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Abstract. This paper presents a unified image processing and analysis
framework for cortical thickness in characterizing a clinical population.
The emphasis is placed on the development of data smoothing and anal-
ysis framework. The human brain cortex is a highly convoluted surface.
Due to the convoluted non-Euclidean surface geometry, data smoothing
and analysis on the cortex are inherently difficult. When measurements
lie on a curved surface, it is natural to assign kernel smoothing weights
based on the geodesic distance along the surface rather than the Eu-
clidean distance. We present a new data smoothing framework that ad-
dress this problem implicitly without actually computing the geodesic
distance and present its statistical properties. Afterwards, the statistical
inference is based on the random field theory based multiple comparison
correction. As an illustration, we have applied the method in detecting
the regions of abnormal cortical thickness in 16 high functioning autistic
children.

1 Introduction

The human cerebral cortex has the topology of a 2D highly convoluted grey
matter shell of average thickness of 3mm. The thickness of the grey matter shell
is usually referred as the cortical thickness and can be obtained from magnetic
resonance images (MRI). The cortical thickness can be used as an anatomical
index for quantifying cortical shape variations. The thickness measures are ob-
tained after a sequence of image processing steps which are described briefly
here. The first step is to classify each voxel into three different tissue types:
cerebrospinal fluid (CSF), grey matter, and white matter. The CSF/grey matter
interface is called the outer cortical surface while the grey/white matter interface
is called the inner cortical surface. These two surfaces bound the gray matter.
The mainstream approach in representing the cortical surface has been to use a
fine triangular mesh that is constructed from deformable surface algorithms [10]
[14]. Cortical thickness is estimated by computing the distance between the two
triangular meshes [11] [14]. In our study, we have used the method presented in
[14]. In order to compare cortical thickness measures across subjects, it is nec-
essary to align the cortical surfaces via surface registration algorithms [16] [20].
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For cross-comparison between subjects, surfaces are registered into the template
surface which serves as reference coordinates.

The image segmentation, thickness computation and surface registration pro-
cedures are expected to introduce noise in the thickness measure. In order to
increase the signal-to-noise ratio (SNR) and smoothness of data for the ran-
dom field theory, some type of data smoothing is necessary. For 3D whole brain
MRIs, Gaussian kernel smoothing is widely used to smooth data, in part, due
to its simplicity in numerical implementation. The Gaussian kernel weights an
observation according to its Euclidean distance. However, data residing on the
convoluted brain surface fails to be isotropic in the Euclidean sense. On the
curved surface, a straight line between two points is not the shortest distance
so one may incorrectly assign less weights to closer observations. So when the
observations lie on the cortical surface, it is more natural to assign the weights
based on the geodesic distance along the surface. Previously diffusion smoothing
has been developed for smoothing data along the cortex before the random field
based multiple comparison correction [1] [6] [7]. By solving a diffusion equa-
tion on a manifold, Gaussian kernel smoothing can be indirectly generalized.
Although diffusion smoothing has been used widely in image analysis starting
with [15], most of previous work is about surface fairing [19]. There is a very
few publications that smooth out observations defined on surface for data anal-
ysis [1] [3] [6] [7]. The drawback of the previous diffusion smoothing approach is
the need for setting of up a finite element method (FEM) to solve the diffusion
equation numerically and making the algorithm converges [6]. To address this
problem, we have developed a simpler and more efficient method based on the
heat kernel convolution on a manifold.

As an illustration, the method was applied to groups of autistic and normal
subjects, and we were able to detect the regions of statistically significant cortical
thickness difference between the groups.

2 Heat Kernel Smoothing

The cortical surface ∂Ω can be assumed to be a C2 Riemannian manifold [12].
Let p = X(u1, u2) ∈ ∂Ω be the parametric representation of ∂Ω. We assume the
following model on thickness measure Y :

Y (p) = θ(p) + ε(p),

where θ(p) is a mean thickness function and ε(p) is a zero-mean random field,
possibly a Gaussian white noise process, with covariance function Rε(p, q). The
Laplace-Beltrami operator ∆ corresponding to the surface parameterization p =
X(u1, u2) ∈ ∂Ω is given by

∆ =
1

det g1/2

2∑

i,j=1

∂

∂ui

(
det g1/2gij ∂

∂uj

)
,

where g = (gij) is the Riemannian metric tensor. Solving equation ∆ψ = λψ,
we order eigenvalues 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · and corresponding eigenfunc-
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Fig. 1. Top: Heat kernel smoothing of cortical thickness with σ = 1 and k = 20, 100, 200
iterations. Bottom: Heat kernel smoothing on simulated data with σ = 1 and k =
20, 200, 5000 iterations. The mean thickness and the variance are estimated from 12
normal subject data and Gaussian white noise is added to the mean function

tions ψ0, ψ1, · · · . The eigenfunctions ψj form orthonormal basis of L2(∂Ω), the
L2 space of functions defined on ∂Ω. On the unit sphere, the eigenvalues are
m(m+n− 1) and the corresponding eigenfunctions are spherical harmonics Ylm

(|m| ≤ l, 0 ≤ l) [21]. On an arbitrary surface, the explicit representation of eigen-
values and eigenfunction are only obtained through numerical methods. Based
on orthonormal basis, the heat kernel Kσ(p, q) is analytically given as

Kσ(p, q) =
∞∑

j=0

e−λjσψj(p)ψj(q), (1)

where σ is the bandwidth of the kernel [2] [17] . When gij = δij , the heat kernel
becomes the Gaussian kernel, which is the probability density of N(0, σ2). nat-
ural extension of the Gaussian kernel. This can be interpreted as the transition
probability density for an isotropic diffusion process with respect to the surface
area element [22]. The kernel is symmetric, i.e. Kσ(p, q) = Kσ(q, p) and isotropic
with respect to the geodesic distance d(p, q).

Definition 1. Heat kernel smoothing of cortical thickness Y is the convolution:

Kσ ∗ Y (p) =
∫

∂Ω

Kσ(p, q)Y (q) dq. (2)
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Fig. 2. Left: Within-subject variance plotted over the number of iterations of heat
kernel smoothing with σ = 1. Decreasing variance implies the convergence of the heat
kernel smoothing to the mean thickness (Theorem 4). Right: Between-subject variance
plotted over the number of iterations illustrating Theorem 5

It can be written in terms of basis function expansion:

Kσ ∗ Y (p) =
∞∑

j=0

αjφj(p),

where αj = e−λjσ
∫

∂Ω
φj(q)Y (q) dq. We also define the heat kernel estimator of

unknown signal θ(p) to be θ̂σ(p) = Kσ ∗ Y (p). As σ → 0, Kσ(p, q) becomes the
Dirac delta function δ(p, q) so the heat kernel estimator becomes unbiased as
σ → 0, i.e. limσ→0 Eθ̂σ(p) = θ(p). As σ gets larger, the bias increases. However
the total bias over all cortex is always zero, i.e.

∫
∂Ω

[θ(p) − Eθ̂σ(p)] dp = 0. Let
us list important nontrivial properties of heat kernel smoothing.

Theorem 1. Kσ ∗ Y is the unique solution of the following isotropic diffusion
equation at time t = σ2/2:

∂f

∂t
= ∆f, f(p, 0) = Y (p), p ∈ ∂Ω (3)

This is a well known result [17]. This theorem implies that the heat kernel
smoothing isotropically assigns weights on ∂Ω.

Theorem 2.

Kσ ∗ Y (p) = arg min
θ(p)∈L2(∂Ω)

∫

∂Ω

Kσ(p, q)
[
Y (q) − θ(p)]2 dq.

The proof can be found in [5]. This shows that the heat kernel smoothing can
be formulated as a regression on a manifold.
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Theorem 3.
Kσ ∗ · · · ∗ Kσ︸ ︷︷ ︸

k times

∗Y = K√
kσ ∗ Y.

This can be seen as a scale space property of diffusion. From Theorem 1, Kσ ∗
(Kσ ∗ Y ) can be taken as the diffusion of signal Kσ ∗ Y after time σ2/2 so that
Kσ ∗ (Kσ ∗ Y ) is the diffusion of signal Y after time σ2. Hence

Kσ ∗ Kσ ∗ Y = K√
2σ ∗ Y.

Arguing inductively we see that the general statement holds. We will denote the
k-fold iterated kernel as K

(k)
σ = Kσ ∗ · · · ∗ Kσ︸ ︷︷ ︸

k times

. This is the basis of our iterated

heat kernel smoothing. Heat kernel with a large bandwidth will be performed
by iteratively applying heat kernel smoothing with a smaller bandwidth. For
instance iterated heat kernel smoothing with σ = 1 and k = 200 will generate
heat kernel smoothing with the effective bandwidth of

√
200 = 14.14mm. Figure

1 shows the process of iterated heat kernel smoothing.

Theorem 4.

lim
σ→∞Kσ ∗ Y =

∫
∂Ω

Y (q) dq

µ(∂Ω)
.

Here µ(∂Ω) is the total surface area of ∂Ω. This theorem shows that when we
choose large bandwidth, heat kernel smoothing converges to the sample mean of
data on ∂Ω. Figure 1 (bottom) shows the convergence of heat kernel smoothing
to the within-subject mean cortex 4mm as the bandwidth increases. Figure 2
(left) shows the convergence of the within-subject variance indirectly implying
Kσ ∗ Y converges to a constant, which is the average thickness over the cortex.

It is natural to assume the measurements Y (p) and Y (q) to have less cor-
relation when p and q are away so we assume the covariance function to be
Rε(p, q) = ρ(d(p, q)) for some nondecreasing function ρ. Then we can show the
variance reduction property of heat kernel smoothing.

Theorem 5. Var[Kσ ∗ Y (p)] ≤ VarY (p) for each p ∈ ∂Ω.

Figure 2 (right) shows the between-subject variance decreases as σ increases.
The problem with the heat kernel smoothing on an arbitrary surface is that

the explicit analytic form of the heat kernel is unknown. To address this problem
we use the parametrix expansion of the heat kernel [17] [22]:

Kσ(p, q) =
1

(2πσ)1/2
exp

[ − d2(p, q)
2σ2

]
[1 + O(σ2)

]
(4)

for small d(p, q). This expansion spells out the exact form of the kernel for small
bandwidth. When the metric is flat, the heat kernel becomes a Gaussian ker-
nel, reconfirming that heat convolution is a generalization of Gaussian kernel.
The expansion is the basis of our heat kernel smoothing formulation. Heat ker-
nel smoothing with a large bandwidth will be decomposed into iterated kernel
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Fig. 3. Thickness maps are projected onto a unit square. Left: original noisy thickness
map. Right: Heat kernel smoothing with σ = 1 and k = 200 iterations

smoothing. We will truncate and normalize the heat kernel using the first order
term. For each p ∈ ∂Ω, we define

K̃σ(p, q) =
exp

[ − d2(p,q)
2σ2

]
1Bp

(q)
∫

Bp
exp

[ − d2(p,q)
2σ2

]
dq

, (5)

where 1Bp
is an indicator function defined on a small compact domain containing

B such that 1Bp
(q) = 1 if q ∈ Bp and 1Bp

(q) = 0 otherwise. Note that for each
fixed p, K̃σ(p, q) defines a probability distribution in Bp and it converges to
Kσ(p, q) as σ → 0 in Bp This implies

K̃(k)
σ ∗ Y (p) → K(k)

σ ∗ Y (p) as σ → 0.

For a discrete triangular mesh, we can take Bp to be a set of points containing
p and its neighboring nodes q1, · · · , qm, and take a discrete measure on Bp, which
still make (5) a probability distribution. This can be viewed as a Gaussian kernel
Nadaraya-Watson type smoothing extended to manifolds [4]. Figure 3 shows a
flattened thickness map illustrating how heat kernel smoothing can enhance the
thickness pattern by increasing the signal-to-noise ratio.

3 Random Field Theory on Cortical Manifold

Here we will describe how to perform multiple comparisons on ∂Ω using the
random field theory. The random field theory based approach is widely used for
correcting multiple comparisons in 3D whole brain volume but rarely used on
2D cortical manifolds [1] [7] [8] [24]. First we combine both the autistic and the
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Fig. 4. Automatically generated traces of the central and superior temporal sulcal
fundi [3]. The first column shows the traces generated for the template surface. The
second column shows the probability of sulcal matching based on 149 normal subjects
before any surface normalization. The third column shows the probabilities after surface
normalization. The first row is the left hemisphere and the second row is the right
hemisphere. Note that the distribution is much more spatially concentrated and the
matching probabilities are much greater after normalization

control subjects in a single indexing j and set up a general linear model (GLM)
on cortical thickness Yj for subject j:

Kσ ∗ Yj(p) = λ1(p) + λ2(p) · agej + λ3(p) · volumej + β(p) · groupj + εj (6)

is used. Here dummy variable group is 1 for the autistic subjects and 0 for the
normal subjects. volume is the total gray matter volume for subject j. The total
gray matter volume is estimated by computing the volume bounded by the both
outer and inner surfaces [8]. The error is modeled as a smooth Gaussian random
field which is viewed as the heat kernel convolution with Gaussian white noise,
i.e. εj = Kσ ∗ W . Then we test the group difference by performing a hypothesis
testing:

H0 : β(p) = 0 for all p ∈ ∂Ω

v.s.
H1 : β(p) �= 0 for some p ∈ ∂Ω.
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Fig. 5. Probability of sulcal matching, after normalization, for 39 manually identified
central sulci defined as the surface region surrounded by gyri, not just the fundus. The
views are illustrated on a slightly-opened version of the template cortical surface in
order to better view inside the sulcus. The warping in 2D localizes the central sulcus
nearly completely inside the template central sulcus. Left (right) figure is the left (right)
central sulci

The test statistic is the ratio of the sum of the squared residual errors under the
null and alternate models. Under H0, the test statistic is a F random random
field with 1 and n = n1 + n2 − 4 degrees of freedom [23]. The null hypothesis
is the intersection of collection of hypothesis H0 =

⋂
p∈∂Ω H0(p), where H0(p) :

β(p) = 0 for each fixed p. The type I error for the multiple comparisons is then
given by

α = P
( ⋃

p∈∂Ω

{F (p) > h}
)

= 1 − P
( ⋂

p∈∂Ω

F (p) ≤ h}
)

= 1 − P ( sup
p∈∂Ω

F (p) ≤ h) = P ( sup
p∈∂Ω

F (p) > h)

for some h. The resulting p-value is usually called the corrected p-value. The
distribution of supp∈∂Ω F (p) is asymptotically given as

P ( sup
p∈∂Ω

F (p) > h) ≈
2∑

d=0

φd(∂Ω)ρd(h) (7)
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Fig. 6. Corrected p value maps of F -test removing the effect of age and relative gray
matter volume difference projected onto the average outer (top) and inner surfaces
(bottom). It shows relatively asymmetric thickness difference between two groups

where φd are the d-dimensional Minkowski functionals of ∂Ω and ρd are the
d-dimensional Euler characteristic (EC) density of F -field with α = 1 and β = n
degrees of freedom [23]. The Minkowski functionals are φ0 = 2, φ1 = 0, φ2 =
area(∂Ω)/2 = 49, 616mm2, the half area of the template cortex ∂Ω. The EC
density is given by

ρ0(h) =
∫ ∞

h

Γ (α+β
2 )

Γ (α
2 )Γ (β

2 )
α

β

(
αx

β

) (α−2)
2

(
1 +

αx

β

)− (α+β)
2

dx,

ρ2(h) =
λ

2π

Γ (α+β−2
2 )

Γ (α
2 )Γ (β

2 )

(
αh

β

) (α−2)
2

(
1 +

αh

β

)− (α+β−2)
2

×
[
(β − 1)

αh

β
− (α − 1)

]

where λ measures the smoothness of fields ε and given as λ = 1/(2σ2). The
resulting corrected p-values maps for F field is shown in Figure 6. The main use
of the corrected p-value maps are the localization and visualization of thickness
difference.

4 Application

T1-weighted MR scans were acquired for 16 autistic and 12 control subjects
on a 3-Tesla GE SIGNA scanner. They are all right-handed males. 16 autis-
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tic subjects were diagnosed with high functioning autism (HFA). The average
age is 17.1 ± 2.8 is for the control subjects and 16.1 ± 4.5 for the autistic sub-
jects. The complete description of the data set, image acquisition parameters,
the subsequent image processing routines, and the interpretation of the result-
ing statistical parametric maps is provided in [5]. Each image underwent several
image preprocessing steps. Image intensity nonuniformity was corrected using
nonparametric nonuniform intensity normalization method [18]. Then using the
automatic image processing pipeline, the image was spatially normalized into
the Montreal neurological institute (MNI) stereotaxic space using a global affine
transformation. Subsequently, an automatic tissue-segmentation algorithm based
on a supervised artificial neural network classifier was used to classify each voxel
as cerebrospinal fluid (CSF), gray matter, or white matter [13]. Brain substruc-
tures such as the brain stem and the cerebellum were removed automatically.
Triangular meshes for inner and outer cortical surfaces were obtained by a de-
formable surface algorithm [14]. Such a deformable surface approach has the
advantage that the surface topology can be fixed to be spherical and the defor-
mation process can maintain a non-intersecting surface at all times, obviating
the need for topology correction [9]. The mesh starts as an ellipsoid located out-
side the brain and is shrunk to obtain the inner cortical surface. Then the inner
surface is expanded, with constraints, to obtain the outer cortical surface. The
triangular meshes are not constrained to lie on voxel boundaries. Instead, the
triangular meshes can cut through a voxel, which serves to reduce discretization
error and partial volume effect. Thickness is measured using the natural anatom-
ical homology between vertices on the inner and outer cortical surface meshes,
since the outer surface is obtained by deforming the inner surface.

Afterwards, thickness measures are smoothed with heat kernel smoothing
with parameters σ = 1 and k = 200 giving the effective smoothness of

√
200 =

14.14 mm. A surface-to-surface registration to a template surface was performed
to facilitate vertex-by-vertex inter-subject thickness comparison. We have for-
mulated it as a registration problem of two functional data on a unit sphere
[20]. First a mapping from a cortical surface onto the sphere is established while
recording the mapping. Then cortical curvatures are mapped onto the sphere.
The two curvature functions on the sphere are aligned by solving a regular-
ization problem that tries to minimize the discrepancy between two functions
while maximizing the smoothness of the alignment in such a way that the pat-
tern of gyral ridges are matched smoothly. This alignment is projected back to
the original surface using the recorded mapping. This regularization mechanism
produces a smooth deformation field, with very little folding. The deformation
field is parameterized using a triangulated mesh and the algorithm proceeds in
a coarse-to-fine manner, with four levels of mesh resolution. Figure 4 and Figure
5 illustrate the effectiveness of this surface registration algorithm by computing
the probability of matching superior temporal sulcal fundi and central sulci.

After smoothing out thickness measurements, statistical analysis is performed
following the procedures described in the previous section. The resulting cor-
rected p-value map (< 0.1) for the F statistic is projected onto the template
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surface for visualization. Figure 6 shows statistically significant regions of cor-
tical thickness between two groups. After removing the effect of age and total
grey matter volume difference, the statistically significant regions of thickness
decreases are highly localized at the right inferior orbital prefrontal cortex, the
left superior temporal sulcus and the left occipito-temporal gyrus in autistic
subjects.

5 Conclusions

This paper has introduced heat kernel smoothing and its statistical proper-
ties for data analysis on the cortical manifolds. The technique can be used
in smooth out data that is necessary in the random field theory based mul-
tiple comparison correction. We have applied the methodology in detecting the
regions of abnormal cortical thickness in a group of autistic subjects; how-
ever, the approach is not limited to a particular clinical population. The al-
gorithm is implemented in MATLAB and freely available to download on the web
http://www.stat.wisc.edu/∼mchung/softwares/hk. A sample cortical mesh
for a subject and its thickness measures can be also downloaded from the same
website for other researchers.
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