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ABSTRACT

Cortical surfaces can be modeled using the recently developed
weighed spherical harmonic (SPHARM) representation. The
weighted-SPHARM representation incorporates data smooth-
ing, parametrization and surface registration in a unified math-
ematical framework. The weighted-SPHARM represents the
surface coordinates as a weighted linear combination of spher-
ical harmonics in such a way that it solves a heat equation.
The representation can decomposes an arbitrary surface into
symmetric and asymmetric parts with respect to mirror reflec-
tion. By analyzing this unique decomposition, surface asym-
metry can be quantified. We have applied our technique in
quantifying abnormal brain asymmetry in autistic subjects.

Index Terms— Spherical Harmonics, Cortical Surface,
Mirror Symmetry, Heat diffusion, SPHARM representation

1. INTRODUCTION

We propose a novel 2D surface modeling framework called
the weighted spherical harmonic representation (SPHARM)
that can be used in encoding cortical shape information. The
novelty of our proposed method is that cortical surface param-
eterization, surface registration, surface data smoothing and
cortical surface asymmetry analysis can be performed within
a single unified mathematical framework providing a more
consistent modeling and validation approach than tradition-
ally available. The weighted-SPHARM representation is a
spectral method [9], where a linear combination explicit basis
functions is used to represent noisy cortical surface data.The
basis expansion corresponds to the solution of an isotropic
heat equation on a unit sphere. Unlike the previous heat diffu-
sion related smoothing that solves the heat equation nonpara-
metrically [1] [3] [4], the result of the weighted-SPHARM is
explicitly given as a weighted linear combination of spherical
harmonics. This provides a more natural setting for statisti-
cal modeling. The representation can be further used in sur-
face registration that reduces the improper alignment of sul-
cal folding patterns between subjects and across hemispheres
within a subject.

In this paper, we show how this new representation can be
used in a hemisphere asymmetry analysis. Using the inherent
angular symmetry in the spherical harmonics, the traditional
asymmetry index of the form (L-R)/(L+R) [11] can be ex-
pressed as the ratio between the sum of positive and negative
order harmonics. This asymmetry index is used as a response
variable in a statistical model in quantifying abnormal asym-
metric pattern in 16 autistic subjects.

2. METHODS

An outer cortical surfaceM is assumed to be a smooth 2D
Riemannian manifold topologically equivalent to a unit sphere
[8] [5]. The outer cortical surface is obtained from a T1-
weighted magnetic resonance image using a deformable sur-
face algorithm [12] and represented as a triangle mesh con-
sisting of 40,962 vertices and 81,920 triangles (Figure 1).The
algorithm starts with a spherical mesh and deforms to fit the
shape of the cortex guaranteeing the same topology. By fol-
lowing the trajectory of the deformation, we can establish a
smooth bijective mapping betweenM and a unit sphereS2.
Based on this mapping, we parameterize the Cartesian coor-
dinatesv = (v1, v2, v3) of M with the polar angleθ ∈ [0, π]
and the azimuthal angleϕ ∈ [0, 2π) so that each component
vi can be expressed as

vi = vi(θ, ϕ).

As a convention, the planev2 = 0 is chosen to be the mid-
sagittal cross-section that separates the two hemispheresof
the brain (Figure 2). The area defined by0 < ϕ < π is the
left hemisphere.

2.1. Weighted Spherical Harmonic Representation

The spherical harmonicYlm of degreel and orderm [5] [6]
is defined as

Ylm =
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Fig. 1. Left: Outer cortical surface obtained from a de-
formable surface algorithm [12]. Right: A close up image
of the outer cortical surface represented as a triangle mesh
consisting of 40962 vertices. The cortical thickness measures
are obtained at the mesh vertices.

where
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andPm
l is theassociated Legendre polynomialof orderm.

The spherical harmonics are orthonormal with respect to the
inner product

〈f1, f2〉 =

∫

S2

f1(θ, ϕ)f2(θ, ϕ) sin θdθdϕ.

Surface coordinatesvi will be modeled independently as

vi(θ, ϕ) = hi(θ, ϕ) + ǫi(θ, ϕ), (1)

wherehi is the unknown smooth coordinate function to be es-
timated andǫi is zero mean random fields, possibly Gaussian.
Functional measurements obtained along the cortical surface
will be modeled similarly. Traditionally, the coordinate func-
tionshi has been estimated using the SPHARM representa-
tion [2] [13] [14]:

ĥi(θ, ϕ) =

k∑

l=0

l∑

m=−l

〈vi, Ylm〉Ylm(θ, ϕ). (2)

The weakness of representation (2) is that it generates the
Gibbs phenomenon (ringing artifact) [5] [10] for discontinu-
ous or rapidly changing functional measurements. The Gibbs
phenomenon can be effectively removed if the expansion (2)
converges faster as the degreek goes to infinity. By weight-
ing the SPHARM coefficients exponentially smaller, we can
make the representation converges faster. This can be achieved
as follows.

Defineheat kernel smoothing[4] [5] of coordinate func-
tion vi as

Kσ ∗ vi(θ, ϕ) =

∫

S2

Kσ(θ, ϕ, θ′, ϕ′)vi(θ
′, ϕ′) sin θ′dθ′dϕ′.

Fig. 2. Parameterization of cortical surface using the spherical
coordinate system. The north and south poles are chosen in
the plane, i.e.v2 = 0, that separates the left and the right
hemispheres.

On unit sphere, heat kernelKσ is explicitly given as

Kσ(θ, ϕ, θ′, ϕ′) =
∞∑

l=0

l∑

m=−l

e−l(l+1)σYlm(θ, ϕ)Ylm(θ′, ϕ′).

The parameterσ controls the dispersion of the kernel so we
will simply call it as thebandwidth. Then using the explicit
expression for the heat kernel, heat kernel smoothing can be
rewritten as

Kσ ∗ vi(θ, ϕ) =

∞∑

l=0

l∑

m=−l

e−l(l+1)σ〈vi, Ylm〉Ylm(θ, ϕ).

Thek-th degree expansion of heat kernel smoothing will
be called thek-th degree weighted-SPHARM representation:

ĥi(θ, ϕ) =

k∑

l=0

l∑

m=−l

e−l(l+1)σ〈vi, Ylm〉Ylm(θ, ϕ) (3)

and it will be taken as our estimate for the unknown coordi-
nate functionhi. The weighted-SPHARM converges to the
solution of isotropic heat diffusion

∂g

∂σ
= ∆g, g(θ, ϕ, σ = 0) = vi(θ, ϕ)

ask goes to infinity.

2.2. Iterative Residual Fitting Algorithm

The SPHARM coefficients are estimated based on the itera-
tive procedure that utilizes the orthonormality of the spheri-
cal harmonics. The coordinate functionsvi are measured at
n = 40962 mesh vertices(θj , ϕj) [12]. Then we have the
following set of linear equations:

vi(θj , ϕj) =

k∑

l=0

l∑

m=−l

〈vi, Ylm〉Ylm(θj , ϕj). (4)



Previously the coefficients〈vi, Ylm〉 have been estimated by
inverting the system of linear equations in the least squares
fashion [5] [13] [14]. However, for more than 40000 mesh
vertices used in our study, the size of the the linear system (4)
can easily reach the RAM memory limit of the most personal
computers considering the degreek can be anywhere between
1 and 90. To address this problem, we have developed a new
numerical technique called theiterative residual fitting (IRF)
algorithm [5] [13]. In IRF, the coefficients are estimated it-
eratively by breaking the large least squares problem (4) into
smaller least squares problems.

At the 0-th degree, the coefficient〈vi, Y00〉 is estimated
by solving a smaller least squares problem

vi(θj , ϕj) = 〈vi, Y00〉Y00(θj , ϕj).

This servers as the initial condition for the IRF algorithm.
Then iteratively at thel-th degree, the set of2l + 1 coeffi-
cients〈vi, Yl,−1〉, · · · , 〈vi, Yl,−1〉 are estimated by solving

rl
i(θj , ϕj) =

l∑

m=−l

〈vi, Ylm〉Ylm(θj , ϕj). (5)

Thel-th residualrl
i is given by

rl
i(θj , ϕj) = vi(θj , ϕj) −

l−1∑

l′=0

l′∑

m=−l′

̂〈vi, Ylm〉Ylm(θj , ϕj),

where ̂〈vi, Ylm〉 is the estimation obtained in the previous de-
grees. The stopping rule for the iteration is when the change
of the root mean squared errors (RMSE) i.e.

RMSE =
[ 1

n

n∑

j=1

rk
i (θj , ϕj)

]1/2

,

is no longer significant (Figure 2.2). The MATLAB imple-
mentation is publically available at
www.stat.wisc.edu/∼mchung/softwares
/weighted-SPHARM/weighted-SPHARM.html.
The numerical accuracy and validation issues are addressed
in [5] [13].

2.3. SPHARM-correspondence

Given the weighted-SPHARM representation, we need to es-
tablish the correspondence between hemispheres and between
subjects. Consider a weighted-SPHARM surfaceĥi obtained
from coordinate functionsvi as in equation (3). Consider the
other weighted-SPHARM surfacêji obtained from coordi-
nate functionswi:

ĵi(θ, ϕ) =

k∑

l=0

l∑

m=−l

e−l(l+1)σ〈wi, Ylm〉(θ, ϕ).

Fig. 3. Plots of the RMSE of the weighted-SPHARM for var-
ious bandwidthσ (0.01,0.001, 0.0001, 0) over degreek. As
the degree increases, at certain point, the change of RMSE is
no longer statistically significant and this is where the optimal
degree is selected. The surfaces are the weighted-SPHARM
at the 85-th degree.

Suppose the surfacêhi is deformed tôhi +di(ĥi), wheredi is
the displacement vector field. The optimal displacement that
minimizes the discrepancy between̂hi + di(ĥi) andĵi in the
least squares fashion [5] is given by

d̂i(θ, ϕ) =

k∑

l=0

l∑

m=−l

e−l(l+1)σ(wi
lm − vi

lm)Ylm(θ, ϕ).

The optimal displacement is simply obtained by taking the
difference between two weighted-SPHARM representation.
Then a pointĥi(θ0, ϕ0) in one surface corresponds to a point
ĵi(θ0, ϕ0) in the other surface. We will refer this surface cor-
respondence as theSPHARM-correspondence[5].

The SPHARM-correspondence is further used to estab-
lish the inter-hemispheric correspondence by lettingĵi to be
the mirror reflection ofĥi. The mirror reflection ofĥi with
respect to the mid-sagittal cross section, i.e.v2 = 0, is given
by

ĵi(θ, ϕ) = ĥi

∗
(θ, ϕ) = ĥi(θ, 2π − ϕ),

where∗ denotes the mirror reflection. The pointĥi(θ0, ϕ0) in
the left hemisphere will be mirror reflected toĵi(θ0, 2π−ϕ0)

in the right hemisphere. Then̂ji(θ0, 2π − ϕ0) is matched
to ĥi(θ0, 2π − ϕ0) in the SPHARM-correspondence sense.
Hence, the point̂hi(θ0, ϕ0) in the left hemisphere corresponds
to the point̂hi(θ0, 2π − ϕ0) in the right hemisphere ( Figure
4).

2.4. Encoding Surface Asymmetry Information

The inter-hemispheric correspondence is used to compare cor-
tical thickness measurements across the hemispheres. Corti-
cal thickness [3] [12], which measures the thickness of gray



Fig. 4. The point̂hi(θ0, ϕ0) (left) corresponds tôh∗
i (θ, 2π −

ϕ0) (middle) after mirror reflection with respect to theu2 =

0. From the SPHARM-correspondence,ĥ∗
i (θ, 2π − ϕ0)

matcheŝhi(θ, 2π − ϕ0) (right). This establish the mapping
from the left hemisphere to the right hemisphere in the least
squares fashion.

matter along a cortical surface, is modeled as

f(θ, ϕ) = g(θ, ϕ) + ǫ(θ, ϕ),

whereg is the unknown cortical thickness andǫ is a mean
zero random field. The weighted-SPHARM representation of
cortical thicknessf is given by

ĝ(θ, ϕ) =
k∑

l=0

l∑

m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(θ, ϕ). (6)

The cortical thicknesŝg(θ0, ϕ0) at pointĥi(θ0, ϕ0) in the left
hemisphere is matched to the cortical thicknessĝ(θ0, 2π −

ϕ0) at point ĥi(θ0, 2π − ϕ0) in the right hemisphere. Then
using the symmetric and asymmetric properties of spherical
harmonics

Ylm(θ, 2π − ϕ) =

{
−Ylm(θ, ϕ), −l ≤ m ≤ −1,

Ylm(θ, ϕ), 0 ≤ m ≤ l,

we obtain

ĝ(θ0, 2π − ϕ0) =

k∑

l=0

−1∑

m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(θ0, ϕ0)

−
k∑

l=0

l∑

m=0

e−l(l+1)σ〈f, Ylm〉Ylm(θ0, ϕ0).

Comparing it with the expansion for̂g(θ0, ϕ0) in (6), we see
that the negative order terms are invariant while the positive
order terms change the sign under mirror reflection. Hence
we define thesymmetry indexas

S(θ, ϕ) =

k∑

l=0

−1∑

m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(θ0, ϕ0)

Fig. 5. The statistically significant regions of cortical asym-
metry thresholded at the P-value of 0.1. The P-value has been
corrected for multiple comparisons.

while theasymmetry indexas

A(θ, ϕ) =

k∑

l=0

l∑

m=0

e−l(l+1)σ〈f, Ylm〉Ylm(θ0, ϕ0).

The normalize asymmetry index of the form (L-R)/(L+R) is
then defined as

N(θ, ϕ) =

∑k
l=1

∑−1
m=−l e

−1(l+1)σ〈f, Ylm〉Ylm(θ, ϕ)
∑k

l=0

∑l
m=0 e−l(l+1)σ〈f, Ylm〉Ylm(θ, ϕ)

.

The numerator is the sum of all negative order harmonics
while the denominator is the sum of all positive and the 0-
th order harmonics. Note thatN(θ, 0) = N(θ, π) = 0.
This index is intuitively interpreted as the normalized differ-
ence between cortical thickness in the left and the right hemi-
spheres. Note that the larger the value of the index, the larger
the amount of asymmetry. The index is invariant under the
affine scaling so it is not necessary to control for the global
brain size difference in statistical analyses.

3. APPLICATION

Three Tesla T1-weighted MR scans were acquired for age
matched 16 high functioning autistic and 12 control right-
handed males. The autistic subjects were diagnosed by a
trained and certified psychologist at the Waisman center at
the University of Wisconsin [7]. The T1-weighted images
went through various image processing steps, which are de-
scribed in detail in [5]. Once we obtained the outer cortical
surfaces of 28 subjects, the weighted-SPHARM representa-
tions ĥi and the corresponding cortical thicknessĝ are con-
structed. We have used bandwidthσ = 0.001 corresponding
to k = 42 degrees. For each subject, its normalized asym-
metry indexN(θ, ϕ) is computed and modeled as a Gaus-
sian random field. We test the null hypothesis thatN(θ, ϕ) is
identical to the both groups for all points(θ, ϕ) while the al-
ternate hypothesis is that there exists a specific point(θ0, ϕ0),
at whichN(θ0, ϕ0) is different for the both groups. The test



statistic is aT random field, denoted asT (θ, ϕ). For the mul-
tiple comparison correction, we have used the random field
theory based approach [15], where the corrected P-value is
computed as

P
[

sup
(θ,ϕ)∈S2

T (θ, ϕ) > h
]
≈

2∑

d=0

Rd(S
2)µd(h). (7)

In equation (7),Rd is the d-dimensionalReselsof S2 and
ρd is thed-dimensionalEuler characteristic (EC) densityof
the T -field with the 26 degrees of freedom. The computed
P-values are projected on the average cortical surface (Figure
5). The average cortical surface is constructed by averaging
the SPHARM coefficients of all subjects. The average surface
serves as an anatomical landmark for displaying these indices.
We found that the central sulci and the prefrontal cortex ex-
hibits abnormal cortical asymmetry pattern in autistic subjects
(corrected P-value< 0.1).
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