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Discussion 

• Gaussian kernel smoothing can be generalized to cortical surfaces enabling surface-
based statistical analysis.  

• The numerical implementation is freely available as Matlab code on the web at http://
www.math.mcgill.ca/chung 

• Diffusion smoothing presented here can be further generalized to spatially adaptive 
nonisotropic diffusion smoothing. 

Finite Element Method 
The ASP algorithm (MacDonald, et al., 2001) is used to 
extract the outer cortical surfaces each consisting of 
81,920 triangles from MR scans. At this surface 
sampling rate, the average intervertex distance is 3-4 
mm. In order to estimate the Laplace-Beltrami operator 
on a triangulated cortical surface, we use the finite 
element method (FEM) (Chung, 2001). Let F(pi) be the 
signal on the i-th node pi in the triangulation. If p1,...,pm 
are m-neighboring nodes around p=p0, the Laplace-
Beltrami operator at p is estimated by  
 
 
 
with the weights  
 
 
where     and     are the two angles opposite to the 
edge pi - p in triangles and        is the sum of the areas 
of m-incident triangles at p. Then the diffusion equation 
is solved via the finite difference scheme:  
 
 
 
with the initial condition F(pi,t0)=f(pi). After N-iterations, 
the diffused signal is locally equivalent to Gaussian 
kernel smoothing with FWHM = 4(ln2)1/2N1/2(tN-t0)1/2.  

Gaussian Kernel Smoothing 
An integral version of isotropic Gaussian kernel smoothing of the function f(x) is 
defined as the convolution of the Gaussian kernel K(x) with the signal f(x): 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
t-map of brain tissue growth and loss in children before and after Gaussian kernel 
smoothing with 10mm FWHM  on the mid-sagittal section (Chung et al, 2001). The 
most rapid tissue growth appears in the splenium and the isthmus of the corpus 
callosum. Gaussian kernel smoothing increases the signal-to-noise ratio (SNR). 

Example: Smoothing Mean Curvature 
The cortical surface can be locally parameterized by a quadratic polynomial 
 
 
 
The unknown coefficients are estimated by the least-squares estimation. The mean 
curvature of the cortical surface is given by 
 
 
 
 

The mean curvature of the brain surface can be used to characterize sulci.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The figure shows the diffusion smoothing of the mean curvature with 5mm FWHM. 
The mean curvature of the outer cortex is mapped onto an ellipsoid consisting of 
81,920 triangles preserving the connectivity.  Note that the diffusion was run directly 
on the cortical surface and mapped onto the ellipsoid later. a. Before the iteration. b. 
After 40 iterations with the iteration step size 0.02. c. After 100 iterations. If the 
smoothing were based on simple inter-nodal averaging, such sulcal pattern can not 
be obtained. 

Diffusion Smoothing 
It can be shown that the convoluted signal                                     is the solution of a 
diffusion equation  
 
 
 
where the n-dimensional Laplacian is given by                                . The amount of 
smoothing is determined by the full width at the half maximum (FWHM) of Gaussian 
kernel 
 
 
Since the cortical surface in non-Euclidean, the above Laplacian is not well defined on 
the cortical surface. The generalization of the Laplacian to an arbitrary curved surface 
is called the Laplace-Beltrami operator and it is defined in terms of the Riemannian 
metric tensors. For the Riemannian metric                                      , the Laplace-

Beltrami operator is given by 
 
 
where                       and                       . 
 

 

Summary 
Gaussian kernel smoothing has been widely used in smoothing 2D or 3D brain 
images. It does not work on curved surfaces such as the human brain surfaces. By 
reformulating Gaussian kernel smoothing as a solution to a diffusion equation on a 
Riemannian manifold, the smoothing method can be generalized to an arbitrary 
curved surface. This generalization is called diffusion smoothing and it has been used 
in the analysis of fMRI data on the brain surface (Andrade et al., 2001) and detecting 
the regions of local surface area change in brain development (Chung, 2001).  

Simulation on Brain Stem Surface 
 
 
 
 
 
 
 
 
 
 
 
Diffusion smoothing of an artificial heat distribution on the triangulated mesh of the 
brain stem consisting of 1280 triangles. The artificial signal was generated with 
Gaussian noise to illustrate how the finite difference scheme works with different 
iteration step sizes. a. The initial heat distribution. b. After 10 iterations with the 
iteration step size 0.5. c. After 20 iterations. d. After 50 iterations with the iteration step 
size 0.2, If the iteration step size is larger than a certain critical value, the iteration will 
breaks down. 

A typical triangular mesh of 
the outer cortical surface 
consisting of 81,920 triangles 
and 40,962 vertices. 
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