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SUMMARY

This chapter describes a tree-structured extension and generalization of the logistic
regression method for fitting models to a binary-valued response variable. The tech-
nique overcomes a significant disadvantage of logistic regression, which is interpretabil-
ity of the model in the face of multicollinearity and Simpson’s paradox. Section 1
summarizes the statistical theory underlying the logistic regression model and the esti-
mation of its parameters. Section 2 reviews two standard approaches to model selection
for logistic regression, namely, model deviance relative to its degrees of freedom and
the AIC criterion. A dataset on tree damage during a severe thunderstorm is used
to compare the approaches and to highlight their weaknesses. A recently published
partial one-dimensional model that addresses some of the weaknesses is also reviewed.

Section 3 introduces the idea of a logistic regression tree model. The latter con-
sists of a binary tree in which a simple linear logistic regression (i.e., a linear logistic
regression using a single predictor variable) is fitted to each leaf node. A split at an
intermediate node is characterized by a subset of values taken by a (possibly different)
predictor variable. The objective is to partition the dataset into rectangular pieces
according to the values of the predictor variables such that a simple linear logistic
regression model adequately fits the data in each piece. Because the tree structure
and the piecewise models can be presented graphically, the whole model can be eas-
ily understood. This is illustrated with the thunderstorm dataset using the LOTUS
algorithm.

Section 4 describes the basic elements of the LOTUS algorithm, which is based
on recursive partitioning and cost-complexity pruning. A key feature of the algorithm
is a correction for bias in variable selection at the splits of the tree. Without bias
correction, the splits can yield incorrect inferences. Section 5 shows an application of
LOTUS to a dataset on automobile crash-tests involving dummies. This dataset is
challenging because of its large size, its mix of ordered and unordered variables, and its
large number missing values. It also provides a demonstration of Simpson’s paradox.
The chapter concludes with some remarks in Section 6.

Key Words and Phrases: AIC criterion, deviance, LOTUS, maximum likelihood,
multicollinearity, recursive partitioning, selection bias, Simpson’s paradox

1 Introduction

Logistic regression is a technique for modeling the probability of an event in terms of suitable
explanatory or predictor variables. For example, [4] use it to model the probability that a
tree in a forest is blown down during an unusually severe thunderstorm that occurred on July
4, 1999, and caused great damage over 477,000-acres of the Boundary Waters Canoe Area



Wilderness in northeastern Minnesota. Data from a sample of 3666 trees were collected,
including for each tree, whether it was blown down (Y = 1) or not (Y = 0), its trunk
diameter D in centimeters, its species S, and the local intensity L of the storm, as measured
by the fraction of damaged trees in its vicinity. The dataset may be obtained from www.
stat.umn.edu/"sandy/pod.

Let p = Pr(Y = 1) denote the probability that a tree is blown down. In linear logistic
regression, we model log(p/(1 —p)) as a function of the predictor variables, with the require-
ment that it be linear in any unknown parameters. The function log(p/(1 — p)) is also often
written as logit(p). If we use a single predictor such as L, we have the simple linear logistic
regression model

logit(p) = log(p/(1 = p)) = fo + Bil (1)
which can be re-expressed in terms of p as p = exp(Gy + /1 L) /{1 + exp(Bo + 51 L)}.
In general, given k predictor variables Xi,..., Xy, a linear logistic regression model

in these variables is logit(p) = [y + Z?Zl B;X;. The parameters [y, [, ..., 0 are typi-
cally estimated using maximum likelihood theory. Let n denote the sample size and let
(i1, - - -, Tk, y;) denote the of values of (X7, ..., X, Y") for the ith observation (i = 1,...,n).
Treating each y; as the outcome of an independent Bernoulli random variable with success
probability p;, we have the likelihood function

exp{>; i (Bo + > Bjwi;)}
[T{1 +exp(Bo + X Bjzij)}

[[p(1—p)t o =
=1

The mazimum likelihood estimates (MLEs) (ﬁAO, By, ... ,Bk) are the values of (8, 01, ..., k)
that maximize this function. Newton-Raphson iteration is usually needed to compute the
MLEs.

2 Approaches to model fitting
The result of fitting model (1) is
logit(p) = —1.999 + 4.407L. (2)

Figure 1 shows a plot of the estimated p function. Clearly, the stronger the local storm
intensity, the higher the chance for a tree to be blown down.

Figure 2 shows boxplots of D by species. Because of the skewness of the distributions,
we follow [4] and use log(D), the natural logarithm of D, in our analysis. With log(D) in
place of L, the fitted model becomes

logit(p) = —4.792 + 1.749 log(D) (3)

suggesting that tall trees are less likely to survive a storm than short ones. If we use both
log(D) and L, we obtain the model

logit(p) = —6.677 4+ 1.763 log(D) + 4.420L. (4)
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Figure 1: Estimated probability of blowdown computed from a simple linear logistic regres-
sion model using L as predictor

(o]
o _|
[ee]
g8 @
= 3 T
[0} |
I 8 °© '
1
§ e ° o .
S Q- ! o -
[ ! —_ !
= I , |
2 X o ,
: | IR B
E | : I Bl :
8 1 _:_ , : I : : —
.......... T ":‘ e |'|
1 1
i — —— =
[ [ [ [ [ [ E—
T T T T T T T T T
A BA BF BS C JP PB RM RP

Species

Figure 2: Boxplots of trunk diameter D. The median value of 14 for D, or 2.64 for log(D),
is marked with a dotted line.



Table 1: Indicator variable coding for the species variable §

Species U1 U2 U3 U4 U5 UG U7 Ug
A (aspen) o 0o o0 o0 0 0 0 O
BA (black ash) 1 0 0 0 0 0 0 O
BF (balsamfir) |0 1 0 0 0 0 0 0
BS (black spruce) | 0 0 1 0 0 0 0 O
C (cedar) o 0 0 1 0 0 0 O
JP (jack pine) o 0 0 O 1 0 0 O
PB (paper birch) | 0 0 0 0 0 1 0 0
RM (red maple) o 0o o0 o 0 0 1 o0
RP (red pine) o 0o o0 o 0 0 o0 1

Finally, if we include the product Llog(D) to account for interactions between D and L, we
obtain
logit(p) = —4.341 + 0.891 log(D) — 1.482L + 2.235L log(D). (5)

So far, we have ignored the species S of each tree in our sample. We might get a model
with higher prediction accuracy if we include S. As with least squares regression, we can
include a categorical variable that takes m distinct values by first defining m — 1 indicator
variables, Uy, ..., U,,_1, each taking value 0 or 1. The definitions of the indicator variables
corresponding to our nine-species variable S are shown in Table 1. Note that we use the
“set-to-zero constraint,” which sets all the indicator variables to 0 for the first category
(aspen). A model that assumes the same slope coefficients for all species but that gives each
a different intercept term is

logit(p) = —5.997 + 1.5811og(D) + 4.629L — 2.243U; + 0.0002U; + 0.167U;
—2.077U4 + 1.040U5 — 1.724Us — 1.796U7 — 0.003Us. (6)

How well do models (2)—(6) fit the data? One popular method of assessing fit is by means
of significance tests based on the model deviance and its degrees of freedom (df)—see, e.g.,
[1, p. 96] for the definitions. The deviance is analogous to the residual sum of squares in
least squares regression. For model (6), the deviance is 3259 with 3655 df. We can evaluate
the fit of this model by comparing its deviance against that of a larger one, such as the
27-parameter model

8 8 8
logit(p) = Bo + Silog(D) + BoL 4+ > v;U; + > 1;U;log(D) + > o Us L (7)

j=1 7=1 7=1

which allows the slope coefficients for log(D) and L to vary across species. Model (7) has a
deviance of 3163 with 3639 df. If model (6) provides a suitable fit for the data, statistical
theory says that the difference in deviance should be approximately distributed as a chi-
square random variable with df equal to the difference in the df of the two models. For our
example, the difference in deviance of 3259 — 3163 = 96 is much too large to be explained
by a chi-square distribution with 3655 — 3639 = 16 df.



Rejection of model (6) does not necessarily imply, however, that model (7) is satisfactory.
To find out, we need to compare it with a larger model, such as the 28-parameter model

8 8 8
logit(p) = ﬁo + 61 10g<D) + 62[/ + ﬁgL IOg(D) + Z ’YjUj -+ Z 61jUj IOg(D) + Z ﬁQjUjL (8)
j=1

=1 j=1

which includes an interaction between log(D) and L. This has a deviance of 3121 with 3638
df. Model (7) is therefore rejected because its deviance differs from that of (8) by 42 but
their dfs differ only by 1. It turns out that, using this procedure, each of models (2) through
(7) is rejected when compared against the next larger model in the set.

A second approach chooses a model from a given set by minimizing some criterion that
balances model fit with model complexity. One such is the AIC criterion, defined as the
deviance plus twice the number of estimated parameters (see, e.g., [5, p. 234]). It is well-
known, however, that the AIC criterion tends to over-fit the data. That is, it often chooses
a large model. For example, if we apply it to the set of all models up to third-order for the
current data, it chooses the largest, i.e., the 36-parameter model

8
logit(p) = So+ Pilog(D) + BoL + > ~;U; + BsLlog(D)

j=1
8 8 8
+ 3" 61,;U;1log(D) + 3~ Bo;U; L+ S~ 6;U; Llog(D). (9)
j=1 j=1 j=1

Graphical interpretation of models (8) and (9) is impossible. The simple and intuitive
solution of viewing the estimated p-function by a graph such as Fig. 1 is unavailable when a
model involves more than one predictor variable. This problem is exacerbated by the fact that
model complexity typically increases with increase in sample size or number of predictors.
Interpretation of the estimated coefficients is frequently futile, because the estimates typically
do not remain the same from one model to another. For example, the coefficient for L is
4.407, 4.424, 1.870, and 4.632 in models (2), (4), (5), and (6), respectively. This is due to
multicollinearity among the predictor variables.

Cook and Weisberg [4] try to solve the problem of interpretation by using a partial one-
dimensional (POD) model, which employs a single linear combination of the non-categorical
variables, Z = 0;log(D) + 2L, as predictor. For the tree data, they find that if balsam
fir (BF) and black spruce (BS) are excluded, the model logit(p) = 8y + Z + X, v;U;, with
Z = 0.781og(D) + 4.1L, fits the other species quite well. One advantage of this model is
that the estimated p-functions may be displayed graphically as shown in Fig. 3. The graph
is not as natural as Fig. 1, however, because Z is a linear combination of two variables. In
order to include species BF and BS, [4] choose the larger model

9
logit(p) = Bo + Z +Y_vU; + {011sp + b21ps}1og(D) + {d1Ipr + ¢2Ips}L (10)

=1

which contains separate coefficients, 0; and ¢;, for BF and BS. Here I(.) denotes the indicator
function, i.e., I4 = 1 if the species is A, and I, = 0 otherwise. Of course, this model does
not allow a graphical representation for BF and BS.

5
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Figure 3: Estimated probability of blowdown for seven species, excluding balsam fir (BF)
and black spruce (BS), according to model (10)

3 Logistic regression trees

The type of models and the method of selection described in the previous section are clearly
not totally satisfactory. As the sample size or the number of predictor variables increases,
so typically does model complexity. But a more complex model is always harder to interpret
than a simple one. On the other hand, an overly simple model may have little predictive
power.

A logistic regression tree model offers one way to simultaneously retain the graphical
interpretability of simple models and the predictive accuracy of richer ones. Its underlying
motivation is that of “divide and conquer.” That is, a complex set of data is divided into
sufficiently many subsets such that a simple linear logistic regression model adequately fits
the data in each subset. Data subsetting is performed recursively, with the sample split on
one variable at a time. This results in the partitions being representable as a binary decision
tree. The method is implemented by [3] in a computer program called LOTUS.

Figure 4 shows a LOTUS model fitted to the tree data. The data are divided into ten
subsets, labeled 0-9. Balsam fir (BF), one of the two species excluded from the [4] model,
is isolated in subsets 0 and 9, where log(D) is the best linear predictor. The estimated
p-functions for these two subsets are shown in Fig. 5. The estimated p-functions for the
non-balsam firs can be displayed together in one graph, as shown in Fig. 6, because they all
employ L as the best simple linear predictor.

From the graphs, we can draw the following conclusions.

1. The probability of blowdown consistently increases with D and L, although the value
and rate of increase are species dependent.
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log(D) < 2.64
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Figure 4: A piecewise simple linear LOTUS model for estimating the probability that a tree
is blown down. A splitting rule is given beside each intermediate node. If a case satisfies the
rule, it goes to the left child node; otherwise the right child node. The second level split at
log(D) = 2.64 corresponds to the median value of D. Beneath each leaf node are the ratio
of cases with Y = 1 to the node sample size and the name of the selected predictor variable.
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Figure 5: Estimated probability of blowdown for balsam fir (BF), according to the LOTUS
model in Fig. 4



2. Balsam fir (BF) has the highest chance of blowdown, given any values of D and L.

3. The eight non-balsam fir species can be divided into two groups. Group I consists of
black ash (BA), cedar (C), paper birch (PB), and red maple (RM). They belong to
subsets 7 and 8, and are most likely to survive. This is consistent with the POD model
of [4]. Group II contains aspen (A), black spruce (BS), jack pine (JP), and red pine
(RP).

4. The closeness of the estimated p-functions for subsets 6 and 7 show that the smaller
Group II trees and the larger Group I trees have similar blowdown probabilities for
any given value of L.

5. Although aspen (A) and black spruce (BS) are always grouped together, namely, in
subsets 36, less than 15% of the aspen trees are in subsets 5 and 6. Similarly, only 2%
of the red pines (RP) are in these two subsets. Hence the p-function of aspen (A) is
mainly described by the curves for subsets 3 and 4, and that for red pine (RP) by the
curves for subsets 2 and 4. We conclude that, after balsam fir (BF), the three species
most at risk of blowdown are jack pine (JP), red pine (RP), and aspen (A), in that
order. This ordering of JP, RP, and A is the same as the POD model of [4], as can be
seen in Fig. 3.

6. Recall that black spruce (BS) was the other species that [4] could not include in their
POD model. The reason for this is quite clear from Fig. 5, where we use solid lines to
draw the estimated p-function for black spruce. Four curves are required, corresponding
to subsets 2, 4, 5, and 6. The spread of these curves suggests that the p-function of
black spruce is highly sensitive to changes in D. This explains why the species cannot
be included in the POD model.

How does the LOTUS model compare with the others? The former is clearly superior
in terms of interpretability. But does it predict future observations as well as the other
models? Unfortunately, this question cannot be answered completely, because we do not
have an independent set of data to test the models. The best we can do is to compare
the fitted values from the different models. This is done in Fig. 7, which plots the fitted
logit values of the LOTUS model against those of the POD and the linear logistic regression
model with all interactions up to third order. The plots show that there is not much to
choose among them.

4 LOTUS algorithm

As already mentioned, the idea behind LOTUS is to partition the sample space into one or
more pieces such that a simple model can be fitted to each piece. This raises two questions:
(i) how to carry out the partitioning, and (ii) how to decide when a partition is good enough?
We discuss each question in turn.
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Figure 6: Estimated probability of blowdown for all species except balsam firs, according to
the LOTUS model in Fig. 4
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4.1 Recursive partitioning

Like all other regression tree algorithms, LOTUS splits the dataset recursively, each time
choosing a single variable X for the split. If X is an ordered variable, the split has the form
s = {X < ¢}, where ¢ is a constant. On the other hand, if X is a categorical variable, the
split has the form s = {X € w}, where w is a subset of the values taken by X. The way
s is chosen is critically important if the tree structure is to be used for inference about the
variables.

For least squares regression trees, many algorithms, such as AID [8], CART [2] and M5
[9], choose the split s that minimizes the total sum of squared residuals of the regression
models fitted to the two data subsets created by s. Although this approach can be directly
extended to logistic regression by replacing sum of squared residuals with the deviance, it
is fundamentally flawed, because it is biased toward choosing X variables that allow more
splits. To see this, suppose that X is an ordered variable taking n unique values. Then there
are n— 1 ways to split the data along the X axis, with each split s = {X < ¢} being such that
¢ is the midpoint between two consecutively ordered values. This creates a selection bias
toward X variables for which n is large. For example, in our tree dataset, variable L has 709
unique values but variable log(D) has only 87. Hence if all other things are equal, L is eight
times more likely to be selected than log(D).

The situation can be worse if there are one or more categorical X variables with many
values. If X takes n categorical values, there are 2"~ — 1 splits of the form s = {X € w}.
Thus the number of splits grows exponentially with the number of categorical values. In our
example, the species variable S generates 297! — 1 = 255 splits, almost three times as many
splits as log(D).

Doyle [6] is the first to warn that this bias can yield incorrect inferences about the effects
of the variables. The GUIDE [7] least squares regression tree algorithm avoids the bias by
employing a two-step approach to split selection. First, it uses statistical significance tests
to select X. Then it searches for ¢ or w. The default behavior of GUIDE is to use categorical
variables for split selection only; they are not converted into indicator variables for regression
modeling in the nodes. LOTUS extends this approach to logistic regression. The details are
given in [3], but the essential steps in the recursive partitioning algorithm can described as
follows.

1. Fit a logistic regression model to the data using only the non-categorical variables.

2. For each ordered X variable, discretize its values into five groups at the sample quintiles.
Form a 2 x 5 contingency table with the Y values as rows and the five X groups as
columns. Compute the significance probability of a trend-adjusted chi-square test for
nonlinearity in the data.

3. For each categorical X variable, since they are not used as predictors in the logis-
tic regression models, compute the significance probability of the chi-square test of
association between Y and X.

4. Select the variable with the smallest significance probability to partition the data.

10



By using tests of statistical significance, the selection bias problem due to some X variables
taking more values than others disappears. Simulation results to support the claim are given
in [3].

After the X variable is selected, the split value ¢ or split subset w can be found in many
ways. At the time of this writing, LOTUS examines only five candidates. If X is an ordered
variable, LOTUS evaluates the splits at ¢ equal to the 0.3, 0.4, 0.5, 0.6, and 0.7 quantiles
of X. If X is categorical, it evaluates the five splits around the subset w that minimizes
a weighted sum of the binomial variance in Y in the two partitions induced by the split.
The full details are given in [3]. For each candidate split, LOTUS computes the sum of the
deviances in the logistic regression models fitted to the data subsets. The split with the
smallest sum of deviances is selected.

4.2 Tree selection

Instead of trying to decide when to stop the partitioning, GUIDE and LOTUS follow the
CART method of first growing a very big tree and then progressively pruning it back to the
root node. This yields a nested sequence of trees from which one is chosen. If an independent
test dataset is available, the choice is easy: just apply each tree in the sequence to the test
set and choose the tree with the lowest prediction deviance.

If a test set is not available, as is the case in our example, the choice is made by ten-fold
cross-validation. The original dataset is divided randomly into ten subsets. Leaving out one
subset at a time, the entire tree growing process is applied to the data in the remaining nine
subsets to obtain another nested sequence of trees. The subset that is left out is then used
as test set to evaluate this sequence. After the process is repeated ten times, by leaving
out one subset in turn each time, the combined results are used to choose a tree from the
original tree sequence grown from all the data. The reader is referred to [2, Chap. 3] for
details on pruning and tree selection. The only difference between CART and LOTUS here
is that LOTUS uses deviance instead of sum of squared residuals.

5 Example with missing values

We now show how LOTUS works when the dataset has missing values. We use a large dataset
from the National Highway Transportation Safety Administration (ftp://www.nhtsa.dot.
gov/ges) on crash-tests of vehicles involving test dummies. The dataset gives the results of
15,941 crash-tests conducted between 1972 and 2004. Each record consists of measurements
from the crash of a vehicle into a fixed barrier. The head injury criterion (hic), which is the
amount of head injury sustained by a test dummy seated in the vehicle, is the main variable
of interest. Also reported are eight continuous variables and sixteen categorical variables;
their names and descriptions are given in Table 2. For our purposes, we define Y =1 if hic
exceeds 1000, and Y = 0 otherwise. Thus Y indicates when severe head injury occurs.

One thousand two hundred and eleven of the records are missing one or more data values.
Therefore a linear logistic regression using all the variables can be fitted only to the subset of
14,730 records that have complete values. After transforming each categorical variable into
a set of indicator variables, the model has 561 regression coefficients, including the constant

11



Table 2: Predictor variables in the crash-test dataset. Angular variables crbang, pdof, and
impang are measured in degrees clockwise (from -179 to 180) with 0 being straight ahead.

Name

Description

Variable type

make
model
year
body
engine
engdsp
transm
vehtwt
vehwid
colmec
modind
vehspd
crbang
pdof
tksurf
tkcond
impang
occloc
occtyp
dumsiz
seposn
rsttyp
barrig
barshp

Vehicle manufacturer
Vehicle model
Vehicle model year
Vehicle body type
Engine type

Engine displacement
Transmission type
Vehicle test weight
Vehicle width

Steering column collapse mechanism
Vehicle modification indicator
Resultant speed of vehicle before impact

Crabbed angle

Principal direction of force
Test track surface

Test track condition
Impact angle

Occupant location
Occupant type

Dummy size percentile
Seat position

Restraint type

Rigid or deformable barrier
Barrier shape

63 categories
466 categories
continuous
18 categories
15 categories
continuous

7 categories
continuous
continuous
10 categories
4 categories
continuous
continuous
continuous

5 categories
6 categories
continuous

6 categories
12 categories
8 categories
6 categories
26 categories
2 categories
15 categories
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term. All but six variables (engine, vehwid, tkcond, impang, rsttyp, and barrig) are
statistically significant. As mentioned in Section 2, however, the regression coefficients in
the model cannot be relied upon to explain how each variable affects p = P(Y = 1). For
example, although vehspd is highly significant in this model, it is not significant in a simple
linear logistic model that employs it as the only predictor. This phenomenon is known as
Simpson’s paradox. It occurs when a variable has an effect in the same direction within
subsets of the data, but when the subsets are combined, the effect vanishes or reverses in
direction.

Being composed of piecewise simple linear logistic models, LOTUS is quite resistant to
Simpson’s paradox. Further, by partitioning the dataset one variable at a time, LOTUS can
use all the information in the dataset, instead of only the complete data records. Specifically,
when LOTUS fits a simple linear logistic model to a data subset, it uses all the records that
have complete information in Y and the X variable used in the model. Similarly, when X
is being evaluated for split selection, the chi-square test is applied to all the records in the
subset that have complete information in X and Y.

Figure 8 gives the LOTUS tree fitted to the crash-test data. The splits together with the
p-functions fitted to the leaf nodes in Fig. 9 yield the following conclusions.

1. The tree splits first on model, showing that there are significant differences, with respect
to p, among vehicle models. The variable is also selected for splitting in Nodes 7 and
9. Tables 3 and 4 give the precise nature of the splits.

2. Immediately below the root node, the tree splits on dumsiz and occtyp, two character-
istics of the test dummy. This shows that some types of dummies are more susceptible
to severe injury than others. In particular, the cases in Node 5 contain mainly dum-
mies that correspond to a six-year-old child. The fitted p-function for this node can
be seen in the upper left panel of Fig. 9. Compared with the fitted p-functions of the
other nodes, this node appears to have among the highest values of p. This suggests
that six-year-old children are most at risk of injury. They may be too big for child car
seats and too small for adult seat belts.

3. The split on seposn at Node 8 shows that passengers in vehicles with adjustable seats
are ten times (average p of 0.008 versus 0.08) less likely to suffer severe head injury
than those with non-adjustable seats. This could be due to the former type of vehicle
being more expensive and hence able to withstand collisions better.

4. Similarly, the split on body at Node 39 shows that passengers in two-door cars, pick-
ups, station wagons, and SUV’s are twice as likely (average p of 0.38 versus 0.16) to
suffer severe head injury than other vehicles.

5. The linear predictor variables selected in each leaf node tells us the behavior of the
p-function within each partition of the dataset. Four nodes have year as their best
linear predictor. Their fitted p-functions are shown in the upper left panel of Fig. 9.
The decreasing trends show that crash safety is improving over time.

6. Three nodes have vehspd as their best linear predictor, although the variable is not
statistically significant in one (Node 78). The fitted p-functions are shown in the upper
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Figure 8: LOTUS model for the crash-test data. Beneath each leaf node are a fraction
showing the number of cases with Y = 1 divided by the sample size, and the name of the
best predictor variable, provided it is statistically significant. If the latter has a positive
regression coefficient, a plus sign is attached to its name; otherwise a minus sign is shown.
The constituents of the sets Sy, S7, and Sy may be found from Tables 3 and 4.
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right panel of Fig. 9. As expected, p is non-decreasing in vehspd.

. Two nodes employ impang as their best linear predictor. The fitted p-functions shown
in the bottom left panel of Fig. 9 suggests that side impacts are more serious than
frontal impacts.

. One node has vehwid as its best linear predictor. The decreasing fitted p-function
shown in the lower right panel of Fig. 9 shows that vehicles that are smaller are less
safe.
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Figure 9: Fitted probabilities of severe head injury in the leaf nodes of Fig. 8
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Table 3: Split at Node 7 of tree in Fig. 8

Make Node 14 Node 15
American Concord
Audi 4000, 5000
Buick Electra
Champion Motorhome
Chevrolet K20 Pickup, Monza, Nova, S10 Blazer, Spectrum, | Astro, Malibu, Sprint
Sportvan
Chrysler Imperial, Lebaron Intrepid
Comuta-Car Electric
Dodge Aries, Challenger, Colt, Lancer, Magnum Colt Pickup, St. Regis
Ford Clubwagon MPV, Courier, E100 Van, EXP, Fair- | Torino
mont, Fiesta, Granada, Merkur
GMC Sportvan
Hyundai Excel GLS
[suzu Impulse, Spacecab [-Mark, Trooper II
Jeep Comanche
Kia Sorento
Lectric Leopard
Mazda GLC B2000
Mercury Bobcat
Mitsubishi Montero, Tredia Pickup
Nissan 2000, 210, Kingcab Pickup, Murano
Oldsmobile 98
Peugeot 504, 505
Plymouth Champ, Fury, Horizon Breeze, Volare
Pontiac T1000
Renault 18, Alliance, LeCar, Medallion Fuego, Sportswagon
Saab 38235
Saturn L200
Subaru GF, GLF, Wagon
Suzuki Sidekick
Toyota Celica, Starlet
Volkswagen  Fox, Scirocco Beetle, EuroVan
Volvo 244, XC90
Yugo GV
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Table 4: Split at Node 9 of tree in Fig. 8

Make Node 18 Node 19
Acura Integra, Legend, Vigor 2.5TL, 3.2TL, 3.5RL, MDX, RSX
American Gremlin, Matador, Spirit
Audi 100, 200, 80 A4, A6, A8
Battronics  Van
BMW 3251, 5251 318, 3281, X5, Z4 Roadster
Buick Century, LeSabre, Regal, Riviera, | ParkAvenue, Rendezvous, Road-
Skyhawk, Skylark, Somerset master
Cadillac Deville, Seville Brougham, Catera, Concourse,
CTS, Eldorado, Fleetwood
Chevrolet Beretta, Camaro, Cavalier, | Avalanche, Beauville, Blazer, C-
Celebrity,  Chevette,  Citation, | 1500, C10 Pickup, C1500 Pickup,
Corsica, Corvette, Elcamino, Im- | Caprice, G-10, K1500 Pickup,
pala, Lumina, LUV, MonteCarlo, | K2500 Pickup, Silverado, Subur-
Pickup, S-10, Vega ban, Tahoe, Tracker, Trailblazer,
Venture
Chinook Motorhome
Chrysler Cirrus, Conquest, FifthAvenue, | LHS, Pacifica, PT Cruiser, Sebring
Newport, NewYorker Convertible
Daewoo Leganza, Nubira
Daihatsu Charade
Delorean Coupe
Dodge 400, 600, Caravan, D-150, Dakota, | Avenger, Durango, Grand Car-
Daytona, Diplomat, Dynasty, Mi- | avan, Intrepid, Omni, Ram150,
rada, Neon, Rampage, Ramwag- | Ram1500, Ram, Ram250 Van,
onvan, Sportsman Shadow, Spirit, Stratus
Eagle Medallion, MPV, Premier Summit, Vision
Eva Evcort
Fiat 131, Strada
Ford Bronco, Bronco II, Crown Victoria, | Aerostar, Aspire, Contour, E150
Escort, F150 Pickup, F250 Pickup, | Van, Escape, Escort 7ZX2, EV
F350 Pickup, Festiva, LTD, Mus- | Ranger, Expedition, Explorer, Fo-
tang, Pickup, Probe, Ranger, Tau- | cus, Freestar, Other, Tempo
rus, Thunderbird, Van, Windstar
Geo Metro, Prizm Storm, Tracker
GMC Astro Truck, Vandura EV1
Holden Commodore Acclaim
Honda Accord Civic, CRV, Element, Insight,
Odyssey, Pilot, Prelude, S2000
Hyundai Elantra, Scoupe, Sonata Accent, Pony Excel, Santa Fe,
Tiburon
IH Scout MPV
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Make Node 18 Node 19

Infinity G20, M30 J30

[suzu Amigo, Pup Axiom, Pickup, Rodeo, Stylus

Jaguar X-Type

Jeep CJ, Wrangler Cherokee, Cherokee Laredo, Grand

Cherokee, Liberty

Jet Courier, Electrica, Electrica 007

Kia Sephia Rio, Sedona, Spectra, Sportage

Landrover Discovery, Discovery II

Lectra 400, Centauri

Lexus ES250 ES300, GS300, GS400, 1S300,

RX300, RX330

Lincoln Continental, Town Car LS, Mark, Navigator

Mazda 323, 323-Protege, 929, Miata, Mil- | 626, Mazda6, MX5
lenia, MPV, MX3, MX6, Pickup,
RX

Mercedes 190, 240, 300 220, C230, C240, E320, ML320

Mercury Capri, Cougar, Lynx, Marquis, | Mystique
Monarch, Sable, Topaz, Tracer, Vil-
lager, Zephyr

Mini Cooper

Mitsubishi ~ Diamante, Eclipse, Galant, Mighty- | 3000GT, Cordia, Endeavor, Lancer,
max, Mirage, Precis, Starion, Van | Montero Sport, Outlander

Nissan 240SX, 810, Altima, Axxess, | 200SX, 300ZX, 3507, Frontier,
Pathfinder, Pulsar, Quest, Sentra, | Maxima, Pickup, Stanza, Xterra
Van

Odyssey Motorhome

Oldsmobile  Calais, Cutlass, Delta 88, Omega, | Achieva, Aurora, Intrigue, Royale
Toronado

Other Other

Peugeot 604

Plymouth Acclaim, Caravelle, Laser, Reliant, | Colt Vista, Conquest, Neon
Sundance, Voyager

Pontiac Bonneville, Fiero, Firebird, Grand | Aztek, Grand Prix, Sunfire, Trans
AM, Lemans, Parisienne, Sunbird | Sport

Renaissance Tropica

Renault Encore

Saab 900 38233, 9000

Saturn SL1 Ion, LS, LS2, SC1, SL2, Vue

Sebring ZEV

Solectria E-10, Force

Subaru DL, Impreza, Justy, XT Forestee, GL, Legacy

Suzuki Samurai Swift, Vitara
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Make Node 18 Node 19

Toyota Camry, Corolla, Corona, Cosmo, | 4Runner, Avalon, Camry Solara,
Landcruiser, MR2, Paseo, T100, | Cressida, Echo, Highlander, Ma-
Tercel, Van trix, Pickup, Previa, Prius, Rav4,

Sequoia, Sienna, Tacoma, Tundra

UM Electrek

Volkswagen Cabrio, Corrado, Golf, Passat, | Jetta, Polo, Vanagon
Quantum, Rabbit

Volvo 240, 740GL, 850, 940, DL, GLE 960, S60, S70, S80

Winnebago  Trekker

6 Conclusion

Logistic regression is a statistical technique for modeling the probability p of an event in
terms of the values of one or more predictor variables. The traditional approach expresses
the logit of p as a linear function of these variables. Although the model can be effective
for predicting p, it is notoriously hard to interpret. In particular, multicollinearity can cause
the regression coefficients to be misinterpreted.

A logistic regression tree model offers a practical alternative. The model has two com-
ponents, namely, a binary tree structure showing the data partitions and a set of simple
linear logistic models, fitted one to each partition. It is this division of model complexity
that makes the model intuitive to interpret. By dividing the dataset into several pieces, the
sample space is effectively split into different strata such that the p-function is adequately
explained by a single predictor variable in each stratum. This property is powerful because
(i) the partitions can be understood through the binary tree and (ii) each p-function can
be visualized through its own graph. Further, stratification renders each of the individual
p-functions resistant to the ravages of multicollinearity among the predictor variables and
to Simpson’s paradox. Despite these advantages, it is crucial for the partitioning algorithm
to be free of selection bias. Otherwise, it is very easy to draw misleading inferences from
the tree structure. At the time of this writing, LOTUS is the only logistic regression tree
algorithm designed to control such bias.

Finally, as a disclaimer, it is important to remember that in real applications, there is no
“best” model for a given dataset. This situation is not unique to logistic regression problems;
it is prevalent in least-squares and other forms of regression as well. Often there are two or
more models that give predictions of comparable average accuracy. Thus a LOTUS model
should be regarded as merely one of possibly several different ways of explaining the data.
Its main virtue is that, unlike many other methods, it provides an interpretable explanation.
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