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ADbstract

Topological data analysis, including persistent homology, has undergone
significant development in recent years. However, one outstanding
challenge is to build a coherent statistical inference procedure on
persistent diagrams. The paired dependent data structure as birth and
death in persistent diagrams adds additional complexity to developing a
coherent statistical inference procedure. In this paper, we present a
novel data representation that transforms persistent diagrams as lattice
paths. A new exact statistical inference procedure is developed over
the collection of lattice paths via combinatorial enumerations. The
lattice path method is applied to the topological features of the protein
structures of corona viruses. The proposed method demonstrates that
there are topological changes during the conformation change of spike
proteins that are need to infect host cells. The talk is based on

arXiv:2105.00351.
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How COVID-19 virus attach to host cell?
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onformational changes of spike protein

Covid-19 virus COVID-19 virus
Closed state Open state

Is there topological changes?



Shape change of spike protein of COVID-19 virus

Topological distance is not enough.
We need the
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Topologically different:
p-value (probability of closeness) = 8 x 10-3°

Chung and Ombao, 2021 arXiv:2105:0035 1



https://arxiv.org/pdf/2105.00351.pdf

Fallacy of comparing averages

507% of time, your conclusion will be wrong!



Comparing averages is not good enough

a=rand(100,1)
b=rand(100,1)

count=0;

for i=1:10000
sa = randsample(a,d);
sb = randsample(b,5);
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Inference on average difference

Determine the probability
distribution of the average difference




Topological inference

Topological inference is the
process of using topological data
analysis to infer properties of an
underlying probability distribution
of topological objects or features.
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Chung et al., 2009

Information Processing
in Medical Imaging
(IPMI) 5636:386-397.

l) First persistent
homology paper
in medical imaging

2) Smoothed PD
using the uniform
kernel (counting
measure)


http://www.stat.wisc.edu/~mchung/papers/IPMI.2009.pdf

Smoothing PD
is biological
nonsense!
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How we perform statistical analysis without
smoothing persistent diagrams!?
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Persistent diagram {(b1, d1), Tt (bQ7 dq)}

Birth-death process
C1) S €@ < S G2y

C(i) :one of birth or death value

7 births

\‘ deaths



Dyck paths

The path starts at (0,0) and ends at (v2¢,0) .
The path stays above the horizontal line.



|4 possible Dyck paths for g=4

/
Total number of Dyck paths! . (2q)

Catalan number g+ 1



Area under Dyck path

larger area = longer persistence
smaller area = shorter persistence



Area under Dyck path via box counting under lattice path

2
Area below Dyck path = % — total area of boxes below lattice path



Every possible monotone lattice path for g=4

Number of boxes form a monotone sequence



Persistent diagrams

The height of boxes form a monotone sequence
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Topological learning, Topological inference



Limitation of Dyck and lattice paths

Encode the order of how births and deaths are paired.

Do not encode the actual filtration values.



Weighted lattice path

(b(g) d(q))

b1y b2 b(3) bg—1) b(q)



Areas below weighted lattice path
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Empirical distribution like step function
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Lattice path and normalized step function
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Test statistic

D(61.6) = sup P1(t)  @2(t)

tef0,1]' {1 42




Test statistic

D(¢17 ¢2) — Sup

te|0,1]

Upper bound of area difference

/

D1(t)

P2 (t)

d1

q2

dt S D(¢17 ¢2)



Birth-death processes

2 2

<...<CCI2

C1:C%<C%<'“<CC1]1, C?:ci <c

Null hypothesis:  H : O = C?
Under null, we can interchange C' and C2.

Combine C! and C%

- 1t 1 = — 7



Birth-death processes

2 2

<...<CCI2

C1:C%<C%<'“<CC1]1, C?:ci <c

Null hypothesis:  H : O = C?
Under null, we can interchange C' and C2.

Combine C! and C%
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D(¢1,¢2) = sup ’qﬁl(t) $o(t)
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Asymptotic for large-scale data
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Thermo Fisher Scientific 300kV Titan Krios
Univ. of Wisocnsin-Madison Cyro-EM Research Center




Thermo Fisher Scientific 200kV Talos Arctica Cryo-TEM
Univreristy of Wisconsin-Madison Cyro-EM Research Center



Cryogenic electron microscopy (Cryo-EM)

Cryogenic electron microscopy (cryo-EM) is an
electron microscopy (EM) technique on samples
at cryogenic temperatures and embedded In
frozen amorphous waster with liquid ethane.

Novel prize in chemistry in 2017 to Jacques
Dubochet (Univ. of Lausanne), Joachim Frank
(Columbia Univ.), and Richard Henderson

(Cambridge Univ.)



Spike protein image
From 300kV Titan Krios
Walls et al. 2020, Cell
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We conclude

Covid-19 virus  COVID-19 virus
Closed state Open state Feline corona virus

6VXX
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Topologically different:
Interpretation: p-value = 8 x 1038

The probability of this
event occurring by the
random chance alone is

extremely small Chung and Ombao, 2021 arXiv:2105:0035



https://arxiv.org/pdf/2105.00351.pdf

Thank you! Ready for more TDA?
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Postdoc position:

Combinatorial enumeration, Boltzmann machine, Bayesian

learning, Ising model, interacting particles, spectral
geometry, dynamical systems




