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Weighted Fourier Series Representation and
Its Application to Quantifying the Amount

of Gray Matter
Moo K. Chung*, Kim M. Dalton, Li Shen, Alan C. Evans, and Richard J. Davidson

Abstract—We present a novel weighted Fourier series (WFS)
representation for cortical surfaces. The WFS representation is
a data smoothing technique that provides the explicit smooth
functional estimation of unknown cortical boundary as a linear
combination of basis functions. The basic properties of the
representation are investigated in connection with a self-ad-
joint partial differential equation and the traditional spherical
harmonic (SPHARM) representation. To reduce steep com-
putational requirements, a new iterative residual fitting (IRF)
algorithm is developed. Its computational and numerical imple-
mentation issues are discussed in detail. The computer codes
are also available at http://www.stat.wisc.edu/~mchung/soft-
wares/weighted-SPHARM/weighted-SPHARM.html. As an
illustration, the WFS is applied in quantifying the amount of gray
matter in a group of high functioning autistic subjects. Within the
WFS framework, cortical thickness and gray matter density are
computed and compared.

Index Terms—Cortical thickness, diffusion smoothing , gray
matter density, iterative residual fitting, SPHARM, spherical
harmonics.

I. INTRODUCTION

I N this paper, we present a new morphometric framework
called the weighed Fourier series (WFS) representation.

The WFS is both a global hierarchical parameterization and
an explicit data smoothing technique formulated as a solution
to a self-adjoint partial differential equation (PDE). WFS
generalizes the traditional spherical harmonic (SPHARM)
representation [23], [44] with additional exponential weights.
The exponentially decaying weights make the representation
converges faster and reduce the ringing artifacts (Gibbs phe-
nomenon) [22] significantly. Unlike SPHARM, WFS can be
reformulated as heat kernel smoothing [9] when the self-ad-
joint operator becomes the Laplace–Beltrami operator. Then
as similar to heat kernel smoothing, the random field theory
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[51]–[53] can be used for statistical inference on localizing
abnormal shape variations in a clinical population. Many basic
theoretical properties of WFS and its numerical implementation
issues are presented in great detail. The WFS representation
requires estimating 18 723 unknown Fourier coefficients on a
high resolution spherical mesh sampled at more than 40 000
vertices. This requires a specialized linear solver with fairly
steep computational resources. To address this issue, we have
developed a new estimation technique called the iterative
residual fitting (IRF) algorithm [43]. The computational burden
has been reduced substantially by decomposing the subspace
spanned by spherical harmonics into smaller subspaces, and it-
eratively performing the least squares estimation on the smaller
subspaces. The correctness of the algorithm is proven and its
accuracy is numerically evaluated.

As an illustration of the new technique, we have applied it in
localizing abnormal amounts of gray mater in a group of high
functioning autistic subjects. The cerebral cortex has a highly
convoluted geometry and it is likely that the local difference
in gray matter concentration can characterize a clinical popula-
tion. Within the WFS framework, gray matter density and cor-
tical thickness are also computed. Then statistical parametric
maps (SPM) are constructed to localize the regions of abnormal
gray matter. These two measurements are also compared to de-
termine if increased cortical thickness corresponds to increased
gray matter locally.

The main contributions of the paper are the development of
the underlying theory of the WFS representation and its numer-
ical implementation using the iterative residual fitting (IRF) al-
gorithm. We also made the computer code freely available to
public. In the following subsections, we will review the liter-
ature that is directly related to our methodology and address
what our specific contributions are in the context of the previous
literature.

A. Spherical Harmonic Representation

The SPHARM representation [4] has been applied to subcor-
tical structures such as the hippocampus and the amygdala [23],
[27], [30], [44]. In particular, Gerig et al. used the mean squared
distance (MSD) of the SPHARM coefficients in quantifying
ventricle surface shape in a twin study [23]. Shen et al. used
the principal component analysis technique on the SPHARM
coefficients of schizophrenic hippocampal surfaces in reducing
the data dimension [44]. Recently, it has begun to be applied to
more complex cortical surfaces [27], [43]. Gu et al. presented
SPHARM as a surface compression technique, where the main
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geometric feasures are encoded in the low degree spherical har-
monics, while the noises are in the high degree spherical har-
monics [27].

In SPHARM, the spherical harmonic are used in constructing
the Fourier series expansion of the mapping from cortical sur-
faces to a unit sphere. So SPHARM is more of an interpola-
tion technique than a smoothing technique, and thus it will have
the ringing artifacts [22]. On the other hand, WFS is a kernel
smoothing technique given as a solution to a self-adjoint PDE.
The solution to the PDE is expanded in basis functions. In a sim-
ilar spirit, Bulow used the spherical harmonics in isotropic heat
diffusion via the Fourier transform on a unit sphere as a form of
hierarchical surface representation [5]. WFS offers many advan-
tages over the previous PDE-based smoothing techniques [1],
[10]. The PDE-based smoothing methods tend to suffer numer-
ical instability [1], [6], [10] while WFS has no such problem.
Since the traditional PDE-based smoothing gives an implicit nu-
merical solution, setting up a statistical model is not straightfor-
ward. However, WFS provides an explicit series expansion so it
is easy to apply a wide variety of statistical modeling techniques
such as the GLM [21], principal component analysis (PCA) [44]
and functional-PCA [36], [41].

SPHARM will be shown to be the special case of WFS. In
the SPHARM representation, all measurements are assigned
equal weights and the coefficients of the series expansion is es-
timated in the least squares fashion. In WFS, closer measure-
ments are weighted more and the coefficients of the series ex-
pansion is estimated in the weighted least squares fashion. So
WFS is more suitable than SPHARM when the realization of the
cortical boundaries, as triangle meshes, are noisy and possibly
discontinuous. In most SPHARM literature, the degree of the
Fourier series expansion has been arbitrarily determined and the
problem of the optimal degree has not been addressed. Our WFS
formulation addresses the determination of the optimal degree
in a unified statistical modeling framework. The WFS-based
global parametrization is computationally expensive compared
to the local quadratic polynomial fitting [4], [10], [13], [29], [40]
while providing more accuracy and flexibility for hierarchical
representation.

B. Cortical Thickness

The cerebral cortex has the topology of a 2-D convoluted
sheet. Most of the features that distinguish these cortical regions
can only be measured relative to that local orientation of the cor-
tical surface [13]. The CSF and gray matter interface is referred
to as the outer surface (pial surface) while the gray and white
matter interface is referred to as the inner surface [10], [32].
Then the distance between the outer and inner surfaces is de-
fined as the cortical thickness and it has been widely used as an
anatomical index for quantifying the amount of gray matter in
the brain [9], [10], [18].

Unlike 3-D whole brain volume based gray matter density,
1-D cortical thickness measures have the advantage of providing
a direct quantification of cortical geometry. It is likely that dif-
ferent clinical populations will exhibit different cortical thick-
ness. By analyzing cortical thickness, brain shape differences
can be quantified locally [10], [19], [32], [35]. The cortical sur-
faces are usually segmented as triangle meshes that are con-

structed from deformable surface algorithms [15], [18], [32].
Then the cortical thickness is mainly defined and estimated as
the shortest distance between vertices of the two triangle meshes
[18], [32]. The mesh construction and discrete thickness com-
putation procedures introduce substantial noise in the thickness
measure [9] (Fig. 6). So it is necessary to increase the signal-to-
noise ratio (SNR) and smoothness of data for the subsequent
random field based statistical analysis. For smoothing cortical
data, diffusion equation based methods have been used [1], [6],
[9], [10]. The shortcoming of these approaches is the need for
numerically solving the diffusion equation possibly via the fi-
nite element technique. This is an additional computational step
on top of the cortical thickness estimation. In this paper, we
present a more direct approach that smoothes and parameter-
izes the coordinates of a mesh directly via WFS such that the
resulting thickness measures are already smooth. In WFS, the
cortical surfaces are estimated as a weighted linear combina-
tion of smooth basis functions so that most algebraic operations
on WFS will also be smooth.

II. CAUCHY PROBLEM AS A SMOOTHING PROCESS

Consider to be a compact differentiable manifold.
Let be the space of square integrable functions in
with inner product

(1)

where is the Lebegue measure such that is the total
volume of . The norm is defined as

The linear partial differential operator is self-adjoint if

for all , . Then the eigenvalues and eigen-
functions of the operator are obtained by solving

(2)

Without the loss of generality, we can order eigenvalues

and the eigenfunctions to be orthonormal with respect to the
inner product (1). Consider a Cauchy problem of the following
form:

(3)

The initial functional data can be further stochastically
modeled as

(4)

where is a stochastic noise modeled as a mean zero Gaussian
random field and is the unknown signal to be estiamted. The
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PDE (3) diffuses noisy initial data over time and estimate the
unknown signal as a solution. The time controls the amount
of smoothing and will be termed as the bandwidth. The unique
solution to (3) is given by the following theorem.

Theorem 1: For the self-adjoint linear differential operator ,
the unique solution of the Cauchy problem (3) is given by

(5)

Proof: For each fixed , has expansion

(6)

Substitute (6) into (3). Then we obtain

(7)

The solution of (7) is given by . So we have
solution

At , we have

The coefficients must be the Fourier coefficients .
The implication of Theorem 1 is obvious. The solution

decreases exponentially as time increases and smoothes out
high spatial frequency noise much faster than low-frequency
noise. This is the basis of many of PDE-based image smoothing
methods. PDE involving self-adjoint linear partial differential
operators such as the Laplace–Beltrami operator or iterated
Laplacian have been widely used in medical image analysis as
a way to smooth either scalar or vector data along anatomical
boundaries [1], [5], [6], [10]. These methods directly solve the
PDE using standard numerical techniques such as the finite
difference method or the finite element method. The problem
with directly solving PDEs is the numerical instability and the
complexity of setting up the numerical scheme. WFS differs
from these previous methods in such a way that we only need
to estimate the Fourier coefficients in a hierarchical fashion to
solve the PDE.

A. Weighted Fourier Series

We will investigate the properties of the finite expansion of
(5) denoted by

This expansion will be called as the weighted Fourier Series
(WFS). By rearranging the inner product, the WFS can be
rewritten as kernel smoothing

(8)

(9)

with symmetric positive definite kernel given by

(10)

The subscript is introduced to show the dependence of the
kernel on time . This shows that the solution of the Cauchy
problem (3) can be interpreted as kernel smoothing.

When the differential operator , the Laplace–Beltrami
operator, the Cauchy problem (3) becomes an isotropic diffusion
equation. For this particular case, is called the heat kernel
with bandwidth [7], [9]. For an arbitrary cortical manifold, the
basis functions can be computed and the exact shape of heat
kernel can be determined numerically. Although it can be done
by setting up a huge finite element method [39], this is not a
trivial numerical computation. A simpler approach is to use the
first order approximation of the heat kernel for small bandwidth
and iteratively apply it up to the desired bandwidth [9].

WFS can be reformulated as a kernel regression problem [17].
At each fixed point , we estimate unknown signal (4) with
smooth function by minimizing the integral of the
weighted squared distance between and

(11)

The minimizer of (11) is given by the following theorem.
Theorem 2:

Proof: Since the integral is quadratic in , the minimum
exists and obtained when

Solving the equation, we obtain the result.
Theorem 2 shows WFS is the solution of a weighted least

squares minimization problem.
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When is the Laplace–Beltrami operator with , the
heat kernel is a probability distribution in , i.e.,

For this special case, Theorem 2 simplifies to

In minimizing the weighted least squares in Theorem 2, it is
possible to restrict the function space to a finite sub-
space that is more useful in numerical implementation. Let

be the subspace spanned by basis . Then we have the
following theorem.

Theorem 3: If and , then

Proof: Let . The integral is
written as

Since the functional is quadratic in , the minimum
exists and it is obtained when for all . By differ-
entiating and rearranging terms, we obtain

Now integrate the equations respect to measure and obtain

If is a probability distribution, this theorem holds. For any
other symmetric positive definite kernel, it can be made to be a
probability distribution by renormalizing it. So Theorem 3 can
be applicable in wide variety of kernels.

B. Isotropic Diffusion on Unit Sphere

Let us apply the WFS theory to a unit sphere denoted by .
Since algebraic surfaces provide basis functions in a close form,
it is not necessary to construct numerical basis [39]. The WFS
in is given by the solution of isotropic diffusion. The spher-
ical parametrization of is given by the polar angle and the
azimuthal angel

(12)

with . The spherical Laplacian
corresponding to the parametrization (12) is given by

There are eigenfunctions , corre-
sponding to the same eigenvalue satisfying

is called the spherical harmonic of degree and order
[12], [50]. It is given explicitly as

,

,

,

where and
is the associated Legendre polynomials of order .

Unlike many previous imaging literatures on spherical har-
monics that used the complex-valued spherical harmonics [5],
[23], [27], [44], only real-valued spherical harmonics are used
throughout the paper for convenience in setting up a real-valued
stochastic model.

For , , we define the inner product as

where Lebesgue measure . Then with re-
spect to the inner product, the spherical harmonics satisfies the
orthonormal condition

where is the Kroneker’s delta. The kernel is given by

(13)

The associated WFS is given by

with Fourier coefficient . We will call this form
of WFS as the weighted-SPHARM. The special case is
the traditional SPHARM representation used in representing the
Cartesian coordinates of anatomical boundaries [23], [27], [44].
Consider subspace
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which is spanned by up to the -th degree spherical harmonics.
Then the SPHARM satisfy the least squares minimization
problem different from Theorem 2 and Theorem 3.

Theorem 4:

(14)

III. NUMERICAL IMPLEMENTATION

In constructing the WFS representation, all we need is es-
timating Fourier coefficients . There are three
major techniques for computing the Fourier coefficients. The
first method numerically integrates the Fourier coefficients over
a high resolution triangle mesh [7]. Although this approach is
the simplest to implement numerically and more accurate, the
computation is extremely slow, due to the brute force nature of
the technique. The second method is based on the fast Fourier
transform (FFT) [5], [27]. The drawback of FFT is the need for
a predefined regular grid system so if the mesh topology is dif-
ferent for each subject as in the case of FreeSurfer [18], a time
consuming interpolation is needed. The third method is based on
solving a system of linear equations [23], [43], [44] that mini-
mize the least squares problem in Theorem. This is the most
widely used numerical technique in the SPHARM literature.
However, the direct application of the least squares estimation
is not desirable when the size of the linear equation is extremely
large.

Let

Given nodes in mesh, the discretization of (14)
is given by

(15)

The minimum of (15) is obtained when

(16)

all . The (16) is referred as the normal equation in
statistical literatures. The normal equation is usually solved via
a matrix inversion. Let

and

Also let

...
. . .

...

be a submatrix consisting of the -th degree spherical
harmonics evaluated at each node . Then (16) can be rewritten
in the following matrix form:

(17)

with the design matrix and unknown
parameter vector . The linear system is
solved via

(18)

The problem with this widely used formulation is that the size of
the matrix is , which becomes fairly large and may
not fit in typical computer memory. So it becomes unpractical
to perform matrix operation (18) directly. This is true for many
cortical surface extraction tools such as FreeSurfer [18] that pro-
duces no less than nodes for each hemisphere.
This computational bottleneck can be overcome by breaking the
least squares problem in the subspace into smaller subspaces
using the iterative residual fitting (IRF) algorithm [43]. The IRF
algorithm was first introduced in [43] although the correctness
of the algorithm was not given. In this paper, we present The-
orem 5 that proves the correctness of the IRF for the first time.
The IRF algorithm can be also used in estimating SPHARM co-
efficients by letting the bandwidth in the algorithm.

A. Iterative Residual Fitting (IRF) Algorithm

Decompose the subspace into smaller subspaces as the
direct sum

where subspace

is spanned by the -th degree spherical harmonics only. Then
the IRF algorithm estimates the Fourier coefficients in each
subspace iteratively from increasing the degree from 0 to .
Suppose we estimated the coefficients up to de-
gree somehow. Then the residual vector based on this
estimation is given by

(19)

The components of the residual vector are identical so we
denote all of them as . At the next degree , we estimate
the coefficients by minimizing the difference between the
residual and . This is formally stated
as the following theorem.
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Theorem 5:

(20)

Proof: Let . The squared
norm is denoted as

Since is quadratic in ’s, the minimum is obtained when
for all . By differentiating with respect to

and letting it equal to zero, we obtain

(21)

From (19), we have

which is a linear combination of spherical harmonics up to
-th degree so it is orthonormal to . Then the first term in

(21) simplifies to

Theorem 5 proves that the correctness of the IRF algorithm.
Then the discretization and the optimization is based on the
normal equation approach (14)

Summarizing the results, the IRF algorithm is given below.

Algorithm 1: Iterative Residual Fitting (IRF)

Step 1) Let .
Step 2) .
Step 3) .
Step 4) .
Step 5) .
Step 6) If , go to step 3.

B. Automatic Optimal Degree Selection in IRF

The IRF algorithm hierarchically builds the WFS from lower
to higher degree. In most previous SPHARM literature [5], [23],
[24], [27], [43], [44], the issue of the optimal degree has not been
addressed. In SPHARM, the degree is simply selected based on

Fig. 1. Plots of RMSE over degree for bandwidths t = 0:01, 0.001, 0.0001,
0. Smoothed outer surfaces are at the 85th degree showing the bandwidth con-
trols the amount of smoothing in representing the cortex. Bandwidth t = 0

corresponds to the traditional SPHARM. As t ! 0, the WFS converges to
SPHARM.

a prespecified error bound that depends on the size of anatomical
structure. We present a statistical framework for automatically
determining the optimal degree that does not depend on the size
of anatomical structure.

Although increasing the degree of WFS increases the good-
ness-of-fit, it also increases the number of coefficients to be esti-
mated quadratically. So it is necessary to find the optimal degree
where the goodness-of-fit and the number of parameters balance
out.

The Fourier coefficients can be modeled to follow inde-
pendent normal distribution . It is natural to assume
an equal variance within the same degree. This assumption is
equivalent to the following -th degree model

(22)

where is a zero mean isotropic Gaussian random field. Then
at each iteration, we test if adding the -th degree terms in the

-th degree model is statistically significant by testing the
null hypothesis

The test statistic is constructed from the sum of squared errors
(SSE). Let the th degree sum of squared errors (SSE) be

The plot of the root mean squared errors (RMSE),
for varying degree is shown in Fig. 1. As the degree

increases, the root mean squared errors keep decreasing until
it flattens out. So it is reasonable to stop the iteration when the
decrease in error is no longer significant. Under , the test
statistic is
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Fig. 2. Automatic degree selection in the IRF algorithm. For each bandwidth t, the optimal degree is automatically selected by checking if adding an additional
degree will be statistical significant. Outer cortical surfaces are the results of the optimal selection procedure. The optimal degrees are k = 18(t = 0:01),
k = 42(t = 0:001),k = 52(t = 0:0005), and k = 78(t = 0:0001). For our study, t = 0:0001 and the corresponding degree k = 78 is used through the paper.

the -distribution with and degrees-of-
freedom. We compute the statistic at each degree and stop
the IRF procedure if the corresponding P-value first becomes
bigger than the prespecified significance (traditionally at 0.01
or 0.05 and in this study). For bandwidth ,
the optimal degree is determined to be (Fig. 2).

C. Computational Cost and Numerical Accuracy

The computation is done with MATLAB 6.1 in a Pentium
1.4-Ghz Intel M-processor laptop with 512-MB memory. The
complete MATLAB codes are freely available. The IRF algo-
rithm requires computing and storing the SPHARM bases in a
hard drive. Sampling the SPHARM bases up to 85 degree at ap-
proximately 40 000 points on a unit sphere requires 2.4 GB of
space and 16 min of computation. The SPHARM bases at each
degree are stored as a single file and loaded into the computer at
each degree in the IRF algorithm. For up to degree, there
are total unknown Fourier coefficents corre-
sponding to the three Cartesian coordinates of a cortical surface.
The average computational times for estimating all the Fourier
coefficients are 354, 345, and 313 s, respectively, for 1, 24, and
48 cortical surfaces. The average computational time decreases
as the number of cortical surfaces increases since the SPHARM
bases are recycled for all surfaces at a given degree.

The numerical implementation of WFS is validated against
the known analytical value. From the orthonormality of
SPHARM, for

WFS of the spherical harmonic multiplied by
should theoretically results in the original spherical harmonics.
This exact analytical relation gives a criteria for numerical
accuracy. The difference between the analytical value and the
WFS representation gives the measure of numerical accuracy.
Table I shows the result for selective and with various
bandwidth . The fourth column shows the mean absolute error
computed over all mesh vertices as

1http://www.stat.wisc.edu/~mchung/softwares/weighted-SPHARM/
weighted-SPHARM.html

TABLE I
ACCURACY OF THE WFS REPRESENTATION

As expected, the mean absolute error decreases as the degree in-
creases. For the 78th degree with , the error is smaller
than two decimal places. We have also estimated the Fourier co-
efficient to check if it is 1 in the fifth column.
The estimation is accurate up to two decimal places for all de-
grees. A similar validation technique was introduced in [7] for
determining the accuracy of a numerical integration.

We have also checked the ringing artifacts (Gibbs phenom-
enon) [22] in our numerical implementation. In both the tradi-
tional SPHARM and WFS, continuous measurements will have
rapidly decaying Fourier coefficients so they converge faster.
For continuous measurements such as the Cartesian coordinates
and cortical thickness, we do not expect significant ringing ar-
tifacts for fairly large degree of harmonics. Note that we are
using sufficiently high degree up to 78th harmonics, which cor-
responds to 6241 independent basis functions.

On the other hand, discontinuous measurements will have
slowly decaying Fourier coefficients and thus the representa-
tions converge slowly. The ringing artifacts would be expected
for the SPHARM representation as demonstrated in Fig. 5. In
the figure, discontinuous measurements are constructed as a step
function of value 1 in the circular band and
0 outside of the band. The SPAHRM representation of the step
function resulted in significant ringing artifacts even for fairly
high degrees up to 78. In comparison, the WFS representation
of the step function does not exhibit any serious ringing arti-
facts as seen in Fig. 5. The superior performance of WFS can
be easily explained in terms of convergence. The WFS repre-
sentation additionally weights Fourier coefficients with expo-
nentially decaying weights, which contributes more rapid con-
vergence even for discontinuous measurements. This robustness
of WFS is also related to the fact that it is a PDE-based data
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smoothing technique while the traditional SPHARM is more of
interpolation or reconstruction technique.

D. Computing FWHM

Since WFS is a kernel smoothing method, it is useful to know
the full-width at the half-maximum (FWHM) of the underlying
kernel. The computed FWHM is later used in the random field
based multiple comparison corrections [9], [10], [52], [53].
Computing the FWHM of the heat kernel used in WFS is
not trivial since there is no known close form expression for
FWHM as a function of bandwidth . Therefore, FWHM is
computed numerically.

For , , , let us define the Cartesian inner product
as , where is an angle between and . The
heat kernel (13) is symmetric along the geodesic circle. If

, we have . This property can be
used to simplify the expansion (13) using the harmonic addition
theorem [26], [50].

Theorem 6: (Harmonic Addition Theorem):

(23)

Proof: Fix the azimuthal angel and be the north
pole, i.e. . Now by varying for

, we have if . Then we have

Note that . This implies that the sum of product of the
spherical harmonics is a function of the inner product between

and only. From symmetry, if we rotate back to the original
position from the north pole, the same result should hold.

Using the harmonic addition theorem, we simplify the heat
kernel in the following theorem.

Theorem 7: For any ,

(24)

Theorem 7 is used to plot the shape of the heat kernel by fixing
to be the north pole and by varying (Fig. 3).

Similar result is also given in [5]. The maximum of the kernel
is obtained at . Then the FWHM is solved numerically for

in

The FWHM is then . Fig. 4 shows the nonlinear relationship
between bandwidth and the corresponding FWHM. When

, the corresponding FWHM is 0.0597. This is the FWHM
we have used in the subsequent cortical thickness analysis.

Fig. 3. Shape of heat kernel with different bandwidth t = 0:01, 0.05, 0.1, 0.5.
Horizontal axis is the � value from the north pole (� = 0) to the south pole
(� = �). Weighting scheme used in WFS follows the shape of the heat kernel
weighting closer measurements heavily.

Fig. 4. Plot of FWHM (vertical) over bandwidth t (horizontal) for both heat
kernel and Gaussian kernel. FWHM has to be numerically estimated in the case
of the heat kernel. Numerically computed FWHM is used in the random field
theory based multiple comparison correction.

IV. APPLICATION TO CORTICAL MORPHOMETRY

In this section, we present applications of WFS in localizing
the regions of abnormal amount of gray matter in autistic sub-
jects. Surface normalization issue is discussed in detail along
with a stochastic model for WFS.

A. Data Set

The high functioning autistic (HFA) and
normal control (NC) male subjects were screened to be right-
handed. The autistic subjects were diagnosed via the Autism Di-
agnostic Interview—Revised (ADI-R) by a trained and certified
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Fig. 5. Ringing artifacts (Gibbs phenomenon) for SPHARM and WFS. Traditional SPHARM and WFS representations are performed on the discontinuous mea-
surements, which are defined as 1 in region (1=8) < � < (1=4) and 0 in other regions. First row shows severe ringing artifacts in the traditional SPHARM
representation. Second row shows the negligible ringing effect in the WFS representation. Columns are k = 18, 42, 52, 78 degree representations.

Fig. 6. Cortical thickness measures projected onto an average surface for better visualization. As the bandwidth increases from t = 0:0001 to t = 0:01, the
amount of smoothing also increases. First image shows the cortical thickness obtained from the traditional deformable surface algorithm [9], [10], [32].

psychologist at the Waisman Center at the University of Wis-
consin-Madison [14]. Age distributions for HFA and NC were
compatible at and , respectively.

High resolution anatomical magnetic resonance images
(MRI) were obtained using a 3-T GE SIGNA scanner with
a quadrature head RF coil. A 3-D, spoiled gradient-echo
(SPGR) pulse sequence was used to generate -weighted
images. Image intensity nonuniformity was corrected using
the nonparametric nonuniform intensity normalization method
[46] and then the image was spatially normalized into the
Montreal neurological institute (MNI) stereotaxic space using
a global affine transformation [11]. Afterwards, an automatic
tissue-segmentation algorithm based on a supervised artificial
neural network classifier was used to classify each voxel as
cerebrospinal fluid (CSF), gray matter, or white matter [31].
Subsequently, a deformable surface algorithm [32] was used to
generate the outer and the inner cortical meshes.

B. Stochastic Model

Let and be the outer (pial) and inner surfaces of the
brain, respectively. The unit sphere is realized as a triangle

mesh and deformed to match the outer and inner surfaces in such
a way that anatomical homology and the topological connec-
tivity of meshes are preserved [32]. The cortical surfaces can
be assumed to be smooth 2-D Riemannian manifolds parame-
terized by two parameters [15], [29]. Based on the deformable
algorithm [32] that establishes the homology between the
mesh and the outer cortical surface, the Cartesian coordinates
of the mapping are discretely parameterized by the spherical
parametrization (12) as

The inner surface is parameterized similarly as

These discrete coordinate functions are further smoothed by the
WFS

(25)
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We model stochastically as (22) by assuming to follow
independent normal distribution for coordinate ,
degree , and order . This assumption is equivalent to mod-
eling as the sum of signal plus noise

where is a zero mean Guassian random field with a certain
isotropic covariance function. A similar stochastic modeling ap-
proach has been used in [34] where the canonical expansion of
a Gaussian random field is used to model the component of a
deformation field.

The mean and the variance functions of the surface are given
by

(26)

The total variability of the surface is then measured by

indicating the increase of smoothing bandwidth decreases the
total variability. If

(27)

is the WFS for the th subject , the unknown
parameters and are estimated as the sample mean and
the sample variance

(28)

The inner surface is stochastically modeled similarly as

(29)

C. Surface Normalization

Previously, cortical surface normalization was performed by
minimizing an objective function that measures the global fit of
two surfaces while maximizing the smoothness of the deforma-
tion in such a way that the gyral patterns are matched smoothly
[9], [42], [49]. In the WFS representation, the surface normal-
ization is straightforward and does not require any sort of opti-
mizations explicitly.

The MRIs were spatially normalized into the Montreal Neu-
rological Institute (MNI) stereotaxic space using a global affine
transform [11], which gives the 3-D alignment of brain. Then
an additional surface alignment was done during the cortical
surface extraction process via the anatomic segmentation using
the proximities (ASP) algorithm [32]. The algorithm generates
40 962 vertices and 81 920 triangles with the identical mesh
topology for all subjects. The vertices indexed identically on
two cortical meshes will have a very close anatomic homology
and this defines the surface alignment [10], [32]. This provides
the same spherical parameterization at identically indexed
vertices across different cortical surfaces. Our approach avoids
the surface alignment done by coinciding the first order ellip-
soid meridian and equator in the SPHARM-correspondence
approach [23], [47]. Surface meshes obtained from other
segmentation techniques such as FreeSurfer [18] may require
the SPHARM-correpsondence approach. After this initial
surface alignment, the more refined WFS-correspondence is
established.

Given two WFS surfaces and , the displacement field
that minimizes the integral of the squared errors between de-

formed surface and is simply given by the following
theorem.

Theorem 8:

Proof: If , the deformation is of the form

for unknown , which need to be determined. Substituting the
term in the integral, we obtain the expression

where . From the
orghonormality of spherical harmonics, the expression is sim-
plified as

This is minimum if all vanishes and we obtain the result.
Theorem 8 shows that the optimal displacement in the least

squares sense is obtained by simply taking the difference be-
tween two WFS representations. Unlike other surface registra-
tion methods used in warping surfaces between subjects [9],
[42], [49], it is not necessary to consider an additional cost func-
tion that guarantees the smoothness of the displacement field
since the displacement field is already a linear combina-
tion of smooth basis functions. Based on this idea, we normalize
WFS surfaces. We will refer to the surface correspondence ob-
tained by Theorem 8 as the WFS-correspondence.
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Fig. 7. Multiscale representation of surface registration toward the average template. Top is the inner surface while the bottom is the outer surface. � = 0 is the
surface of one particular subject while � = 1 is the average surface of 24 subject. Scale space � 2 [0; 1] is searched for the maximal discrepancy between two
groups for increased statistical sensitivity.

Let be the mean surface obtained by replacing in (26)
with the sample mean (28). Fig. 7 shows the mean surface for 24
subjects used in the study. The mean surface serves as a template
for statistical analysis later. For subject , the displacement from
surface to the template is

Consider the trajectory of the deformation from to the tem-
plate parameterized by

(30)

When , is the th subject surface, while when
, it is the template. The parameter controls the amount

of registration from the coarse to fine scale toward the template.
Fig. 7 shows at 11 different scales between 0 and 1 with
0.1 increment for a single subject. The larger the value of ,
the smaller the image registration variability across the subjects
with respect to the template. This is shown from the total vari-
ability computed at each scale :

where

is decreasing for (Fig. 8).

D. Gray Matter Density

Gray matter density is a 3-D measure defined as the proba-
bility of a particular voxel belonging to gray matter. It has been
used in various anatomical studies: normal development [25],

[37], autism [8], depression [38], epilepsy [33], and Alzheimer’s
disease [28], [48]. There are many different techniques for ob-
taining the density depending on how it is defined. In VBM,
it is modeled as a Gaussian mixture on tissue intensity values
[2], [25]. In modulated-VBM [25], the density obtained from
the standard VBM is rescaled by the Jacobian determinant of
image registration to preserve the total amount of gray matter.
This is related to the RAVENS (regional analysis of volumes
examined in normalized space) approach [16]. In this study, we
have avoided modulating the density with the Jacobian determi-
nant. Since only the surface deformation is known, we do not
have any information about the Jacobian determinant inside the
gray matter regions.

Paus et al. modeled the density as a Bernoulli random vari-
able taking value 1 inside the gray matter segmentation and 0
outside the segmented regions [37]. In a slightly different for-
mulation, Thompson et al. computed the density as the fraction
of gray matter within a ball of radius 15 mm along a cortical sur-
face [48]. This approach is equivalent to convoluting the binary
mask of the gray matter with a uniform probability distribution
of radius 15 mm and interpolating voxel values to the cortical
surface mesh. This equivalence relation is the basis of how we
project a 3-D density map to a 2-D cortical surface and compare
them with cortical thickness in our study.

In this study, the gray matter density was constructed using
the 3-D Euclidian distance map of the surfaces. For the outer
surface , the distance map at each voxel is defined as

where is the Euclidian norm. The minimum is found using
the nearest neighbor search algorithm on an optimized k-D tree
[20]. Similarly we denote the distance map for the inner surface

as . Then the average distance map is defined as
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Fig. 8. Left: Plot of image registration variability c(�). Middle: Plot of the maximum of T statistic at each scale. Right: Plot of corrected P-value corresponding
to the maximum of T statistic. At � = 0:4, the minimum P-value of less than 0.1 is obtained so we choose � = 0:4 to be the optimal scale that separates the two
groups. Lines are the best fitting quadratic curve in the least squares sense.

The average distance map for a subject is shown in Fig. 9. The
minimum of the average distance is always obtained in the
middle of the outer and the inner surfaces, where the probability
of a voxel belong to the gray matter class should be the highest.
Then we define the gray matter density as

(31)

where parameter controls the spread of density ( in
our study). The gray matter density is always between 0 and 1
and it obtains its maximum in the interior of the gray matter
region, where the average distance map obtains the minimum.
The density map is further convoluted with the 3-D Gaussian
kernel with 10 mm FWHM to increase the smoothness and
normality of data [2], [8] (Fig. 9). The smoothed density map

is stochastically modeled as a Gaussian random
field.

Afterwards, the two sample t-test statistic with the equal
variance assumption is computed on the convoluted gray matter
density maps at each voxel [8]. The resulting random field

is distributed as a student distribution with
degrees-of-freedom at each voxel . Based on the random

field theory [51]–[53], the test statistic, which accounts for the
multiple comparison correction, is the maxima of field over
the gray matter . The corresponding corrected -value is
computed using the following formula:

where is the volume of the gray
matter of the template. The gray matter volume is estimated by
computing the volume bounded by the outer and inner meshes
[10]. Restricting the search region from the whole brain volume
to the gray matter boosts the signal detection power.

We performed the above procedure for each image registra-
tion scale from 0 to 1 at 0.1 increment. Increasing surface reg-
istration toward the template reduces the registration variability
while increasing the gray density variability due to the misalign-
ment of gray matter. So the maxima of field will not be ob-
tained at the two extremes of registration scale as

Fig. 9. Left: Contour plot of the average distance map in mm at scale � = 0.
Right: Gaussian kernel smoothing of the gray matter density map with 10 mm
FWHM.

demonstrated in Fig. 8. To increase statistical sensitivity and
specificity, it is necessary to find an optimal registration scale
that provides the maximal discrepancy between the groups as
measured by the maxima of field. Hence, the minimum cor-
rected P-value can be chosen as a criteria for determining the
optimal scale. Our approach is similar to the scale-space search
method [45], where the maxima of field is searched over
smoothing scale.

The maximum statistic value and its corresponding cor-
rected P-value at each scale are plotted in Fig. 8 showing that the
optimal scale is obtained when . At this scale, the max-
imum T-stat. was 5.43 while the minimum T-stat. was 5.04.
The random field theory based thresholding of gives
the corrected P-value of 0.1. Fig. 10 shows the optimally con-
structed T-stat. map thresholded at 4.0 and interpolated into
the nearest point in the cortical surface showing increased gray
matter density in the localized areas of the autistic subjects.

E. Cortical Thickness

The previously available approaches for computing the
cortical thickness in discrete triangle meshes produce noisy
thickness measures [9], [18], [32]. So it is necessary to smooth
the thickness measurements along the cortex via PDE based
smoothing techniques [1], [6], [10]. On the other hand, the
WFS provides smooth functional representation of the outer
and inner surfaces so that the distance measures between the
surfaces should be already smooth. Hence, the WFS avoids
this additional step of thickness smoothing done in most of
thickness analysis literature [9], [10]. It is not necessary to
perform data smoothing in the WFS formulation.
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Fig. 10. T statistic map for gray matter density and cortical thickness thresholded at between �4 and 4 for the comparision purpose. In the gray matter density
results, signals are mainly detected in either the inner surface or the outer surface but not in the middle surface. This indicates that density-based morphometries
will mainly detect signal near tissue boundaries. Gray matter density and the thickness results do not overlap reconfirming that the thickness and gray matter density
are not positively correlated.

Fig. 11. Top: Gray matter density projected onto inner, middle, and outer surfaces. On the inner surface, the deep sulcal regions show the low density while the
gyral ridges show high density. On the outer surface, this is opposite. The deep sulcal regions show high density while the gyral ridges show lower density. The
middle surface shows high density. Bottom: Scatter plot of gray matter density over thickness. They show negative correlations.

Using Theorem 8 and the resulting WFS-correspondence, we
establish the homology between the outer and the inner sur-
faces in the least squares fashion. For the outer surface (25)
and the inner surface (29), the cortical thickness is defined to
be the Euclidean distance between the WFS-correspondence. A
similar approach has been proposed for measuring the close-
ness between two surfaces [23]; however, this is the first study
using harmonics in defining the cortical thickness. Fig. 6 shows
the comparison of cortical thickness computed from the tradi-

tional deformable surface algorithm [32] and the WFS-corre-
spondence. The cortical thickness obtained from the traditional
approach introduces a lot of triangle mesh noise into its esti-
mation while the WFS-correspondance approach does not. The
spatial smoothness of the thickness is controlled by the band-
width .

For the group comparison between the autistic and the normal
control groups, a two sample t-test was performed. The corre-
sponding corrected P-value was computed using the following
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Fig. 12. Correlation of thickness and gray matter density for 24 subjects
mapped on both the inner and the outer surfaces. Most of both inner and outer
surfaces show negative correlation. Thicker cortical regions are less convoluted
so the gray matter density tend do be lower.

Fig. 13. Simple 2-D schematic showing the negative correlation between thick-
ness and gray matter density. Gray colored pixels are gray matter. Black circle
is the contour of heat kernel. There are more gray matter pixels in region (a)
than region (c) although the thickness in region (c) is thicker than that of region
(a). The gray matter density in the middle of the gray matter (b) is 1 for almost
all subject indicating very small between-subject and between-group variability.
Because of the small between-group variability, VBM does not usually detect
signal in the middle of the gray matter. Most of significant signal detected in
VBM is near the tissue boundary where the between-group variability is high.

formula:

where FWHM is from the heat kernel used in the WFS. We used
corresponding to bandwidth .

However, we did not detect any statistically significant region
at level. The minimum T-stat. was 4.73 while the
maximum T-stat. was 4.83. Fig. 10 shows the T-stat. map thresh-
olded at 4.

F. Comparing Cortical Thickness and Gray Matter Density

Most morphometric studies [2], [3], [9], [10], [18], [25] have
never compared cortical thickness and gray matter density to-

gether so it is not clear if the two anatomical indices are posi-
tively correlated. Comparing the SPM of density and thickness
in Fig. 10, no statistically significant regions overlap. Since both
metrics have been assumed to be the indicators of the amount
of gray matter, the result is paradoxical. We have correlated
these two metrics within a subject (Fig. 11) and across subjects
(Fig. 12). Surprisingly, the scatter plot in Fig. 11 shows negative
correlation. By assigning the density value of a voxel that con-
tains a vertex of a cortical mesh to the vertex, we can project the
gray matter density onto inner, middle and outer surfaces. The
middle surface is obtained by averaging the inner and the outer
surfaces in the WFS-correspondance. Fig. 12 shows negatively
correlated scatter plots. Fig. 12 shows the complex pattern of
nonuniformity of density. On the outer surface, deep sulci have
higher density compared to gyri while on the inner surface, the
pattern is opposite. The middle surface shows higher density
compared to the outer and the inner surfaces as expected. These
complex patterns of the nonuniformity of density is due to the
folding pattern of the cortex. Since the sulci on the outer sur-
face and the gyri on the inner surface are highly folded, these
regions should have more gray matter within the sphere of fixed
radius as illustrated in Fig. 13. On the other hand, thin cortical
regions will fold more than thick cortical regions. This inverse
geometric relation is causing the negative correlation between
density and thickness and, in turn, the resulting SPM differ in the
regions of statistically significant difference. We further com-
puted the correlation between these two measures across 24 sub-
jects. Fig. 11 shows a similar result showing negative correlation
across subjects in most regions of cortex.

V. CONCLUSION AND DISCUSSION

In this paper, we have presented a unified theoretical frame-
work for WFS and the detailed numerical implementation is-
sues. WFS is used as a smooth global parametrization of cor-
tical surfaces. It is a very flexible functional estimation tech-
nique for scalar and vector data projected onto a unit sphere.
WFS is shown to be a solution of a Cauchy problem in PDE,
and for a specific weights, it becomes diffusion smoothing [10].
As a special case of WFS when the bandwidth vanishes, the tra-
ditional SPHARM can be incorporated into this more general
framework. However, WFS was shown to perform better than
SPHARM when data are more noisy and discontinuous by not
having the significant ringing artifacts.

As an application of this novel approach, we used WFS as a
tool for comparing the gray matter and the cortical thickness in a
single mathematical framework. Using the WFS representation
as the ground truth, cortical thickness, and gray matter density
are constructed and compared. In the cortical thickness anal-
ysis, the thickness is defined using the WFS-correspondence.
Afterwards, the SPM of thickness and gray matter density are
compared to show the statistically significant regions do not
overlap. This surprising result is caused by the negative correla-
tion between density and thickness. Increased folding increases
the gray matter density while decreasing thickness. This should
serve as a spring board for more thorough investigation on com-
paring cortical thickness and density based morphometric tech-
niques such as VBM.
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