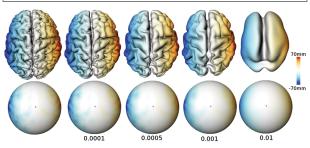

Unified Cortical Asymmetry Analysis in Autism via Weighted-SPHARM

Moo K. Chunq^{1,3}, Kim M. Dalton³, Richard J. Davidson^{2,3}

Department of Biostatistics and Medical Informatics ²Department of Psychology and Psychiatry ³W.M. Keck Laboratory for functional Brain Imaging and Behavior University of Wisconsin, Madison, USA Email: mchung@stat.wisc.edu

1. Introduction

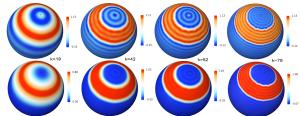
We present a new framework for cortical asymmetry analysis using the weighted spherical harmonic (SPHARM) representation (Chung et al., 2007). The weighted-SPHARM represents cortical surface coordinates as a weighted linear combination of spherical harmonics. This new representation can be used to establish the hemispheric correspondence and register cortical surfaces to a template automatically without any image flipping. The methodology is used in characterizing abnormal cortical asymmetry in high functioning autistic subjects.


Left: Deformable surface algorithm (MacDonald et al., 2001) was used to establish the mapping from a cortical surface to a unit sphere. **Right:** Spherical coordinates projected onto a cortical surface.

2. Weighted-SPHARM

The Weighted-SPHARM represents the surface coordinates and a function defined on the surface as

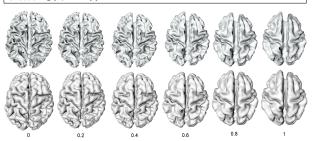
$$g(\theta,\varphi) = \sum_{l=0}^k \sum_{m=-l}^l e^{-l(l+1)t} \langle f, Y_{lm} \rangle Y(\theta,\varphi),$$


where Y_{lm} is the spherical harmonic of degree l and order m. The bandwidth $\,t\,$ controls the amount of smoothing. The SPHARM coefficients $\langle f, Y_{lm} \rangle$ are estimated via the iterative residual fitting (IRF) algorithm (Chung et al., 2007)

Weighted-SPHARM representation of cortex at different scales (t = 0.0001,0005, 0.001, 0.01). The color scale represents the x-coordinate values. The first column is the original sur corresponding x-coordinate values projected on the unit sphere.

3. Gibbs Phenomenon

The traditional SPHARM representation (Gerig et al., 2001) suffers from the Gibbs phenomenon (ringing artifacts), which is usually associated with the discrete or rapidly changing measurements. The weighted-SPHARM reduces the Gibbs phenomenon substantially.

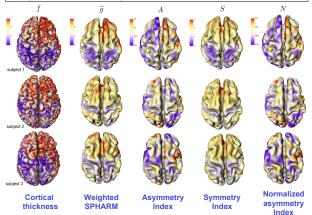

Top: The traditional SPHARM representation applied to a step function (1 in the circular band 1/8 < 0 < 1/4 and 0 otherwise) at different degree. The SPHARM shows the severe ringing artifacts. Bottom: The weighted-SPHARM shows the reduced ringing artifacts.

References
-Chung, M.K., Dalton, K.M., Shen, L., Evans, A.C., Davidson, R.J. Weighted Fourier Series
Representation and its Application to Quantifying the Amount of Gray Matter, *IEEE Transactions on Medical Imaging* 26:566-581, 2007.
-G. Gerig, M. Styner, D. Jones, D. Weinberger, and J. Lieberman. Shape analysis of brain ventricles using spharm. *MMBIA*, pages 171-178, 2001.
-MacDonald, J.D. et al., Automated 3D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI, *NeuroImage*. 12:340-356, 2000.
-Worsley, K.J., et al., A unified statistical approach for determining significant signals in images of

cerebral activation, Human Brain Mapping. 4:58-73, 1996.

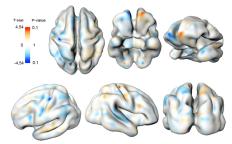
4. Hemispheric Correspondence

The surface registration between subjects was established using the SPHARM-correspondence (Chung et al., 2007). It can be shown that the optimal displacement between two weighted-SPHARM representation is simply obtained by subtracting the two representations. Then the hemispheric correspondence is obtained by registering $g(\theta,\varphi)$ to its mirror reflection $g(\theta, 2\pi - \varphi)$.


The trajectory of surface registration from a single subject (=0) to the average surface template (=1). Top: Inner surfaces. Bottom: Outer surfaces.

5. Asymmetry index

Based on the SPHARM-correspondence principle, the normalized asymmetry index of type (L-R)/(L+R) is given as


$$N(\theta,\varphi) = \frac{\sum_{l=1}^k \sum_{m=-l}^{-1} e^{-1(l+1)\sigma} \langle f, Y_{lm} \rangle Y_{lm}(\theta,\varphi)}{\sum_{l=0}^k \sum_{m=0}^{l} e^{-l(l+1)\sigma} \langle f, Y_{lm} \rangle Y_{lm}(\theta,\varphi)}.$$

Once we have the weighted-SPHARM representation of cortical thickness, an asymmetry analysis on cortex can be performed without physically performing image flipping and additional surface registration.

6. Results

The normalized asymmetry index was used in the group comparison between autistic and control subjects. The T-statistic map and the corresponding corrected P-value maps were constructed and used to localize the regions of abnormal asymmetry pattern. The central sulci and the prefrontal cortex showed abnormal cortical asymmetry pattern in autistic subjects (P-value < 0.1).

pattern. The P-value map is corrected for the multiple comparisons. Blue regions show less gray matter in the left hemisphere.