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Abstract For this purpose, we present a novel weighted spherical
harmonic (SPHARM) representation that differs from the
We present a new tensor-based morphometric frameworkclassical SPHARM{, 17] in a regularizing cost function.
that quantifies cortical shape variations using the localar ~ Unlike the classical SPHARM, we weigh measurements in

element. The local area element is obtained from the Rie-Such a way that the closer measurements are weighed more.
mannian metric tensors, which are, in turn, obtained from The weighted-SPHARM is mathematically related to both

the smooth functional parametrization of a triangle mesh. the classical SPHARM and an isotropic heat diffusion on a
For the smooth parametrization, we have developed a novelunit spher.

weighted spherical harmonic (SPHARM) representation.  Let us overview previous literatures that are related to
The weighted-SPHARM differs from the classical SPHARM our study. Gerig et al. (2001) used the mean squared dis-
in a regularizing cost function. The classical SPHARM is a tance (MSD) of SPHARM coefficients in quantifying ven-
special case of the weighted-SPHARM. Further, for a spe-tricle surface shape in a twin study]| The distance based
cific choice of weights, the weighted-SPHARM is shown to metrics widely used in deformation-based morphometry do
be the finite least squares approximation to the solution of not directly quantify the amount of tissue growth and atro-
an isotropic heat diffusion on a unit sphere. The main aims phy [2]. For directly measuring the amount of tissue vol-
of this paper are to present a theoretical framework for the ume, the Jacobian determinant of the deformation field is a
weighted-SPHARM, and to show how it can be used in thebetter metric ?]. Our local area element is the differential
tensor-based morphometry. As an illustration, the method-geometric generalization of the Jacobian determinant. So
ology has been applied in the problem of detecting abnor- the area element will be able to quantify the cortical tissue
mal cortical regions in a clinical population. growth/atrophy directly.

Shen et al. (2004) used the principal component analy-
sis technique on the SPHARM coefficients of schizophrenic
hippocampal surfaces in reducing the data dimensich [
Then they classified the hippocampal surfaces using the lin-

In many previous cortical morphometric studies, cortical €ar discriminant analysis and a support vector machine. In
thickness have been mainly used to quantify cortical shapea related work, Gu et al. (2004) presented the SPHARM
variations in a populationi[l, 13, 14]. The cortical thick- ~ representation as a surface compression technique, where
ness measures the amount of gray matter in the vertical dithe main geometric feasures are encoded in the low degree
rection on the cortex. We present a new tensor-based morspherical harmonics, while the noises are in the high degree
phometry (TBM) that quantifies the amount of gray matter spherical harmonicg]. It will be shown that the weighted-
along the tangential direction of the cortex by computirgth  SPHARM penalizes high degree spherical harmonics more
local area element. The local area element is obtained fromthan the classical SPHARM does.
the Riemannian metric tensors, which are computed from Bulow (2004) used the spherical harmonics in develop-
the smooth functional parametrization of a cortical mesh. ing an isotropic heat diffusion via the Fourier transformeon

1. Introduction



unit sphere as a form of hierarchical surface represemtatio
[1]. We will show that the weighted-SPHARM representa-
tion is related to the heat diffusion asymptotically.

Most SPHARM literaturesT], 8, 9, 17] use the both real-
and imaginary-valued spherical harmonics. However, the
coefficients of imaginary-valued spherical harmonic basis
do not serve any purpose in SPHARM representation othe
than providing mathematical simplicity. In this paper, we
will use real-valued spherical harmonics with different-no
malizing constants thari |8, 9, 17].

Once the differentiable parametrization of the cortex is
established by the weighted-SPHARM, we can compute
the Riemmanian metric tensors and local area elementFigure 1. Cortical manifold\t (left) is mapped onto unit sphere
Many previous differential geometric cortical modeling is S? (right) via a deformable surface algorithm that preserves
based on locally fitting quadratic polynomials [7]. The anatomical homology and surface topology][ For the visual-
SPHARM-based global parametrization tend to be compu-ization purpose, the mean curvature was computed and séguinen
tationally expensive compared to the local quadratic poly- t© better represent sulci and gyri.
nomial fitting while providing more accuracy and flexibility
for hierarchical representation.

spherical Laplacian:

L o
2. Preliminary A %%(sin@%) ;20837.
2.1. Parametrization o s 7
There arel + 1 eigenfunctions, denoted &5,,(—! < m <
1), corresponding to the same eigenvalue (I + 1). Y,
is called thespherical harmoniof degreel and orderm
[4]. The explicit form of the2l + 1 spherical harmonics of

degred are given as

Let M and S? be a cortical surface and a unit sphere
respectively.M andS? are realized as meshes with more
than 80,000 triangle elementsd. It is natural to assume
the cortical surface to be a smooth 2-dimensional Rieman-
nian manifold parameterized by two parametéis [This
parametrization is constructed in the following way. A goin

[ml . cnYa
p = (x,y,2) € M is mapped onta = (uy,uz,u3) € S? cm by CMEC](;S ) 5}2(|m|<p), —ls 7% -1
via a deformable surface algorithm that preserves anatom—Ylm - |ﬁ v (cosd), m=
ical homology and the topological connectivity of meshes cim By (cosB) cos(|mlp),  1<m <,
(Figurel) [13]. Let U be the inverse mapping fros# to
M. Pointu = (u1,us2,u3) € S? is parameterized by the wherec;,,, = 22—:1% and P™ is the associated
spherical coordinates: Legendre polynomials of orden. Unlike many previous
SPHARM literatures 1, 8, 9, 17] that used the complex-
(u1,ug,uz) = (sin 6 cos p, sin ' sin g, cos ) valued spherical harmonics, we use only real-valued spher-

ical harmonics with different normalizing constants since

with (0, ) € N = [0,7] ® [0, 2m). This mapping will b_e they are more convenient for a real-valued stochastic model
denoted asY, i.e. X : A/ — S2. Then we have composite 1)

mappingZ = U o X : N — M. Zis a 3D vector and it

) ) For f,h € L?(S?), the space of square integrable func-
will be stochastically modeled as / (5%) P quareinteg .

tions in.S2, the inner product is defined as
Z(0,0) =v(0,9) +€(0,9), 1)

wherer is unknown true differentiable parametrization and

e is a random vector field 082, The computation of the  \yhere Lebesgue measuig (6, ¢) = sin fdfdy. With re-

Riemannian metric tensors and the local area element rexpect to this inner product, the spherical harmonics sesisfi
quire estimating differentiable functian the orthonormal condition

27 T
(f.hy = /0 /0 £(0,0)1(0, ) du(0. ),

2.2. Spherical harmonic representation /52 Yii (0)Yim () dpa(p) = 6:20jm,

The basis functions on the unit sphere are given as the
eigenfunctions satisfying\ f + A\f = 0, whereA is the whered;; is the Kroneker's delta.



Consider subspace

k l
Hk = {Z Z ﬁzyim : 51 € R} - LQ(SQ)v

=0 m=—1
which is spanned by up to thie-th degree spherical har-
monics. Then the least squares estimation, denotégdafs

f € L*(S?) in the subspace(y is given by

k l
f(p) = Z Z <fa Ylm)%m(p)'

=0 m=—

This can be stated as the following theorem.
Theorem 1.

k l
D> Yim)

=0 m=—1

This theorem is a well known result in Fourier analysis and
mainly refered as the genearlized Fourier series expansion
This is the basis of the classical-SPHARM representation

F(a)~h(q)])” du(q).

Y = arg min
S2

heHy

for anatomical boundarie§|[9, 17].

3. Weighted-SPHARM

Classical
SPHARM

il Weighted
p SPHARM

Figure 2. The schematic comparison of the classical-SPHARM
and weighted-SPHARM. The classical approach estimates fun

3.1. Basic theory.

The classical-SPHARM is only one possible represen-jona| gatas by minimizing the integrated squared distance be-
tation of functional data measured on the unit sphere. Weyyeen f and smooth functior. This distance is indicated by an
will present a more general representation technique in thearrow. The weighted-SPHARM estimatgsocally at each fixeg

by minimizing the integrated weighted squared distancevéet
The weighted-SPHARM can be viewed as a local

framework of a local kernel regression(]. We will call
this technique as thereighted-SPHARMince the coeffi-

f andh(p).

cients of SPHARM are additionally weighted by the eigen- kernel regressioni.[].
At each fixed poinp, smooth representatignof functional

It will be shown that the classical-

SPHARM representation.
definite kernel inS2. Any positive definite kernek (p, q)

values of a kernel.
SPHARM is a special case of the more general weighted-
First, we start with the spectral representation of pasitiv data f is searched in the subspatg that minimizes the

in SZ can be represented as

0o l
K(p7 Q) = Z Z /\lmyim(p)yvlm(q)a

=0 m=—1

(@)

where eigenvalue¥y) > A1, > Ao, > -+ > 0 satisfy

K(p,q)Yim(q) di(q) = NimYim(p)-

52
This is the special case of the Mercer’s theorém\vithout
loss of generality, we assume the kernel is normalized in

such a way that
[ K duta) = 1.

integral of the weighted squared distance betwgandh.
This is formulated as the following minimization problem

(4)

. 2

min /L K(p,q)[f(q) = h(p)]” du(q).
See Figure for the schematic comparison of the classical
SPHARM and the weighed-SPHARM. The minimizer of

(4) is given by the following theorem.

Theorem 2.

k

l

=0 m=-1
K(p,q)[f(a) = h()]” dpulq).

arg min
S2

heH

3)



Proof. Let Coordinate functions

ko1
hp) =" D" BmYim(p) € i ‘ ‘
=0 m=-1
X y z

The integral can be written as

Weighted-SPHARM

I(Boo, B1— 1,/310,/)'11,' s Brk)

! 2
/ K(p,0) q)—z S BonYin(0)] du(a).

=0 m=—1

Since the functional is quadratic in coefficients;,,, the
minimum exists and it is obtained when

ol , . Figure 3. Top: the original inverse mappirg is displayed in
B = (Oforalll" andm'. (5) S2. It shows the coordinate functions projected ofito Bottom:
tm the weighed-SPHARM representation of the coordinate fanst
. . ; " The color scale for coordinates is thresholdedt4s mm to better
Then solving equatiorsj with condition ), we have show the smoothing pattern of the weighted-SPHARM represen

tation.
Viowlw) [ KGof@dua) @
ko1 Proof. The weighted-SPHARM representation can be rear-
Z Z Bim Yim (p) Y m (p)- (7) ranged as
1=0 m=—1
Integrate the both sides of the equation with respect to mea- S XS Yim) Vi (p)
sureu(p). we obtain 1=0 m=—1
‘ = : At Yim (P)Yim (q) dpu(q)
Brm = f(Q) du(q) | Yim (p)K(p,q) du(p) / ;m;l
SQ
— f K(p,q) du(q) ask — oo
o me The last line is from equatior?]. On the other hand, from
></ Yion ()Y (p) du(p) the completeness of Hilbert spaté(s?),
= Aim / H@)Yraw (@) dp(q). Jim arg min | K(p,q) [f(@) = h(p)]” dpu(q)
This proves the statement. = herLrl21r}92)/ K(p,q)[f(a) — h(p)]” dulq).

Now we show what happens as the dimensiof{gfin-
creases. Define kernel smoothing as the integral convolu-This proves the statement. Theorem 3 connects the
tion weighted-SPHARM to kernel smoothing as the asymptotic
limit.
K«fp)= [ fl@K(p, q) du(q). (8) For the choice of eigenvaluesg,, = e~'(+1)7 the cor-
52 responding kernel is called ti@auss-Weistrass kernahd

Then it can be shown that the weighted-SPHARM con- itwill be denoted as

verges to kernel smoothing)(as the dimension of subspace
‘Hy, increases. This can be stated differently as Z Z Doy (0)Yim (@) 9)
Theorem 3. 1=0 m=—1

The subscript is introduced to indicate the dependence

K f(p) = arg herilz}(nSQ) - E(p,q)[f(a) = h(p)]” d(a)-  of the additional parameter. When= 0, \;,, = 1 and



the weighted-SPHARM becomes the classical-SPHARM.
It is interesting to note that even though the regularizing
cost functions are different in Theorem 1 and Theorem 2,
they are related. Another interesting property is thigt« f

is the unique solution to the following isotropic diffusion
equation

y13

N3

% =Ag, g(p,o0 =0) = f(p) (10)

[16]. From this property combined with Theorem 3, we
conclude that the weighted-SPHARM is the finite approxi-
mation of the isotropic diffusion ii$2.

3.2. Numerical Implementation

We only need to numerically estimate the Fourier coef-
ficients (f, Y,,) in the weighted-SPHARM. The eigenval- g22
ues\;, are given analytically from a given kernel. The
computation for the Fourier coefficients are based on therigyre 4. Riemannian metric tensor estimation. The megrisars
direct numerical integration over high resolution triaagl g, are estimated by differentiating the weighted-SPHARM eepr
meshes with more than 80,000 triangles and the averag&entation. Afterwards the local area elemefiet g is computed.
inter-vertex distance of 0.0189 mm. The accuracy of the The local area element measures the amount of are expamsion a
weighed-SPAHRM is only restricted to the mesh resolu- shrinking with respect t&>.
tion. Then the Fourier coefficientg, Y;,,) is approximated
as the Riemann sum over triangle elements. The Riemann ) )
sum based approximation should converge to the integral asls Vi (p) dp = 1 showing the accuracy up to 3 deci-
the mesh resolution increases. The weighted-SPHARM is™Mal places. This shows our Riemann sum approximation
constructed by iteratively adding each term in Theorem 2. Provides sufficiently good accuracy, which depends on the
We have compared the numerical results of theweighted-meSh resolution. The fou.rth column shows the average dl_f-
SPHARM against the analytical solution dfd). Let f — ference between the weighed-SPHARM and the isotropic

/' '+1)y;,, . be an analytic test function. Thet,, + f can  diffusion.

be written as ) ) ) ) )
3.3. Riemannian metric tensor estimation

[e%S) l .
ol (U'+1) Z Z efz(z+1)aylm(p)/2 Vi (q)Yirm (q) dpu(q) The weighted-SPHARM estimation of the unknown
S

1=0 m——1 true parametrization in equation {) is given by
oS l k l
— '+ Z Z e DY ()0 G = Yirm: () U= Z N (Z, Vi) Yim
=0 m=—1 =0 m=—1

The table % shows the comparative resultfor= 20 and  For this study, we used eigenvalues corresponding to the
selectivern’” with ¢ = 0.01 and degreé: = 20. The  Gauss-Weistrass kernel. Denoting partial differentiarep
third column shows the numerical computation of integral ators asd, = 9, andd, = d,,, we have derivative estima-

tions

I” | m' | integral| difference k1
20| 4 | 1.0001 | 9.7029-10° 00 = D> Nl Z, Yim)0iYim (6, ).
20 | 10 | 0.9999 | 1.6212-10~* =0 m—1

20 | 20 | 0.9999 | —1.1174-10~*

The partial derivatives of spherical harmonics are iteedyi
Table 1. Numerical accuracy of the weighted-SPHARM witk- computed. The associated Legendre polynomials in the
0.01 for degree 20, and order 4, 10 and 20. The third column gpherical harmonic basis are given by

checks if(Yy/ ./, Yirmms) = 1. The last column shows the average

difference between the weighted-SPHARM and the expectatl he . o d™
diffusion. P/"(cos ) = sin de—mPI(z) s’



Figure 5. Plot ofo (horizontal) vs. FWHM (vertical) showing
the nonlinear functional relationship. Table 2. shows FWFdi
differento.

where P;(x) are the Legendre polynomials defined in

(=1,1) with Py(xz) = 1 and Pi(z) = z. Then for
0<m<lIl-1,
m om—1 dam
OpdP"(cosf) = msin™ " fcosf—P(x)
dx™ x=cos 0
o dm+l
e 0d$m+1 B(I) x=cos
= mecot P (cosd) — P/ (cos ).

Form = I, sinceP, is thel-th order polynomial, the sec-
ond term vanishes. A similar recursive relationship for an
alternate definition for the associated Legendre polynbmia
is given in [LZ]. Based on this iterative relation, we can
compute the partial derivatives

clm(?gP‘ (cos ) cos(|m|<p), —1<m< -1,
0pYim = Tm Do PP (cos) m =0,
cimOp P! (cos 8) sin( |m|go) 1<m<l
and
|m|clmPl|m‘(cos 0) cos(|mlp), —l<m< -1,
0oYim = 0, m =0,
—|m|clmPl‘m|(cos f)sin(|m|e), 1<m <L

Then the Riemannian metric tensors are estimated as
(g45) = (0iv, 0;7) and the area eleme6l(d, ¢) = \/det g.

The area element measures the transformed aréd iof

the unit square of the parameterized spAC&ia mapping
V.

4. Statistical inferencein S2

For thei-th subject { < i < m), we denote the cortical
manifold asM; and its area element &5(0, ¢). The area

elementis influenced by the global brain size. If we enlarge
the cortical coordinates by the factorgfthe area element
changes by the factor of. So it is necessary to normalize
G, such that it is invariant under scaling. The affine scale
invariant area element is given by

4rG(0, ¢)
M)

whereu(M,) is the total cortical area. If we enlarge the the
cortical coordinates by the factor of u(M;) increases by
the factor ofr? makingai invariant under affine scaling.
The constantlr is multiplied so that the normalization is
with respect to the total surface areass. Then we have
the following general linear model (GLM):

Gi(0,) = ao + a1 - age; + ax(0, ) - group; + €(0, ¢),

wheree is a mean zero Gaussian random fielgse, and
group, are the age and a categorical dummy variadfe(
autism and for control) respectively for subjeét Then we
test if there is any group difference in the local area eldmen
measure by testing

HO : a2(9,
Hl : 042(9,

) = 0forall  ande.

VS. ¢) # 0 for somed and.

At each poin{6, ), aF-statistic with 1 andh—3 degrees of
freedom, denoted aB (0, ) is used as a test statistic. The
F-statistic is constructed as a ratio of the residual sum of
error of model fit of Hy and H;. Since we need to perform
the test at everyd, ¢), this becomes a multiple comparison
problem. We used the random field theofys[19] based
thresholding to determine the statistical significance.

The probability of obtaining false positives{evel) for
the one sided alternate hypothesis in given by

where £; is the i-th Lipschitz-Killing curvature or
Minkowski functional [L8], andp; is thei-dimensional EC-
density [L9]. FWHM denotes the full width at the half max-
imum of smoothing kerneK, used in the weighted sp-
hearical harmonic representation. For the unit sphere, the
Lipschitz-Killing curvatures are

Lo(S?) =2, £1(5%) =0, andLy(S?) =

The EC-densities are

S r(z) 2y
o) :/y e (ag) W
4In2 P(%) +myi1 s
e N = =y



arel7.1+2.8and16.1 4.5 for control and autistic groups
respectively. Image intensity nonuniformity was correlcte
using nonparametric nonuniform intensity normalization
method and then the image was spatially normalized into
the Montreal neurological institute (MNI) stereotaxic spa
using a global affine transformation. Afterwards, an auto-
matic tissue-segmentation algorithm based on a supervised
artificial neural network classifier was used to classifyheac
voxel as cerebrospinal fluid (CSF), gray matter, or white
o o e PORSRY o Pobably matter. Triangular meshes for outer cortical surfaces were
[ = I obtained by a deformable surface algorithirfi][ The mesh

starts as an ellipsoid located outside the brain and is &hrun
Figure 6. Demonstration of cortical surface normalizatiors? to match the cortical boundary. By performing an affine
showing the nonlinear alignment of central and superioptal transform on this ellipsoid, we obtaif? mesh, which is
sulci for 149 subjects. Left: before normalization. Righfter used in the weighted-SPHARM.

normalization. The probability of matching increases rafter- The segmented cortical meshes are normalized via a non-

malization. linear surface-to-surface registratiof]. Cortical curva-
tures of two surfaces are mapped onto the sphere and they

4.1. Computing FWHM are aligned by solving a regularization problem that tries

to minimize the discrepancy between two curvatures while
maximizing the smoothness of the alignment in such a way
that the pattern of gyral ridges are matched smoothly. This
regularization mechanism produces a smooth deformation
field, with very little folding. The deformation field is pa-

rameterized using a triangulated mesh and the algorithm
proceeds in a coarse-to-fine manner, with four levels of

The computation for the FWHM of the Gauss-Weistrass
kernel inS? is not trivial due to the fact there is no known
close form expression for the FWHM as a functiorwrofSo
the FWHM is computed numerically.

The Gauss-Weistrass kernel can be simplified from equa-
tion (9), via the harmonic addition theorem, as

© 9 +1 mesh resolution. Figur@demonstrates the effectiveness of
K, (p,q) = ?64(1+1)01310(COS ), (11)  this surface registration algorithm by showing the inceeas
1=0 matching probability of superior temporal and central sulc
where is the angle betwegmandg. Using the vectorinner ~ for 149 subjects.
product-, the angle can be written ass?¥ = p - ¢. The Afterwards, the weighted-SPHARM representation is
maximum of the Gauss-Weistrass kernel is obtained whenused as an estimate for differentiable smooth parametriza-
¥ = 0 and it is given by tion of the meshes. We used parameters= 20 and
o = 0.001. The corresponding FWHM is 0.2262 mm. The
k9 +1 uinye Riemannian metric tensors and the area element are com-
Z ar © ' puted simultaneously. Based on the general linear model
1=0 framework, the statistical parametric map (F-statist&) i
Now we fix ¢ = 0 and letp be the north pole, i.ep = computed and projected on bofff and the average cor-
(0,0,1). By varyingg = (sin?,0,cos9) for 0 < 9 = tical surface (Figur€). The average cortical surface is con-
cos 1(p-q) < m, we haveY;,, = 0if m # 0. Note structed by averaging the anatomically corresponding ver-
PP(1) = 1 foralli. Then we solve numerically fat in tices in the meshes. It serves as an anatomical landmark for
. . showing Whe_re signals are detectgd. Then we performed
1 Z 20+ le,l(lﬂ)g _ Z 20+ 1e*l<l+1)"1310(cos 9). t_he random field t.hgory bilsed multiple comparison correc-
2 e A7 e A tion on the F-statistic at = 0.05 level but we did not de-

tect any statistically significant cortical regions of lbaeea
The FWHM is then2y. Table 2 in Figure5 shows the  difference although we observed maximum F-value of 9.3
nonlinear relationship betwees and the corresponding (uncorrected p-value of 0.0054) at the left temporal lobe.
FWHM for k£ = 20.

6. Conclusions and discussions

. Application to auti
5. Application to autism study In this paper, we presented a theoretical framework for

Three Tesld';-weighted MR scans were acquired for 16 the weighted-SPHARM and its application in TBM. The
autistic and 12 control males. 16 autistic subjects were di- weighted-SPHARM is used as a differentiable parametriza-
agnosed with high functioning autism. The average agestion of the cortex. This enable us to compute the Rieman-
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