt 0.126 0.141 0.172

Glin 0.012 0.079 0.061 ROWSi 0.481 0.497 0.483

Gstep 0.015 0.009 0.022 OWE 0.427 0.274 0.292

MOBc 0.041 0.129 0.099 SIDES 0.140 0.136 0.148

MOBm 0.022 0.026 0.028 VT 0.150 0.145 0.152

SeqBT 0.342 0.430 0.374 IT 0 0.001 0

PRIM 0.623 0.602 0.619
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FIGURE 2 Plots of
probability of false discovery
(Type I error). For Gcon, MOBc
and VT, the probabilities are upper
bounds. Vertical dotted lines mark
the 0.05 level
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3.3.4 | Treatment effect bias

Some methods over-estimate the treatment effect in the selected subgroups. For each simulation trial i yielding a selected sub-

group Gi, let Si and S*i denote the sets of training and test observations belonging to Gi. Let τ̂i and τ̂*i denote the estimated

average treatment effects in Gi computed from Si and S*i , respectively. The relative bias is estimated by the median of

τ̂i− τ̂*i
� �

=τ̂*i over the simulation trials that yield subgroups (the median is used instead of the mean because τ̂*i may be very
small). The results, shown in Figure 6, reveal that SIDES, IT, PRIM, and SeqBT tend to have the largest relative bias—their
subgroup treatment effect estimates are 20–50% larger than the true treatment effects. OWE and ROWSi have essentially no
bias and FindIt is almost the same, except in model B6 where it has a large negative bias. MOBc, Gcon, and Glin have the
next smallest relative bias. (The estimated biases are inevitably slightly overstated because the selected subgroup is required
by design to have positive treatment effect.)

4 | REAL DATA

The simulations only show aggregate properties of the methods. To reveal features of individual subgroups, the methods were
applied to three real data sets, which were originally collected to estimate overall treatment effects.
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FIGURE 3 Probability of selecting a predictive variable at the first split for tree methods. For nontree methods, it is the probability that a
predictive variable is among the selected variables
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4.1 | Work training

The data consist of observations from 722 workers in a national supported work program (Dehejia & Wahba, 1999; LaLonde,
1986). A random sample of 297 disadvantaged workers (such as welfare recipients, ex-addicts, ex-offenders, and young
school dropouts) were assigned to a training program (treatment) while the others served as controls. The response variable
was binary (1 if 1978 earnings were greater than that in 1975; 0 otherwise). Predictor variables were u75 (1 if unemployed in
1975; 0 otherwise), age (17–55), educ (years of education), race (white, black, Hispanic), 1975 earnings, college degree
(yes or no), and marr (1 for married, 0 for unmarried). Imai and Ratkovic (2013) and Egami et al. (2017) used the data to
identify subgroups of workers for whom the training program was beneficial.

Table 5 gives the results. Gcon, Gstep, IT, and MOBm detected no subgroups. Glin found a subgroup consisting of married
workers, MOBc a subgroup defined by the unemployment variable u75, and SeqBT and SIDES a subgroup defined by race.
PRIM found a larger subgroup defined by race, educ, and age. FindIt, ROWSi, and OWE found subgroups defined by
linear combinations of all the predictor variables. VT produced random subgroups, due to the inherent randomness of random
forest. Estimates of the treatment effects in the subgroups that were found ranged from 0.08 to 0.23, with subgroups sizes from
117 to 646. Overall, the results are rather inconclusive, because there is little consistency among methods. The subgroups
defined by linear combinations of variables are hard to interpret.

4.2 | Breast cancer

The data are from a randomized trial of 686 subjects with primary node positive breast cancer (Schumacher et al., 1994).
Treatment was hormone therapy (horTh) versus no therapy and the response was recurrence-free survival time in days, with
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FIGURE 4 Conditional mean subgroup size as proportion of test observations
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56% censoring. Predictor variables were age (21–80), tsize (tumor size, 3–120 mm), pnodes (number of positive lymph
nodes, 1–51), progrec (progesterone receptor status, 0–2,380 fmol), estrec (estrogen receptor status, 0–1,144 fmol),
menostat (menopausal status, pre vs. post), and tgrade (tumor grade, 1–3). The data were previously used by Loh et al.
(2015, 2018) to find subgroups with differential treatment effects. They found that progrec and estrec were predictive
variables and pnodes was a prognostic variable.

FindIt, Gstep, ROWSi, and VT were excluded here because they are inapplicable to censored response data. Table 6 gives
the results for the other methods. Gcon, MOBc, and SeqBT identified progrec, SIDES found estrec, and PRIM found
pnodes. Glin, IT, MOBm, and OWE did not find any subgroups. There were large variations in the subgroup sizes and their
estimated treatment effects. Not surprisingly, large treatment effects were associated with small subgroups. Figures 7–10 show
the Kaplan–Meier survival curves in the subgroups and their complements. The plots for SIDES and PRIM show, somewhat
counterintuitively, that there were subgroups where hormone therapy was worse than no therapy. This is likely due to over-
fitting of differential treatment effects between subgroups.

4.3 | Heart failure

The data are from two randomized studies of left ventricular dysfunction on the efficacy of enalapril, an angiotensin-
converting enzyme inhibitor, on mortality and hospitalization for heart failure (SOLVD Investigators, 1991). The SOLVD-T
trial enrolled 2,569 subjects with history of overt congestive heart failure and the SOLVD-P trial enrolled 4,228 subjects with-
out history of overt congestive heart failure. The response variable was survival time from enrollment to death or hospitaliza-
tion. Table 7 lists the predictor variables.
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FIGURE 5 Conditional median true treatment effect of subgroups
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The original purpose of the studies was to see if the treatment had an overall beneficial effect on survival. We used the data
here to look for subgroups with differential treatment effects. FindIt, Gstep, ROWSi, and VT were again excluded because
they are inapplicable to censored response data. The Gcon tree in Figure 11 shows that the subgroup, lvef ≤26 and
crackles =1, has the largest estimated treatment effect. Glin, MOBm, PRIM, and SeqBT also found lvef to be predictive
but MOBc and SIDES identified copd and other variables. Glin additionally found nyha to be the best linear prognostic pre-
dictor. IT and OWE found no subgroups. Table 8 gives the results for all the methods. Because the treatment is expected to
have a positive effect on survival (negative effect on hazard risk), the table lists only subgroups with large negative treatment
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FIGURE 6 Conditional median relative bias of estimated treatment effects

TABLE 5 Subgroups, their number of observations, and estimated treatment effects for work training data

Method Subgroup Number of observations Effect

Gcon, Gstep, IT, MOBm None 0 0

Glin marr = 1 117 0.23

MOBc u75 = 1 289 0.08

PRIM educ ≥9 & age > 18 & race = black or white 479 0.11

SeqBT, SIDES race = black or white 646 0.11

FindIt Linear combination of all variables 558 0.11

OWE Linear combination of all variables 497 0.14

ROWSi Linear combination of all variables 409 0.18

VT Random Random Random
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effects. Figures 12–17 show the survival curves in the subgroups of the other methods. Again, as in the previous example,
Figure 16 shows that treatment is worse than no treatment in the complementary subgroup for SIDES.

5 | CONCLUSIONS

Unlike other machine learning applications where the sole goal is accurate prediction of future observations, a subgroup iden-
tification method needs to satisfy multiple criteria in order to be useful. This paper employed publicly available and simulated
data to compare 13 methods with regard to their biases in variable selection and treatment effect estimation, probability of

TABLE 6 Subgroups, their number of
observations, and estimated treatment
effects (in terms of log hazard) for breast
cancer data

Method Subgroup
Number of
observations Effect

Gcon, MOBc progrec >21 405 −0.66

PRIM pnodes ≤16 657 −0.42

SeqBT progrec >65 & pnodes

<9
238 −1.20

SIDES estrec >0 604 −0.49

Glin, IT, MOBm, OWE None 0 0

FindIt, Gstep, ROWSi,
VT

Inapplicable to censored data
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FIGURE 7 Gcon subgroup
(in green) for breast cancer data; sample
sizes and estimated treatment effects (log
relative risks) beside and below nodes
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false discovery, probability of selecting the correct predictive variable, mean subgroup size, true mean treatment effect in the
subgroup, and bias in the treatment effect estimates.

In terms of selection bias, VT, IT, and MOBc perform most poorly, the first two due to their adoption of the CART
exhaustive search paradigm and the latter due to its inability to separate the effects of prognostic variables. The methods with
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TABLE 7 Predictor variables in heart data

Name Description Name Description

trt Treatment vs. placebo weightkg Weight in kg (45–136)

study SOLVD-P vs SOLVD-T anydiurbl Binary (0, 1)

age Age (27–80) avsys Continuous (85–180)

avdia Continuous (50–110) sodium Serum sodium (129–149)

creatinine Serum creatinine (0.4–3.5) copd Presence of COPD (0, 1)

depedema Binary (0, 1) histk Binary (0, 1)

diabet Diabetic status (0, 1) beat Heart rate (45–120)

crackles Binary (0, 1) gender Gender

smoke Smoking status (current, former or never) himi History of myocardial infarction (0, 1)

lvef Left ventricular ejection fraction (10–35) nyha New York Heart Association functional class (1–4)
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best control of variable selection bias are Gcon, Glin, and Gstep (Figure 1). In terms of probability of false discovery, the
worst method is PRIM, with a probability consistently above 0.50. It is followed by ROWSi, SeqBT, OWE, SIDES, and
FindIt, roughly in that order. The methods with best control of the probability are, in order, IT, Gstep, MOBm, Glin, MOBc,
and Gcon (see Figure 2), although this seems to come at a price for IT, which found no subgroups in all three data sets. In
terms of probability of selecting the correct predictive variable, the poorest methods are ROWSi, FindIt, OWE, PRIM, and
SIDES, in that order. The other methods have fairly high probabilities (see Figure 3). In terms of subgroup size, OWE,
ROWSi, and FindIt tend to produce the largest subgroups, although large subgroups typically are associated with small true
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FIGURE 11 Gcon tree for heart data. Sample size and
treatment effect (log relative risk of treated vs. untreated)
printed beside and below each node. Node with selected
subgroup is in green color

TABLE 8 Subgroups and their
number of observations, and estimated
treatment effect (in terms of log hazard)
for heart data

Method Subgroup
Number of
observations Effect

Gcon lvef ≤26 & crackles = 1 192 −0.78

Glin lvef ≤26 with nyha linear prognostic
predictor

2,575 −0.41

MOBc anydiurbl = 1 & copd = 0 2,387 −0.47

MOBm lvef >28 & diabet = 1 571 −0.83

PRIM lvef ≤28 3,204 −0.38

SIDES beat ≤110 & avsys ≤176 & copd = 0 5,736 −0.31

SeqBT lvef ≤29 & sodium >140 & age < 72 1,271 −0.55

IT,
OWE

None 0 0

Others Inapplicable to censored data

lvef
≤ 26

2575

–0.41
nyha

diabet
= 0

2967

–0.03
nyha

0.61
nyha

707 FIGURE 12 Glin tree for heart data. Sample size printed beside node and treatment
effect (log relative risk of treated vs. untreated) and name of linear prognostic variable printed
below node. Node with selected subgroup is in green color
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TABLE 9 Types of response variables
and ability to accept missing data values

Response variable type Missing

Method Binary Continuous Censored values

FindIt Yes Yes No No

GUIDE Yes Yes Yes Yes

IT Yes Yes Yes Yes

MOB Yes Yes Yes No

OWE Yes Yes Yes No

PRIM Yes Yes Yes No

ROWSi Yes No No No

SeqBT Yes Yes Yes No

SIDES Yes Yes Yes Yes

VT Yes Yes No No
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subgroup treatment effects (see Figures 4 and 5). Some methods yield overly optimistic estimates of treatment effects. Chief
among them are IT, SIDES, PRIM, and SeqBT. The methods with the least-biased treatment effect estimates are OWE,
ROWSi, MOBc, Glin, and Gcon (see Figure 6). Awareness of these properties is helpful for choosing among different
methods, as the three real examples demonstrate.

In real applications, methods that use CV for parameter tuning or tree pruning produce random subgroups unless the ran-
dom seed is locked. Gcon, Glin, Gstep, and FindIt lock the seed in the software. OWE, PRIM, ROWSi, SeqBT, and VT let
the user change the seed or base the seed on the computer clock. As a result, their subgroups are random and hence unstable.
(The seed can be fixed by the user of these algorithms, but this opens the door to “cheating,” where a user tries different seeds
until he obtains a satisfactory result.) IT, MOBc, and MOBm use AIC or BIC (Bayesian information criterion) for pruning
and hence are stable. Because SIDES uses resampling-based Bonferroni corrections, the results are theoretically random; but
the effect is not as apparent as in CV.

Only completely observed data were used because 8 of the 13 methods (FindIt, MOBc, MOBm, OWE, PRIM, ROWSi,
SeqBT, and VT) do not accept missing values. In evaluating a predictor variable X for split selection, IT and SIDES exclude
observations with missing values in X (Lipkovich et al., 2017, Sec. 10); this approach is known to induce selection bias in
CART (Kim & Loh, 2001). Gcon, Glin, and Gstep use all observations.

Tables 9 and 10 summarize the properties of the methods. In our opinion, the most important for practical applications are
unbiased variable selection (to reduce the chance of mis-identifying subgroups and predictive variables), unbiased estimates
of subgroup treatment effects (to avoid over optimism), and probability of false discovery. The ability to accept data with
missing values is a plus but also often a necessity. Based on the simulation and publicly available data results here, the GUIDE
methods are among the best, if not the best.
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