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ABSTRACT In this paper, we show how this new representation can be

Cortical surfaces can be modeled using the recently degdlop Used in a hemisphere asymmetry analysis. Using the inherent
weighed spherical harmonic (SPHARM) representation. Th@ngular symmetry in the spherical harmonics, the tradition
weighted-SPHARM representation incorporates data smootf@symmetry index of the form (L-R)/(L+R) [11] can be ex-
ing, parametrization and surface registrationin a unifiathm  Pressed as the ratio between the sum of positive and negative
ematical framework. The weighted-SPHARM represents th&rder harmonics. This asymmetry index is used as a response
surface coordinates as a weighted linear combination afrsph Variable in a statistical model in quantifying abnormalrasy

ical harmonics in such a way that it solves a heat equatiodNetric pattern in 16 autistic subjects.

The representation can decomposes an arbitrary surface int

symmetric and asymmetric parts with respect to mirror reflec 2. METHODS

tion. By analyzing this unique decomposition, surface asym

metry can be quantified. We have applied our technique iAn outer cortical surfaceM is assumed to be a smooth 2D
quantifying abnormal brain asymmetry in autistic subjects Riemannian manifold topologically equivalent to a unitegh

[8] [5]. The outer cortical surface is obtained from a-T
weighted magnetic resonance image using a deformable sur-
face algorithm [12] and represented as a triangle mesh con-
sisting of 40,962 vertices and 81,920 triangles (Figurd g

1. INTRODUCTION algorithm starts with a spherical mesh and deforms to fit the

shape of the cortex guaranteeing the same topology. By fol-

We propose a novel 2D surface modeling framework calleg, ing the trajectory of the deformation, we can establish a
the weighted spherical harmonic representation (SPHARM) 1, 5h bijective mapping betweevl and a unit sphers?.

that can be used in encoding cortical shape information. Thg caqd on this mapping, we parameterize the Cartesian coor-
novelty of our proposed method is that cortical surfacemara yinates, — (v1,v2, v3) of M with the polar anglé € [0, ]

eter_|zat|on, surface registration, sgrface data smogthrrd. ‘and the azimuthal angle € [0, 27) so that each component
cortical surface asymmetry analysis can be performed mithi v; can be expressed as

a single unified mathematical framework providing a more
consistent modeling and validation approach than trauhitio vi = v;(0, ).

ally available. The weighted-SPHARM representation is 3\ s a convention. the plane, — 0 is chosen to be the mid-

spec;ral method [9], where Ilneg\r complnatlon explicitiba sagittal cross-section that separates the two hemispbéres
functions is used to represent noisy cortical surface ddte. the brain (Figure 2). The area definedy ¢ < T is the
basis expansion corresponds to the solution of an isotropig hemisphere '

heat equation on a unit sphere. Unlike the previous heat-diff
sion related smoothing that solves the heat equation nanpa
metrically [1] [3] [4], the result of the weighted-SPHARM is
explicitly given as a weighted linear combination of spbali  The spherical harmonik;,,, of degree and ordemn [5] [6]
harmonics. This provides a more natural setting for statist js defined as

cal modeling. The representation can be further used in sur-
face registration that reduces the improper alignment bf su m <
cal folding patterns between subjects and across hemispherYim = CLTTSPz (cos b)), m=
within aSUbjeCt. ClmPl‘m|(COS 9) Cos(|m|gp)’ 1<

Index Terms— Spherical Harmonics, Cortical Surface,
Mirror Symmetry, Heat diffusion, SPHARM representation

r2.1. Weighted Spherical Harmonic Representation

clmPl‘mI(COSH)sin(|m|gp)7 -1



Fig. 1. Left: Outer cortical surface obtained from a de-
formable surface algorithm [12]. Right: A close up image

of th? outer cortical sur_face represented as a triangle me?ﬂg. 2. Parameterization of cortical surface using the spherical
consisting of 40962 vertices. The cortical thickness messu coordinate system. The north and south poles are chosen in

are obtained at the mesh vertices. the plane, i.e.v; = 0, that separates the left and the right
hemispheres.

where
2041 (1 —|m|)! On unit sphere, heat kernél, is explicitly given as
2 (I + |m|)!

0o l
. . . /AN —I(I+1)o o
and P/ is the associated Legendre polynomiafl orderm. Kq(0,0,0,¢") = Z Z ¢ Yim (0, 9)Yim (0, ¢').-

Clm =

The spherical harmonics are orthonormal with respect to the 1=0 m=-1
inner product The parametes controls the dispersion of the kernel so we
will simply call it as thebandwidth Then using the explicit
(fr,f) = / £1(0,0) £2(6, ) sin 0dOdep. expr_ession for the heat kernel, heat kernel smoothing can be
52 rewritten as

Surface coordinates will be modeled independently as e
P Y Ky * 'Ui(ov <P) = Z Z e_l(l+1)a<via }/lm>)/lm(0a 90)'
vi(0,0) = hi(0,0) +€i(0, ), 1) 1=0m==1

The k-th degree expansion of heat kernel smoothing will

whereh; is the unknown smooth coordinate function to be esye called the:-th degree weighted-SPHARM representation:
timated and; is zero mean random fields, possibly Gaussian.

Functional measurements obtained along the corticalcarfa . koot Li41)e

will be modeled similarly. Traditionally, the coordinaterfc- hi(0,¢) = Z Z e (Wi, Yim)Yim (0,0)  (3)
tions h; has been estimated using the SPHARM representa- 1=0 m=-1

tion [2] [13] [14]: and it will be taken as our estimate for the unknown coordi-

v nate functionh;. The weighted-SPHARM converges to the

~ solution of isotropic heat diffusion
i 0,0) = > 37 (0, Vi) Yim (6, ). ) P
o %9 = 29,000, 0,0 = 0) = (6. )

The weakness of representation (2) is that it generates the o

Gibbs phenomenon (ringing artifact) [5] [10] for discontin @Sk goes to infinity.

ous or rapidly changing functional measurements. The Gibbs

phenomenon can be effectively removed if the expansion (23.2. lterative Residual Fitting Algorithm

Cconverges faster as the_ (_jegiegoes to |n_f|n|ty. By weight The SPHARM coefficients are estimated based on the itera-
ing the SPHARM coefficients exponentially smaller, we can

make the representation converges faster. This can be/adhietlve procedgre that utI|IZGS. the orthopormahty of the sphe
cal harmonics. The coordinate functiomsare measured at

as follows. )
! . . n = 40962 mesh verticesd;, ¢;) [12]. Then we have the
tionDef;lr;eheat kernel smoothinp] [5] of coordinate func- following set of linear equations:
(%

k l
Ko % vi(6, ¢) :/ Ko(0,0,0, 0 )vi(0',¢") sin®'df’dy’. vi(05,05) =D D (00 Yim)Yim (0, 5). )
S2 l

=0 m=—
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Previously the coefficient&;, Y;,,,) have been estimated by
inverting the system of linear equations in the least square oo
fashion [5] [13] [14]. However, for more than 40000 mesh 0
vertices used in our study, the size of the the linear sys@m ( °~ Outer SurfaceInnar Srtace
can easily reach the RAM memory limit of the most persona -
computers considering the degieean be anywhere between

1 and 90. To address this problem, we have developed a ne”" |
numerical technique called thierative residual fitting (IRF)  oe-
algorithm [5] [13]. In IRF, the coefficients are estimated it
eratively by breaking the large least squares problem (4) in
smaller least squares problems. S W W W & h W

At the 0-th degree, the coefficier{t;, Yoo) is estimated
by solving a smaller least squares problem

Fig. 3. Plots of the RMSE of the weighted-SPHARM for var-
vi(0;, ;) = (v, Yoo) Yoo (05, ¢;)- ious bandwidthr (0.01,0.001, 0.0001, 0) over degreeAs
the degree increases, at certain point, the change of RMSE is
no longer statistically significant and this is where therpt
degree is selected. The surfaces are the weighted-SPHARM

This servers as the initial condition for the IRF algorithm.
Then iteratively at thé-th degree, the set ofl + 1 coeffi-

cients(v;, Y, 1), -+, (v;, Y7 _1) are estimated by solving at the 85-th degree
l
ri(05,05) = D (Wi Yim)Yim (65, 05)- (5) . . .
m=—1 Suppose the surfadg is deformed tdv; +d;(h;), whered; is
_ i the displacement vector field. The optimal displacemerit tha
Thel-th residual; is given by minimizes the discrepancy betwekn+ d;(h;) andy; in the

11 least squares fashion [5] is given by

l —_—
ri(05,05) = vi(05,95) = Y D> (i Yin) Yim (85, 5), - ko _ _
V=0m=—1 4;(0,0) = > e (w0}, ) Yim (0, ).
=0m l

where(v;, Y;,,,) is the estimation obtained in the previous de-¢ gptimal displacement is simply obtained by taking the
grees. The stopping rule for the iteration is when the changgiference between two weighted-SPHARM representation.
of the root mean squared errors (RMSE) i.e. Then a pointz; (6o, o) in one surface corresponds to a point

1o 1/2 ji(6o, ©0) in the other surface. We will refer this surface cor-
RMSE = {— Z (05, QOj)j| , respondence as tt8PHARM-correspondengg).
nia The SPHARM-correspondence is further used to estab-

lish the inter-hemispheric correspondence by Ietﬁng) be

the mirror reflection ofh;. The mirror reflection ofy; with
: respect to the mid-sagittal cross section, 2= 0, is given

www. st at . wi sc. edu/ ~nthung/ sof t war es P d £ d

b
/ wei ght ed- SPHARM wei ght ed- SPHARM ht il . y
The numerical accuracy and validation issues are addressed

is no longer significant (Figure 2.2). The MATLAB imple-
mentation is publically available at

in [5] [13]. where* denotes the mirror reflection. The po?m(@o, @) in
the left hemisphere will be mirror reflected td6y, 27 — o)
2.3. SPHARM-correspondence in the right hemisphere. Thef (6o, 27 — ¢o) is matched

. . . to hi (6o, 27 — o) in the SPHARM- d :
Given the weighted-SPHARM representation, we need to e ° (8o, 2m .@) n e. cor.respon ence sense
ence, the point; (6o, ¢o) in the left hemisphere corresponds

tablish the correspondence between hemispheres and lpetw ) ) ) ) !
subjects. Consider a weighted-SPHARM surfagebtained  © the pointh; (6o, 2 — o) in the right hemisphere ( Figure
from coordinate functions; as in equation (3). Consider the ™/

other weighted-SPHARM surfacg obtained from coordi-

nate functionsu;: 2.4. Encoding Surface Asymmetry Information
P The inter-hemispheric correspondence is used to compare co
7i(0, ) = Z Z e MDY (e Vi (6, ). tical thickness measurements across the hemispheres- Cort

=0 me—l cal thickness [3] [12], which measures the thickness of gray



I 0.1

1.0
P-value
Fig. 4. The pointIAzi(Ho, o) (left) corresponds ta%(gj or —  Fig. 5. The statistically significant regions of cortical asym-
©o) (middle) after mirror reflection with respect to the = metry thresholded at the P-value of 0.1. The P-value has been

0. From the SPHARM-correspondenck; (0,2 — ¢,)  corrected for multiple comparisons.

matchesh; (0,21 — o) (right). This establish the mapping
from the left hemisphere to the right hemisphere in the leasjnjle theasymmetry indeas
squares fashion.

k
Z Z _l(H-l)a f Ylm>}/lm(90,800)'
1=0 m

matter along a cortical surface, is modeled as

f(0,0) =g(0,0)+ €0, p), The normalize asymmetry index of the form (L-R)/(L+R) is
then defined as
whereg is the unknown cortical thickness amds a mean C1(41)o
zero random field. The weighted-SPHARM representation of N (0, p) = Zl 1 Em——l € (f, Yim)Yim (0, 80)'
cortical thicknesy is given by leo Zm:O e~ N F Vi) Yim (0, )

The numerator is the sum of all negative order harmonics
90,0) =" > e EIT(f ¥ ) Vi (60, ). (6)  while the denominator is the sum of all positive and the 0-
1=0 m=—1 th order harmonics. Note that(6,0) = N(0,7) = 0.
N This index is intuitively interpreted as the normalizedelif
The cortical thicknesg(6y, wo) at pointh;(6y, ¢o) inthe left  ence between cortical thickness in the left and the rightihem
hemisphere is matched to the cortical thickng&#, 2 —  spheres. Note that the larger the value of the index, theitarg
o) at pointh; (6o, 2™ — o) in the right hemisphere. Then the amount of asymmetry. The index is invariant under the
using the symmetric and asymmetric properties of sphericalffine scaling so it is not necessary to control for the global

harmonics brain size difference in statistical analyses.
_ < < —
Yim (0,21 — @) = { YS;L((H (‘;) é;%; 171’ 3. APPLICATION
we obtain Three Tesla T-weighted MR scans were acquired for age
matched 16 high functioning autistic and 12 control right-
k-1 handed males. The autistic subjects were diagnosed by a
9002 — o) = > > e NF V) Yim (B0, 00)  trained and certified psychologist at the Waisman center at
=0 m=—1 the University of Wisconsin [7]. The {Fweighted images
ko1 went through various image processing steps, which are de-
- Z Z e (£ ¥in) Yim (B0, 0)- scribed in detail in [5]. Once we obtained the outer cortical
=0 m=0 surfaces of 28 subjects, the weighted-SPHARM representa-

tions h; and the corresponding cortical thickngsare con-
structed. We have used bandwidth= 0.001 corresponding

to k = 42 degrees. For each subject, its normalized asym-
metry indexN (6, ¢) is computed and modeled as a Gaus-
sian random fleld We test the null hypothesis tNd®, ) is

B —1 identical to the both groups for all poin{g, ¢) while the al-

5(6,0) = e DT Y A Y (6o, ternate hypothesis is that there exists a specific g6inteo).
(6:) Z Z - ¥im)Yim (o, 0) at which N (0, ¢9) is different for the both groups. The test

Comparing it with the expansion f@i(6y, ©o) in (6), we see
that the negative order terms are invariant while the pasiti
order terms change the sign under mirror reflection. Hence
we define thesymmetry indeas

=0 m=—1



statistic is & random field, denoted &3(9, ¢). For the mul-
tiple comparison correction, we have used the random field
theory based approach [15], where the corrected P-value is
computed as

(8]

[9]

2
Pl swp T(0,¢)>h| = > Ra(SHpalh). (@)
d=0

(0,9)€S?

In equation (7),R, is the d-dimensionalReselsof S? and [10]

pq IS the d-dimensionaEuler characteristic (EC) densityf

the T-field with the 26 degrees of freedom. The computed
P-values are projected on the average cortical surfacern@ig
5). The average cortical surface is constructed by avegagin
the SPHARM coefficients of all subjects. The average surface
serves as an anatomical landmark for displaying thesegsdic
We found that the central sulci and the prefrontal cortex ex-
hibits abnormal cortical asymmetry pattern in autisticjsots
(corrected P-value 0.1).

[11]

[12]
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