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Introduction
The extent to which heritability influences functional brain net-
works is not clearly established. In this study, we propose to map
the heritability of a large-scale brain networks at the voxel-level
by taking each voxel as a network node.

Twin fMRI Dataset
The study consists of 11 monozygotic (MZ) and 9 same-sex dizy-
gotic (DZ) twin pairs of 3T functional magnetic resonance images
(fMRI). Subjects completed the monetary incentive delay task (Knut-
son et al., 2001) of 3 runs of 40 trials consisting of $0, $1 and $5
rewards, which are randomly split into 3 runs. After fitting a
general linear model at each voxel, the contrast map of testing
the significance of delay for $5 trials to the baseline ($0 reward) is
obtained (Figure 1). The contrast maps are used in constructing
the functional network.

Figure 1. Representative MZ- and DZ-twin pairs of the contrast
maps obtained from the first level analysis testing the significance

of the delay in hitting the response button in $5 reward in
contrast to $0 reward. Middle: The correlation of the contrast
maps within twins. The heritability index map measures the

difference between the correlations.

Sparse Cross-Correlations
Let V = {v1, · · · , vp} be a node set with p = 25672 nodes in the tem-
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Set up a linear model between x(v
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which are the cross-correlations. The cross-correlation matrix (�
ij

)
requires computing 1.3 billion entries for each twin group and
5.2GB of computer memory per matrix (Figure 2). Our formu-
lation takes less than 18 seconds in computing such matrix in a
desktop computer. Since the cross-correlation matrices are very
dense, it is difficult to visualize and provide biological interpre-
tation. It is a necessity to reduce the number of connections by
sparsifying cross-correlations.

Figure 2. Cross-correlations for MZ- and DZ-twins for all 25972
voxels. Since the correlation matrices are too dense to visualize
and interpret, it is necessary to reduce the filter out number of

connections. The diagonal entries are correlations.

The sparse version of (1) is given by
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The sparse cross-correlation is then given by

b
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The direct numerical optimization of (2) for large p is computa-
tionally demanding. It can be shown that the minimization can be
done algebraically (Chung et al., 2016) (Figure 3):

Theorem 1. For � � 0, the minimizer of F (�;x,y) is given by
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Figure 3. Schematic showing the equivalence of constructed
binary graphs using existing LASSO (top) and the proposed

soft-thresholding method (bottom) on the sample
cross-correlations. Any edge whose absolute value is smaller than
the sparse parameter � is deleted. The number of clusters (#) and

the size of the largest cluster (&) are tabulated over �.

Graph Filtration
The adjacency matrix A(�) = (a
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) of sparse graph G
A

(�) is defined
as
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Instead of determining the optimal parameter � that may not be
optimal in other studies and datasets, we will analyze GA(�) for
every possible � using persistent homology. We can show that

G
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(�3) � · · · for any 0  �1  �2  �3  · · · .

This type of nested graphs is called graph filtration, a special case
of Rips filtrations (Lee et al., 2012; Chung et al., 2015). We can
show that G

A

(�) can be equivalently obtained by (Figure 3)
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Then G
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Many graph functions computed on graph filtrations have mono-
tonic properties. Consider the number of disjoint clusters (#) and
the size of the largest cluster (&).

Figure 4. Top and Middle: Node colors are correlations of MZ-
and DZ-twins. Edge colors are sparse cross-correlations at given
sparsity �. Bottom: node colors are heritability indices (HI) and

edge colors are heritability graph index (HGI). Some low HI
nodes show high HGI. Using only the voxel-level HI feature will
fail to detect such subtle genetic effects on the functional network.
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Such monotonic features can be quantified using the test statistic
(Chung et al., 2016)
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Heritability Graph Index
Heritability index (HI) determines the amount of variation due
to genetic influence and estimated using Falconer’s formula (Fal-
coner and Mackay, 1995). At each voxel v

i

, HI is defined as

HI
i

= 2[⇢MZ(vi)� ⇢DZ(vi)],

where ⇢MZ and ⇢DZ are the pairwise correlation within MZ- and
same-sex DZ-twins. HI is a univariate feature that does not quan-
tify if the change in one voxel is related to other voxels. We extend
the concept of HI to the network level by defining the heritability

graph index (HGI) (Figure 4):

HGI
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= 2[%MZ(vi, vj)� %DZ(vi, vj)],

where %MZ and %DZ are the cross-correlations between voxels v
i

and
v

j

within MZ- and DZ-twin pairs. The statistical significance of
HGI is determined using Theorem 3 (Figure 5).

Figure 5. Inference of graph filtrations of MZ- and DZ-twins. The
number of clusters (left) and the size of largest cluster (right) are

plotted over the sparse parameter �. MZ-twins have smaller
number of clusters but larger cluster size (p-value < 0.00002).
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