
it easy to program new statistical methods. The
graphics of the language allow easy production of
advanced, publication-quality graphics. Since
a wide variety of experts use the program, R
includes a comprehensive library of statistical
functions, including many cutting-edge statistical
methods. In addition to this, many third-party spe-
cialized methods are publicly available. And most
important, R is free and open source.

A common concern of beginning users of R is
the steep learning curve involved in using it. Such
concern stems from the fact that R is a command-
driven environment. Consequently, the statistical
analysis is performed in a series of steps, in which
commands are typed out and the results from each
step are stored in objects that can be used by fur-
ther inquiries. This is contrary to other programs,
such as SPSS and SAS, which require users to
determine all characteristics of the analysis up
front and provide extensive output, thus relying on
the users to identify what is relevant to their initial
question.

Another source of complaints relates to the
difficulty of writing new functions. The more
complex the function, the more difficult it
becomes to identify errors in syntax or logic. R
will prompt the user with an error message, but
no indication is given of the nature of the prob-
lem or its location within the new code. Conse-
quently, despite the advantage afforded by being
able to add new functions to R, many users may
find it frustrating to write new routines. In addi-
tion, complex analyses and simulations in R tend
to be very demanding on the computer memory
and processor; thus, the more complex the anal-
ysis, the longer the time necessary to complete
the task, sometimes days.

Large data sets or complex tasks place heavy
demands on computer RAM, resulting in slow
output.

Brandon K. Vaughn and Aline Orr

See also SAS; SPSS; Statistica; Systat

Web Sites

Comprehensive R Archive Network (CRAN): http://
CRAN.R-project.org

The R Project for Statistical Computing: http://www
.r-project.org

R2

R-squared (R2) is a statistic that explains the
amount of variance accounted for in the rela-
tionship between two (or more) variables. Some-
time R2 is called the coefficient of determination,
and it is given as the square of a correlation
coefficient.

Given paired variables ðXi;YiÞ, a linear model
that explains the relationship between the vari-
ables is given by

Y ¼ β0 þ β1Xþ e,

where e is a mean zero error. The parameters of
the linear model can be estimated using the least

squares method and denoted by β̂0 and β̂1, respec-
tively. The parameters are estimated by minimizing
the sum of squared residuals between variable Yi

and the model β0 þ β1Xi, that is, ðβ̂0; β̂1Þ ¼
argmin
β0;β1

ðYi � β0 þ β1XiÞ2.

It can be shown that the least squares estima-
tions are

β̂0 ¼ �Y � �X
Sxy

Sxx

and β̂1 ¼
Sxy

Sxx

,

where the sample cross-covariance Sxy is defined as

Sxy ¼
1

n

Xn

i¼1

ðXi � �XÞðYi � �YÞ ¼ XY � �X�Y:

Statistical packages such as SAS, SPLUS, and R
provide a routine for obtaining the least squares
estimation. The estimated model is denoted as

Ŷ ¼ β̂0 þ β̂1X:

With the above notations, the sum of squared
errors (SSE), or the sum of squared residuals, is
given by

SSE¼
Xn

i¼1

ðYi � ŶiÞ
2
:

SSE measures the amount of variability in Y
that is not explained by the model. Then how does
one measure the amount of variability in Y that is
explained by the model? To answer this question,

R2 1187



one needs to know the total variability present in
the data. The total sum of squares (SST) is the
measure of total variation in the Y variable and is
defined as

SST¼
Xn

i¼1

ðYi � �YÞ2,

where �Y is the sample mean of Y variables, that is,

�Y¼ 1

n

Xn

i¼1

Yi:

Since SSE is the minimum of the sum of squared
residuals of any linear model, SSE is always smaller
than SST. Then the amount of variability explained
by the model is SST − SSE, which is denoted as
the regression sum of squares (SSR), that is,

SST ¼ SST � SSE:

The ratio SSR/SST = (SST − SSE)/SST mea-
sures the proportion of variability explained by the
model. The coefficient of determination (R2) is
defined as the ratio

R2¼ SSR

SST
¼ SST � SSE

SSE
:

The coefficient of determination is given as
the ratio of variations explained by the model to
the total variations present in Y. Note that the
coefficient of determination ranges between
0 and 1. R2 value is interpreted as the proportion
of variation in Y that is explained by the model.
R2 ¼ 1 indicates that the model exactly explains
the variability in Y, and hence the model must
pass through every measurement ðXi,YiÞ. On the
other hand, R2 ¼ 0 indicates that the model does
not explain any variability in Y. R2 value larger
than .5 is usually considered a significant
relationship.

Case Study and Data

Consider the following paired measurements from
Moore et al. (1989), based on occupational mor-
tality records from 1970 to 1972 in England and
Wales. The figures represent smoking rates and
deaths from lung cancer for a number of occupa-
tional groups.

77 84

137 116

117 123

94 128

116 155

102 101

111 118

93 113

88 104

102 88

91 104

104 129

107 86

112 96

113 144

110 139

125 113

133 146

115 128

105 115

87 79

91 85

100 120

76 60

66 51

For a set of occupational groups, the first variable
is the smoking index (average 100), and the second
variable is the lung cancer mortality index (average
100). Suppose we are interested in determining
how much the lung cancer mortality index (Y vari-
able) is influenced by the smoking index (X vari-
able). Figure 1 shows the scatterplot of the
smoking index versus the lung cancer mortality
index. The straight line is the estimated linear
model, and it is given by

Y ¼ �2:8853þ 1:0875X:

SSE can be easily computed using the formula

SSE¼
Xn

i¼1

Y2
i � β̂0

Xn

i¼1

Yi � β̂1

Xn

i¼1

XiYi, ð1Þ

and SST can be computed using the formula

SST¼
Xn

i¼1

Y2
i �

1

n

Xn

i¼1

Yi

 !2

: ð2Þ
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In this example the coefficient of determination is
.5121, indicating that the smoking index can
explain the lung cancer mortality index.

Smoking Index

M
o

rt
al

it
y 

in
d

ex

60
40

60

80

100

120

140

160

70 80 90 100 110 120 130 140

Figure 1 Scatterplot of Smoking Index Versus Lung
Cancer Mortality Index

Note: The straight line is the linear model fit obtained by the
least squares estimation.

Relation to Correlation Coefficient

With the previous Equations 1 and 2, R2 can
also be written as a function of the sample cross-
covariance:

SSE¼nSyy � n
Sxy

2

Sxx

and SST ¼ nSyy:

Then the coefficient of determination can be writ-
ten as

R2¼ Sxy
2

SxxSyy

¼
XY � �X�Y
� �2

ðX2 � �X
2ÞðY2 � �Y

2Þ
,

which is the square of the Pearson product-
moment correlation coefficient.

R ¼ Sxyffiffiffiffiffiffiffi
Sxx

p ffiffiffiffiffiffi
Syy

p ¼

Pn
i¼1

ðXi � �XÞðYi � �YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðXi � �XÞ
Pn
i¼1

ðYi � �YÞ
s :

In the above example, the correlation coefficient
is .7162, so the correlation square is .5121, the
R2 value.

R2 for General Cases

The definition of the coefficient of determination
can be further expanded in the case of multiple
regression. Consider the following multiple regres-
sion model:

Y ¼ β0 þ β1X1 þ � � � þ βpXp þ e,

where Y is the response variable and
X1,X2; � � � ,Xp are p regressors, and e is a mean
zero error. The unknown parameters
β1, β2, � � � , βp are estimated by the least squares
method. The sum of squared residuals is given by

SSE ¼
Xn

i¼1

ðYi � ŶiÞ
2

¼
Xn

i¼1

Yi � ðβ̂0 þ β̂1X1 þ � � � þ β̂pXpÞ
� �2

,

while the total sum of squares is given by

SST ¼
Xn

i¼1

ðYi � �YÞ2:

Then the coefficient of multiple determination is
given by

R2¼ SST � SSE

SST
,

which is the square of the multiple correlation
coefficient R. As the number of regressors
increases, the R2 value also increases, so R2 cannot
be a useful measure for the goodness of model fit.
Therefore, R2 is adjusted for the number of
explanatory variables in the model. The adjusted
R2 is defined as

R2
adj¼1� ð1� R2Þ n� 1

n� p� 1
¼ ðn� 1ÞR2 � p

n� pþ 1
:

It can be shown that R2
adj ≤R2. The coefficient

of determination can be further generalized in
more general cases using the likelihood method.

Moo K. Chung
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RADIAL PLOT

The radial plot is a graphical method for display-
ing and comparing observations that have differing
precisions. Standardized observations are plotted
against the precisions, where precision is defined
as the reciprocal of the standard error. The original
observations are given by slopes of lines through
the origin. A scale of slopes is sometimes drawn
explicitly.

Suppose, for example, that data are available
on the degree classes obtained by students graduat-
ing from a university and that we wish to com-
pare, for different major subjects, the proportions
of students who achieved upper second-class hon-
ors or higher. Typically, different numbers of stu-
dents graduate in different subjects. A radial plot
will display the data as proportions so that they
may be compared easily. Similarly, a radial plot
can be used to compare other summary statistics
(such as means, regression coefficients, odds ratios)
observed for different sized groups, or event rates
observed for differing time periods.

Sometimes, particularly in the natural and phys-
ical sciences, measurements intrinsically have dif-
fering precisions because of natural variation in
the source material and experimental procedure.
For example, archaeological and geochronological
dating methods usually produce an age estimate
and its standard error for each of several crystal
grains or rock samples, and the standard errors
differ substantially. In this case, the age estimates
may be displayed and compared using a radial plot
in order to examine whether they agree or how
they differ. A third type of application is in meta-
analysis, such as in medicine, to compare esti-
mated treatment effects from different studies.

Here the precisions of the estimates can vary
greatly because of the differing study sizes and
designs. In this context the graph is often called
a Galbraith plot. In general, a radial plot is appli-
cable when one wants to compare a number of
estimates of some parameter of interest, for which
the estimates have different standard errors.

A basic question is, Do the estimates agree
(within statistical variation) with a common value?
If so, what value? A radial plot provides a visual
assessment of the answer. Also, like many graphs,
it allows other features of the data to be seen, such
as whether the estimates differ systematically in
some way, perhaps due to an underlying factor or
mixture of populations, or whether there are
anomalous values that need explanation. It is
inherently not straightforward to compare individ-
ual estimates, either numerically or graphically,
when their precisions vary. In particular, simply
plotting estimates with error bars does not allow
such questions to be assessed.

The term radial plot is also used for a display of
directional data, such as wind directions and
velocities or quantities observed at different times
of day, via radial lines of different lengths emanat-
ing from a central point. This type of display is
not discussed in this entry.

Mathematical Properties

Let z1, z2,. . ., zn denote n observations or esti-
mates having standard errors σ1, σ2,. . ., σn, which
are either known or well estimated. Then we plot
the points (xi, yi) given by xi = 1/σi and
yi = (zi − 0)/σi, where z0 is a convenient reference
value. Each yi has unit standard deviation, so each
point has the same standard error with respect to
the y scale, but estimates with higher precision plot
farther from the origin on the x scale. The (cen-
tered) observation (zi − z0) is equal to yi/xi, which
is the slope of the line joining (0, 0) and (xi, yi), so
that values of z can be shown on a scale of slopes.
Figure 1 illustrates these principles.

Furthermore, if each zi is an unbiased estimate
of the same quantity μ, say, then the points will
scatter with unit standard deviation about a line
from (0, 0) with slope μ− z0. In particular, points
scattering with unit standard deviation about the
horizontal radius agree with the reference value z0.
This provides a simple visual assessment of how

1190 Radial Plot




