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Abstract

This thesis will focus on applying smoothing splines to magnetic resonance

image (MRI) analysis. Some additional work on support vector machine with

a hybrid loss function will be discussed.

We apply smoothing splines to both the structural MRI and functional MRI.

For the structural MRI, we fit thin plate splines to overlapping blocks of the im-

age with different configurations of knots. The optimal configurations are found

by the generalized cross validation with a constant factor (Luo and Wahba,

1997). The fitted splines with the optimal configurations are then blended to

get a smoothed image of the brain. Thresholds are found along the way with

k-means algorithm and are blended as well. By thresholding the blended image

we obtained, we get the boundaries between gray matter, white matter, cere-

brospinal fluid, and others. The combination of smoothing and thresholding

gives us very good results in terms of segmentation.

For the functional magnetic resonance image analysis, we propose a partial

spline model for the model fitting and hypothesis testing. Simulation are done

to test the theoretical properties of the model. It appears that the partial spline

model can compete with the commonly used smoothing+GLM paradigm.

A support vector machine with a new hybrid loss is studied in the thesis.

We propose a loss function that is a hybrid of the hinge loss and the logistic
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loss, with the aim to achieve the nice properties of these two loss functions, i.e.,

giving sparse solutions and being able to estimate the conditional probabilities

at the same time. Our results and theoretical derivation show that the new loss

function has the properties we expected and serves as a nice loss function for

classification as well.
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Chapter 1

General Overview

1.1 Introduction

In this thesis, we will study different smoothing techniques for magnetic reso-

nance image (MRI) analysis and a hybrid loss for support vector machine.

Smoothing is an important topic in MRI analysis, whether it is structural

MRI or functional MRI. For structural data, smoothing can reduce the noise in

the data so that subsequent analysis can generate better results. In the func-

tional data case, smoothing can be used to alleviate the effect of not knowing

the true covariance structure of the time series (Wahba, 1978). The common

smoothing used in MRI analysis is kernel smoothing which could be isotropic

or anisotropic with one or more parameters (bandwidth) controlling how the

smoothing is done. Not many studies were done on applying smoothing splines

to structural MRI or functional MRI. We will study the performance of smooth-

ing splines under these kinds of settings.

For the support vector machine, there seem to be some interests in the

sparseness and estimating probabilities for a given loss function. Two of the

commonly used loss functions are the hinge loss and the logistic loss which only
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have one of the two properties listed, but not the other. We try to look for some

new loss function which could have both of the nice properties.

1.2 Outline of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we will study

thin plate spline smoothing for MRI segmentation. First we do some literature

review. Then the basics of the thin plate spline will be discussed. We give the

segmentation algorithm for 2-D slices, with slight tweaking when the algorithm

is applied to 3-D volumes. The results for 2-D and 3-D segmentations will be

presented. Different evaluation criteria will be considered. We will draw some

conclusions and discuss the future directions at last.

In Chapter 3, we will show some results on functional MRI data analysis.

We will present some collaborative work with John Carew and others in which

a GCV smoothing spline+GLM approach to fMRI data analysis was proposed.

We will describe a new partial spline approach to the data analysis. Simulation

results will be given and comparison will be done.

Chapter 4 will be on the support vector machine with a hybrid loss. We’ll

give the motivation first, followed by the definition of the loss function. Some

theoretical derivation will be done to show the properties of the hybrid loss.

The mathematical program for the loss function will be given and choosing the

parameters will be discussed. We present the simulation results along with those

for a real data example to show the advantages of the new loss function.
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The thesis will be concluded with some remarks in Chapter 5.
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Chapter 2

Magnetic Resonance Image

Segmentation with Thin Plate

Spline Thresholding

2.1 Problem Description

Segmentation of magnetic resonance (MR) images is an important part of brain

imaging research. Digital image of the brain are obtained under a strong mag-

netic field and a weak pulse field. Different tissue types of the brain show

different intensity values under the magnetic fields. Our goal is to segment a

given image into three tissue types: grey matter (GM), white matter (WM),

and cerebrospinal fluid (CSF). The dimension of a structural image is usually

huge. And this is often coupled with image inhomogeneity and partial volume

effect (i.e., a voxel could contain more than one tissue types). All of these have

to be addressed in a segmentation method.
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2.2 Literature Review

Up to now, many segmentation methods have been proposed. A rough grouping

of the methods is to categorize them as either intensity based methods or surface

based methods.

The neural network classifier (Morrison and Attikiouzel, 1992; Ozkan et

al., 1993; Kollokian, 1996; Wang et al., 1998), the k-nearest neighbor classifier

(Bezdek et al., 1993) or a finite Gaussian mixture modeling (Bezdek et al., 1993;

Kapur, 1995) can be used for classifying each voxel into 3 different classes. In

particular Gaussian mixture modeling assumes the image intensity values follow

the mixture of two or more Gaussians and the unknown parameters of Gaussian

distributions are estimated by maximizing the likelihood functions possibly via

the expectation maximization (EM) algorithm or other optimization techniques.

The widely used SPM’99 brain image analysis package (Wellcome Department

of Cognitive Neurology, London, UK, URL http://www.fil.ion.ucl.ac.uk/spm) is

based on a Bayesian Gaussian mixture modeling with a prior probability image

generated by averaging the image intensity for large number of subjects (Ash-

burner et al., 1997; Ashburner and Friston, 2000). Based on a prior probability

of each voxel being the specific tissue type, a Bayesian approach is used to get a

better estimate of the posterior probability. This Bayesian update of the prob-

ability is iterated many times until the probability converges. The resulting

probability is interpreted as the probability of each voxel belonging to one of

the three tissue types.
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Instead of the above intensity-based segmentation techniques, surface-based

segmentation techniques have begun to emerge. The advantage for surface-

based segmentation methods is the possible reduction of the partial volume

effect (Tohka et al., 2004). When triangular meshes are used, the meshes are

not constrained to lie on voxel boundaries. Instead the triangular meshes can cut

through a voxel, which can be considered as correcting where the true boundary

ought to be and reducing the partial volume effect. Deformable surface modeling

(Terzopoulos et al., 1988; Davatzikos and Bryant, 1995; Dale and Fischl, 1999;

MacDonald et al., 2000) can be used to segment tissue boundaries by either

solving a partial differential equation or optimizing an objective function.

Recently isosurface modeling, known as a level set method (Sethian, 1999)

seems to show some promise in tissue boundary segmentation and has been used

in segmenting the sagittal section of the corpus callosum (Hoffmann et al., 2004).

A related approach to image segmentation problems is the method proposed in

Mumford and Shah (1985), where a piecewise smooth function is fitted to the

image data, with the discontinuities happening only on the boundaries between

different tissue types. The solution can be obtained by solving a variational

problem iteratively.

In this thesis, we propose and validate a new thin plate spline thresholding

method on both 2-D image slices and 3-D image volumes by comparing our

method against the expert manual segmentation (Boesen et al., 2004) and some

other segmentation methods.
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2.3 Basics of Thin Plate Splines

A thin plate spline (TPS) is the minimizer of the following optimization problem

(Wahba, 1990, pp. 30–31)

1

n

n∑

i=1

(yi − f(x1(i), · · · , xd(i)))
2 + λJd

m(f), (2.3.1)

where yi is the i-th observation, (x1(i), · · · , xd(i)) is the point at which yi is

observed, λ is the smoothing parameter, and Jd
m(f) is a summation (penalty

functional) of m-th derivatives in d-dimensions. For the special case m = 2,

d = 2, Jd
m(f) is defined as

J2
2 (f) =

∫ ∞

−∞

∫ ∞

−∞
(f 2

x1x1
+ 2f 2

x1x2
+ f 2

x2x2
)dx1dx2. (2.3.2)

This is the one to be used in segmentation on 2-D slices. The definition of J d
m(f)

for m = 2, d = 3 which is used for 3-D segmentation can be found in Wahba

(1990).

In order for the thin plate spline to work, we have to impose some constraint

on m and d: 2m−d > 0. In addition, by imposing some mild regularity condition

on ti, · · · , tn: e.g., t′is do not fall on a straight line for d = 2 case, we can show

that the minimization problem (2.3.1) has a unique solution

fλ(t) =

M∑

ν=1

dνφν(t) +

n∑

i=1

ciEm(t − ti), (2.3.3)

where t = (x1, · · · , xd), ti = (x1(i), · · · , xd(i)) are d-dimensional vectors, and

M =
(

d+m−1
d

)
is the dimension of the null space {f : Jd

m(f) = 0} spanned by the
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φν’s (for m = 2, d = 2, we have M = 3, φ1(t) = 1, φ2(t) = x1, and φ3(t) = x2).

The function Em(·) in the above equation is defined as

Em(τ) =







θm,d‖τ‖(2m−d) ln(‖τ‖) , if 2m − d even,

θm,d‖τ‖(2m−d) , otherwise.
(2.3.4)

This function is known as the thin plate spline radial basis. θm,d in the above

equation is some constant.

The coefficients ci’s and d in equation (2.3.3) are linear in yi’s (Wahba, 1990),

and we have

ŷ
def
= (fλ(t1), · · · , fλ(tn))′ = A(λ)y, (2.3.5)

where y = (y1, · · · , yn)
′, and A(λ) is called the smoothing matrix.

The smoothing parameter λ in the minimization problem (2.3.1) will be

chosen by the generalized cross validation criterion with a constant factor α

which modifies the equivalent degrees of freedom of the spline (Luo and Wahba,

1997)

αGCV (λ) =
‖(I − A(λ))y‖2/n

[1 − αtr(A(λ))/n]2
. (2.3.6)

The factor α should be a number no less than 1. It is needed sometimes because

the assumptions for α = 1 might be violated.

Thin plate splines can be further approximated by using a subset of design

points {ti : 1≤i≤n} or some other sets as knots (Wahba, 1990, Chapter 7; Bates

et al., 1987). We approximate the thin plate spline fλ(t) by

f̃λ(t) =

M∑

ν=1

dνφν(t) +
∑

sl∈Ω

clEm(t − sl), (2.3.7)
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where Ω is the set of knots (Ω ⊂ Rd).

With the approximation of fλ(·), the whole theory described above still

holds; we gain more flexibility with the setting and sometimes it may be more

appropriate for data fitting.

2.4 TPS Thresholding Method

Our method fits thin plate splines to overlapping blocks of an image slice (or

volume), and blends the splines together smoothly; a similar idea was used in

Wood et al. (2002). The main differences are that we choose the smoothing

parameters differently and we use explicit subdivisions. In addition, our method

obtains thresholds on every block, and the thresholds are blended the same way

as we blend the splines.

A brief overview of the algorithm goes as follows (given for 2-D case). First,

we divide the slice into overlapping blocks. Second, we fit thin plate splines to

the image intensities at each block with different number of knots, and select the

knot configuration that gives us the smallest αGCV score on the block. Third,

we fit the thin plate spline with the knot configuration found in the last step, and

predict the spline on a very fine grid. We also find the thresholds on the block

with the k-means algorithm. Finally, we blend the predicted block images and

the thresholds with some smooth weighting functions. We calculate the averages

of the corresponding thresholds on all the blocks, and find the thresholds on the

blended smooth image as well. In total, we have three different threshold sets:
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blended thresholds, averaged thresholds, and recomputed thresholds. We can

apply all 3 thresholding schemes to the blended smooth image, and pick the one

that suits our needs best. Images from different sources might need different

thresholding schemes because of the variabilities among the images.

For 3-D case, the basic algorithm is the same. But some tweaking is needed.

The details are given in the following sections.

2.4.1 2-D Algorithm

Step 1: Partitioning of Slice Images

With a typical slice of the size 256x256 pixels, we first clip the empty space

in the slice image. Many software programs can do this; and manual clipping

is quite easy to implement too. Once the clipping is done, we can divide the

slice into blocks of size about 50x50 pixels. The users can determine the sizes

of the blocks. A rule of thumb is to have all the tissue types (mainly gray

matter, white matter, CSF, and others) in every block. The same idea was

used in Kovacevic et al. (2002). Following a similar line of thinking, we allow

some degree of overlapping between adjacent blocks (horizontally, vertically,

or diagonally). The overlapping proportion between each pair of horizontally

or vertically adjacent blocks is about one half of the pixels in either of the

blocks (Figure 2.4.1(a)). This results in each pair of diagonally adjacent blocks

having about one fourth of the pixels in the individual blocks overlapped. The

histograms for the image intensities of two adjacent blocks are shown in Figure
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2.4.1(b). We can see the bumps in the histograms.
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Figure 2.4.1: Overlapping scheme, αGCV curves and histograms for one slice:
(a) overlapping scheme of a slice with 5 by 7 blocks (horizontally and vertically
respectively). Each 4 adjacent shaded rectangles form one block, with different
shades representing different numbers of overlapping (light grey=1, medium
gray=2, dark gray=4). The weighting functions at each direction are given
below and to the left of the plot. (b) histograms of the corresponding blocks
(the centers found by k-means on predicted data shown as red x’s). (c) αGCV
curves for 2 adjacent blocks (minimum of αGCV shown with arrows).

Step 2: Finding Optimal αGCV Scores

After the partitioning is done, we fit thin plate splines to each block. Note that

even for one block (of the size 50x50), there are more than two thousand data

points. There can be sharp boundaries between different tissue types within one
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block. However, the image should be considered relatively smooth within each

tissue type in a block. To fit a thin plate spline with 2500 data points as knots is

not only computationally ineffective, but also unnecessary. A remedy for this is

to use a subset of the 2500 knots as an approximation to the original spline that

uses every data point as knot (Luo and Wahba, 1997). Since the slice image is

measured on a regular grid, a further approximation is to allow the knots not

fall on the pixel grid, but only require them to be on a regular grid, where the

knot grid size is approximately proportional to the pixel grid size and the search

is over the integer index of the knot grid (along with the smoothing parameter).

In our αGCV search, the ratio of the number of the knots to the total number

of pixels in every block is between 0.02 and 0.45. In addition, the original

GCV score without a constant factor α doesn’t seem to be a good criterion for

selecting the “optimal” number of knots. With a factor α = 2, the criterion

gives us the “optimal” number of knots at every block (Figure 2.4.1(c)). The

reason for using a constant factor can be attributed to the added flexibility of

using different number of knots in different blocks (Luo and Wahba, 1997) and

also to the fact that the image data is generally correlated. The standard GCV

has some limitation on correlated data (see Wahba, 1990, Section 4.9 and the

references therein). The empirical value for α was fine tuned on a number of

images, and can be further adjusted by the user if the TPS method with the

given setting doesn’t produce a good segmentation result.
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Step 3: Predicting TPS and Thresholding

Using the optimal knot configuration found in the last step, we fit a thin plate

spline to each block with the given configuration. A fine grid is laid on the

block, with every pixel divided into 8 by 8 subpixels and the thin plate spline

predicted on the grid. The use of the fine grid is to get a smoother image, which

will be beneficial for the thresholding later. Another advantage of the fine grid

is that we can get subpixel level segmentation and smoother boundaries. To

calculate the thresholds on every block, we use the k-means algorithm, which is

simple, fast and efficient. The k-means is used with 4 centers corresponding to

the white matter, gray matter, cerebrospinal fluid, and the empty space, in the

order of the intensity values of these tissue types appearing in a T1-weighted

MR image from the highest to the lowest. Two examples of the centers found by

k-means are given in Figure 2.4.1(c), which shows that the algorithm is doing

a reasonably good job. We tried both 3 centers and 4 centers with k-means;

it appears that the 4 center setting gives us better tissue boundaries. Once

the centers have been found, we calculate the thresholds in the following way

(Kovacevic et al., 2002),

cec = (me + mc)/2 (2.4.1)

ccg = (mc + mg)/2 (2.4.2)

cgw = (mg + mw)/2, (2.4.3)
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where me, mc, mg, mw are the centers found by the k-means algorithm, and cec,

ccg, cgw are the thresholds to be used in the later step.

Step 4: Blending the Block Images

Having done all the predicting and thresholding, we can now blend the block

images together along with the thresholds using weighting functions. In both

the horizontal and the vertical direction, a pair of functions 1 − f(t) and f(t)

is used, where

f(t) =







0 , if t ≤ 0

t3(6t2 − 15t + 10) , if 0 < t < 1

1 , if t ≥ 1.

(2.4.4)

Note f(t) goes smoothly (second order differentiable) from 0 to 1, and takes

only nonnegative values (it is a quintic spline). In the case a subblock is cov-

ered by only 2 adjacent blocks, either horizontally or vertically, the weighting

pair 1−f(t) and f(t) is used for left (lower) block and right (upper) block respec-

tively. In the case a subblock is covered by 4 adjacent blocks, a tensor product

weighting scheme is used. The weighting functions become [1− f(x)][1− f(y)],

f(x)[1− f(y)], [1− f(x)]f(y), and f(x)f(y) for the lower left block, lower right

block, upper left block, and upper right block respectively. For every overlapped

subblock, the pixel coordinates are scaled so that the lower left endpoint of the

subblock is mapped to (0, 0), and the upper right endpoint of the subblock is

mapped to (1, 1).
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For the blending of the thresholds, we use the same scheme. The difference

between the blending of the thresholds and the blending of the block images is

that we have constant matrices in the place of block images. The final number

of thresholding matrices is 3 (one less than the total number of classes).

When all the blending is done, we are ready to display the segmentation

results. For the averaging of the thresholds, where all the thresholding triples

are averaged across the blocks, we draw contour lines at each threshold level

on the blended image; for the blending of the thresholds, we draw contours at

level = 0 on the difference images between the blended image and the blended

thresholds. A side note is that since the blended image can be considered

as an approximation to the true slice image with the boundaries between the

tissue types smoothed out, we calculate the thresholds on the blended image

as well (recomputed thresholds), and draw contours at these thresholds as an

alternative to the previous two thresholding schemes.

2.4.2 Some 3-D Tweaking

So far we have presented the algorithm for 2-D case. For 3-D segmentation, some

extra work is needed. The consideration is as follows. Firstly, the computational

load in the 3-D case is much larger that that for the 2-D case. Instead of tens

of overlapping blocks, we now have hundreds even thousands of overlapping

cubes. Because of the memory and computation time limitation of the ordinary

computers, the cube size can not be too big. A cube of the size 20x20x20
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can still be handled by a PC with about 1 Giga byte memory. Secondly, we

encounter the problem of not having all the tissue types present in every cube

due to the cube size limitation. We need to address these two problems in the

3-D algorithm.

Our solution is to tweak the blending and thresholding a little bit. Instead of

straightforward blending as we did in the 2-D case. We will blend only adjacent

cubes together first after the αGCV scores are found and prediction is done.

Then we will do thresholding on the intermediately blended cubes. Once this

is done, we blend the thresholds and blended cubes as in the 2-D case.

It seems that by combining the 3x3x3 adjacent cubes together, we get very

good results. We will use this in our segmentation.

2.4.3 Implementation

The algorithm diagram for the TPS method is given in Figure 2.4.2. We use

the Condor batch system (URL http://www.cs.wisc.edu/condor/) on the step 2

and 3 of the algorithm. Since the TPS fitting and predicting on the individual

blocks (or cubes) is independent of one another, and the input of step 3 depends

on the output of step 2 for each block, we deploy the Condor Directed Acyclic

Graph (DAG) facility (Tannenbaum et al., 2001; Thain et al., 2004) which is

basically a job scheduling system where independent jobs can run on different

machines and Condor is in charge of enforcing the dependencies among the jobs.
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Figure 2.4.2: Diagram of TPS Algorithm. Note Condor is used for the step 2
and step 3 of the algorithm. The input and outputs are denoted by ellipses.
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Most of the computation for the TPS segmentation is done with the R soft-

ware (URL http://www.r-project.org/), with the exception of displaying the re-

sults in Matlab (Mathworks, Natick, MA). For the fitting of thin plate splines,

I use the fields package in R, which seems to be sufficient for the 2-D case.

But for the 3-D segmentation, the computation becomes too demanding, and

I switch to the GCVPACK package (Bates et al., 1987). The reason can be

to attributed to 2 factors. First, R currently doesn’t work under the Condor

standard universe, which has the nice checkpointing feature (Tannenbaum et

al., 2001); Second, the R software seems to have some problems on 3-D thin

plate splines with special knot configuration. The singular value matrix decom-

position fails with the special input of the knots. The fields package calls R for

the matrix decomposition.

2.5 Subjects and Image Acquisition

There are two data sources for our segmentations. The first data source is

the Waisman Laboratory for Brain Imaging and Behavior at the University of

Wisconsin-Madison (UW Waisman Lab for Brain Imaging and Behavior). High

resolution anatomical MRI scans were obtained using a 3-Tesla GE SIGNA

(General Electric Medical Systems, Waukesha, WI) scanner with a quadrature

head RF coil on 12 normal subjects. A three dimensional, spoiled gradient-echo

(SPGR) pulse sequence was used to generate T1-weighted images. The imaging

parameters were TR/TE 21/8 ms, flip angle 30, 240 mm field of view, 256x192
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in-plane acquisition matrix (interpolated on the scanner to 256x256), and 128

axial slices (1.2 mm thick) covering the whole brain. The data sets have been

used in Chung et al. (2004) and other papers.

The second data source is the Center for Morphometric Analysis at the

Massachusetts General Hospital (http://www.cma.mgh.harvard.edu/ibsr/). We

downloaded the 20 normal data with human segmentations from the website.

Three-dimensional T1-weighted SPGR MRI scans were performed on two dif-

ferent imaging systems. Ten FLASH scans on four males and six females were

performed on a 1.5 Tesla Siemens Magnetom MR System (Iselin, NJ) with the

following parameters: TR/TE 40/8 ms, flip angle 50, 30cm field of view, 3.1mm

slice thickness, 256x256 matrix. Ten 3D-CAPRY scans on six males and four

females were performed on a 1.5 Tesla General Electric Signa MR System (Mil-

waukee, WI), with the following parameters: TR/TE 50/9 ms, flip angle 50,

24cm field of view, 3.0mm slice thickness, 256x256 matrix. Each image volume

has about 60–65 coronal slices. The data sets were used in Shan et al. (2002)

and other papers.

2.6 2-D Segmentation

2.6.1 Evaluation of TPS Method

For the data sets obtained from the UW Waisman Lab for Brain Imaging and

Behavior, we used the image for one subject in our segmentations. The neural
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network classifier (Kollokian, 1996) was applied to the brain volume. And one

axial slice was segmented with the TPS method. Since it is a norm to do

non-uniformity correction before applying the neural network classifier, both

the TPS and the neural network method were applied to the non-uniformity

corrected image with N3 (Sled et al., 1998). We used visual inspection on the

results from the neural network method and those from the TPS method.

For the data sets downloaded from MGH CMA, we used 5 subjects out of

the 20. The selection scheme was as follows: we sorted the subjects based on

their id’s (1 24, 2 4, 4 8, · · · ), and selected the 2nd, 6th, 10th, 14th, 18th sub-

jects. We then applied the SPM segmentation method to the whole volumes of

the subjects, and we also applied our TPS method to one coronal slice near the

middle of the brain for each subject. Note that we have the manual segmenta-

tion for the MGH data, so we get 3 segmentations in total. To compare each

pair of segmentations, we used 2 measure of similarity. One is the correlation

coefficient. The other one is the kappa index, which is defined as

κ(S1, S2) =
2|S1 ∩ S2|
|S1| + |S2|

, (2.6.1)

where S1, S2 are the sets of pixels classified as one tissue type by the given

segmentation methods, and | · | is the number of elements in the set. This

measure has been used in Shan et al. (2002), Kovacevic et al. (2002), and

Zijdenbos (1994). It has the nice property that two equally sized regions that

overlap each other with half of their areas result in an index 1
2
. Also, the index

is sensitive to both differences in sizes and locations of Si’s. A slight variation
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of the kappa index is the Jaccard index (Shan et al., 2002), which differs from

the kappa index only in the constant and the denominator. These 2 criteria

actually gave us the same conclusions, so we will stick with the kappa index,

which seems to be used more in the papers.

Since the TPS segmentation gives us the subpixel level results, we need to

convert them to the pixel level to be easily compared to the manual and the

SPM segmentations. The way we did it was to calculate the proportion of the

number of subpixels in every pixel that belong to each class (Figure 2.6.7(c)).

And we got a 4-tuple at every pixel, which sums to 1. The pixel level proportions

were then used to calculate the correlation coefficients between the TPS and

the other 2 methods. To get the kappa index, we thresholded both the TPS

proportion outputs and the SPM probability outputs. We are only interested in

the gray matter and the white matter proportions. So we computed the above

mentioned indices for each pair of the segmentations on gray matter and white

matter only.

2.6.2 Results and Plots

The results for the segmentation of the data from UW Waisman Lab for Brain

Imaging and Behavior are given in Figure 2.6.1 and 2.6.2. We can see that

the TPS is doing a quite good job. The neural network is doing a good job

too, but it shows more inlands because the method generates 4 discrete classes

(0, 1, 2, 3). The averaging thresholding scheme was used with the TPS method
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for the data set.

For the MGH CMA data, we used the blended threshold scheme which seems

to work the best among the 3 thresholding schemes described before. The plots

of the manual segmentation, the TPS segmentation, and the SPM segmentation

for one subject on one slice are given in Figure 2.6.4, 2.6.5, 2.6.6 respectively.

The original gray level image for the slice is given in Figure 2.6.3. Note that

the manual segmentation gives the discrete classification (GM, WM, CSF, and

others); TPS generates a predicted image with 3 thresholding fields, while SPM

produces one probability image for each tissue class. These are reflected in

the contour plots. With the subpixel property built in the algorithm, the TPS

segmentation shows smoother boundaries than the other methods. Even at local

regions (Figure 2.6.7 (a)-(b)), the TPS method still traces the boundary between

WM and GM well without being too wiggly. The similarity measurements (with

mean and standard deviation) between the 3 methods on all 5 subjects are given

in Table 2.6.1. We can see that the numbers are close, with the mean coefficients

for the TPS against manual and those for the SPM against manual all within

one standard deviation of each other (well below the 1.96 standard deviation).

If we count the number of times TPS is doing better than SPM in terms of each

index and vice versa, we can find that there is no definite winner. Note that

for one of the subjects (subject 4), both the TPS and the SPM failed on the

segmentation. But TPS did a better job than did the SPM. Our method seems

to be less sensitive to image non-uniformity.
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Figure 2.6.1: Overlay of the TPS segmentation on one axial slice
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Figure 2.6.2: Overlay of the Neural Network segmentation on the axial slice
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Figure 2.6.3: Original slice image in the gray scale
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Figure 2.6.4: Overlay of the manual segmentation on the original slice
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Figure 2.6.5: Overlay of the TPS segmentation on the original slice
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Figure 2.6.6: Overlay of the SPM segmentation on the original slice. Both the
gray and the white probability outputs by SPM were thresholded at level=0.2
to get the red and the blue contour lines respectively.
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Figure 2.6.7: Zoomed plots of the TPS segmentation: (a) TPS result zoomed
to a larger region, (b) TPS result zoomed to a smaller region, (c) dots plot with
the centers of the subpixels shown as small dots.
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Table 2.6.1: Comparison of 3 Segmentation Methods on MGH CMA Data

subject Corr. Coef. Kappa Index
no. GM WM GM WM
1 0.660 0.827 0.836 0.872
2 0.702 0.757 0.841 0.827

TPS vs Manual 3 0.654 0.787 0.811 0.850
4 0.410 0.678 0.723 0.770
5 0.612 0.791 0.776 0.838

mean (sd) 0.608(0.115) 0.768(0.056) 0.798(0.049) 0.831(0.038)
1 0.675 0.846 0.883 0.866
2 0.686 0.839 0.887 0.880

SPM vs Manual 3 0.637 0.810 0.863 0.842
4 0.091 0.672 0.679 0.753
5 0.450 0.803 0.825 0.824

mean (sd) 0.518(0.250) 0.794(0.071) 0.827(0.087) 0.833(0.050)
1 0.806 0.883 0.848 0.900
2 0.626 0.759 0.794 0.824

TPS vs SPM 3 0.734 0.822 0.808 0.861
4 0.426 0.767 0.730 0.793
5 0.645 0.800 0.785 0.836

mean (sd) 0.647(0.143) 0.806(0.050) 0.793(0.043) 0.843(0.040)

2.7 3-D Segmentation

For the 3-D segmentation, we use the the data from UW Waisman Lab for Brain

Imaging and Behavior. The reason for choosing the Waisman data was because

the MGH CMA data downloaded from the web doesn’t have enough slices.

Although the latter has manual segmentation, the number of slices (equivalently

the sampling rate) does seem to be a bigger concern here. To evaluate the TPS

method, we compare it against the neural network method, simple thresholding,

and SPM. We still use the image chosen for the 2-D segmentations, since it has
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neural network segmentation available. The data had been corrected with N3

to reduce the image non-uniformity.

2.7.1 Evaluation Criteria

The evaluation criteria will be a little bit different from the 2-D case since we

don’t have the expert manual segmentation. In the 3-D case, we compute the

kappa index along with 2 other indices: volume similarity (VS), and Tanimoto

index (TN), inspired by Bouix et al. (2005). The definition for the last 2 indices

is

V S(S1, S2) = 1 − ||S1| − |S2||
|S1| + |S2|

, (2.7.1)

TN(S1, S2) =
|S1∩S2| + |S1∪S2|
|S1∪S2| + |S1∩S2|

. (2.7.2)

If we let a1 = |S1∩S2|, a2 = |S1∩S̄2|, a3 = |S̄1∩S2|, and a4 = |S1∪S2| (Figure

2.7.1), then the indices can be expressed as

κ(S1, S2) =
2a1

2a1 + a2 + a3

, (2.7.3)

V S(S1, S2) = 1 − |a2 − a3|
2a1 + a2 + a3

, (2.7.4)

TN(S1, S2) =
a1 + a4

a1 + 2a2 + 2a3 + a4
. (2.7.5)

The volume similarity, by its name, measures how similar two sets are in

terms of their volumes; and the Tanimoto index measures the degree of similarity

between two sets by also referring to the whole set.
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Figure 2.7.1: Venn diagrams for two sets S1 and S2 represented as circles (left
and right respectively). The symbols a1, a2, a3, a4 denote the number of ele-
ments in the corresponding shaded regions.
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After the indices are obtained, one can get a further measurement of agree-

ment of different methods by calculating the Williams’ index (Bouix et al.,

2005), which is defined as,

WIj =
(r − 2)

∑

1≤j′≤r, j′ 6=j α(Ij′, Ij)

2
∑

1≤j′≤r, j′ 6=j

∑

1≤j′′≤(j′−1), j′′ 6=j α(Ij′, Ij′′)
, (2.7.6)

where j is the j-th method, r is the total number of methods compared, and

α(Ik, Il) is the similarity measure between the 2 methods in question.

1 0.8 0.9 0.5

0.8 1 0.4 0.7

0.9 0.4 1 0.6

0.5 0.7 0.6 1

α(I2, I4)

Methods

Figure 2.7.2: Illustration of the computation of Williams’ index for one method
(the first row). Each row (or column) represents one method, with the numbers
indicating how a pair of methods agrees. The summands for the numerator
of the Williams’ index are circled by rounded rectangle, the summands for the
denominator are circled by triangle. Plot courtesy of Sylvain Bouix.

In Figure 2.7.2, we show how the index is computed for the method indexed

by j = 1. For a given method, the index is proportional to ratio of the closeness

between the method in question and all the other methods to the closeness

within all the other methods. It is argued in Bouix et al. (2005) and related
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paper that the index is a good proxy to the criterion based on comparing one

method against the estimated truth. The Williams’ index has the advantage of

being cheap in computation. Without the ground truth, the index seems to be

a good choice.

2.7.2 Visualization

For displaying the segmentations in 2-D, we used the contours. The 3-D gen-

eralization of contours are the isosurfaces, which are defined as {(x, y, z) :

f(x, y, z) = C}, where C is some given constant. To visualize an isosurface,

we can use either Matlab or VTK (Kitware, Inc., 2003). We use Matlab to cal-

culate the isosurface, which takes 3-D image as input and outputs vertices and

faces. We can then feed the output to Matlab or VTK to render the surfaces.

Both Matlab and VTK have almost the same functionalities in terms of vi-

sualization. One note about VTK is that it is a free software and is built for

visualization. In contrast, Matlab has many other capabilities and is commer-

cial. Some computer code for converting Matlab output to VTK data format

and the code for rendering the surface in VTK are given in Appendix A.

2.7.3 Results and Plots

The rendered surfaces of the 3-D segmentations are given in Figure 2.7.3 and

2.7.4, which show the TPS segmentation is doing a good job. The GM/CSF

surfaces by all 4 methods are not that much different. The GM/WM surfaces
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seem to differ more than how the corresponding GM/CSF surfaces differ from

one another. Note the GM/WM surface by the TPS segmentation appears to

be the smoothest among the GM/WM surfaces by all the methods.

Two tables are given for the 3-D segmentations. Table 2.7.1 shows the

pairwise comparisons among the 4 methods. TPS is doing good with respect

to the other methods in terms of the kappa index and the volume similarity. It

does slightly worse in terms of the Tanimoto index. And the TPS seems to do a

better job in white matter segmentation than the gray matter segmentation in

terms of 2 of the indices: kappa index and Tanimoto index. Table 2.7.2 shows

the Williams’ index for each method based on the 3 indices we used for pairwise

comparisons. For both gray matter and white matter segmentation, the simple

thresholding method has the biggest numbers for each of the 3 indices. TPS is

doing better than the SPM, but worse than the neural network method in terms

of the Williams’ index. Caution should be employed in interpreting the results

from the Williams’ index since we don’t know too well about the properties of

the index yet (it’s a relatively new concept).

Table 2.7.1: Comparisons of the 3-D Segmentations of 4 Methods

Kappa Index Vol. Similarity Tanimoto Index
GM WM GM WM GM WM

TPS vs NNet 0.726 0.863 0.916 0.811 0.619 0.732
TPS vs SPM 0.725 0.734 0.853 0.738 0.595 0.658

TPS vs SimpThrh 0.889 0.947 0.964 0.947 0.833 0.907
NNet vs SPM 0.853 0.846 0.936 0.923 0.744 0.825

NNet vs SimpThrh 0.810 0.863 0.952 0.863 0.711 0.808
SPM vs SimpThrh 0.784 0.776 0.889 0.788 0.658 0.721
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Figure 2.7.3: 3-D segmentation for GM/CSF surfaces. A: Simple Thresholding;
B: Neural Network; C: TPS Thresholding; D: SPM.

Figure 2.7.4: 3-D segmentation for GM/WM surfaces. A: Simple Thresholding;
B: Neural Network; C: TPS Thresholding; D: SPM.
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Table 2.7.2: Williams’ Indices for the 4 Methods

GM NNet TPS SimpThrh SPM
KP 0.996 0.957 1.077 0.974
VS 1.036 0.984 1.037 0.946
TN 0.994 0.969 1.125 0.923
WM NNet TPS SimpThrh SPM
KP 1.026 1.003 1.082 0.899
VS 1.050 0.970 1.051 0.934
TN 1.035 0.975 1.099 0.901

(Note: KP=Kappa Index; VS=Volume Similarity; TN=Tanimoto Index)

2.8 Summary

We proposed an intensity based method for magnetic resonance image segmen-

tation. The method works both in 2-D and 3-D segmentations. Our method

does very well in the 2-D segmentation. It is still doing a quite good job in the

3-D case. The TPS method can produce subpixel (or subvoxel) segmentation,

which is very useful for the partial volume effect in segmentation. The method

generally gives smoother boundary; it has the potential for more accurately

estimating the distances between the cortical surfaces and calculating the cur-

vatures of the surfaces. By using the varying thresholds generated by the TPS

method, we can overcome the image non-uniformity. The method appears to

be a good alternative to the other segmentation methods.
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2.9 Discussion and Future Directions

Segmentation of the brain involves huge amount of computation. It is no excep-

tion with our method. The SPM method handles the problem through simple

iteration with some stopping criterion; the neural network method has some way

of iteration too which gives the method some speed. We do αGCV searching

on every block of the brain, which provides us with accuracy and requires more

computing at the same time. So our first step in the future work would be to

speed up the computation. Under the constraint of not losing too much accu-

racy, we can consider doing αGCV searching on a subset of blocks (or cubes).

Some scheme can be devised to select the subset for αGCV.

The second step in our future direction would be to get more data and try

our method on the data. If our method appears to be work well in general

for 3-D segmentation. We can go one step further to use our results in other

applications that require segmentations as the inputs. Also, we can do some

computation on the brain surfaces we get, such as the calculation of distances

and curvatures. The generalization of our method to other applications can also

be considered, but it should be done only after we have gotten a good handle

on the applications we mentioned before.
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Chapter 3

GCV Smoothing in Functional

Magnetic Resonance Image

Analysis

3.1 Introduction

In the last chapter, we studied how to do segmentation on structural images. A

related topic is the functional magnetic resonance image (fMRI) data analysis.

For the functional image, the subject lying in the scanner is supposed to perform

some task that is designed to activate parts of the brain. A series of “snapshots”

of the brain is obtained and used for statistical analysis.

Preprocessing is usually involved in fMRI data analysis which includes the

realignment, spatial normalization, and spatial smoothing of the images. After

preprocessing, the generalized linear model (GLM) is applied to the time series

at each voxel to get a test statistic. This generates a map on the brain which can

be thresholded to locate which parts of the brain are activated while performing
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the task.

Because of the huge amount of voxels in the brain, simple statistical methods

are preferred for fMRI. The GLM used in fMRI data analysis usually assumes

the noise is identically independently distributed (i.i.d.) or has a autocorrelated

structure. If the assumption is violated, some corrections have to be done. Two

ways for handling this problem is temporal smoothing (Friston et al., 1995;

Worsley and Friston, 1995) and whitening (Bullmore et al., 1996). The whiten-

ing involves modeling the intrinsic autocorrelation with a pre-specified struc-

ture. Since there is always the possibility of misspecifying the autocorrelation,

smoothing seems to be more appropriate in this kind of setting compared to

whitening (Friston et al., 2000; Wahba, 1978). Carew et al. (2003) studied

the effects of GCV spline smoothing for the problem and found that the GCV

smoothing gives appropriate degree of smoothing and the estimate of the vari-

ance of a given contrast after GCV smoothing is applied is generally unbiased.

To cast the problem in a related framework, we model each time series as a

partial spline and study the hypothesis testing and inferences.

3.2 Generalized Linear Model Approach

In fMRI data analysis, the generalized linear model being considered (Friston

et al., 1995) is

y = Xβ + Kε, (3.2.1)
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where y = (y1, · · · , yn)
T is an n×1 equally-spaced samples of the time series, X

is the model matrix with columns that contain signals of interest and nuisance

signals, β is an unknown parameter, K is an unknown matrix which character-

izes the intrinsic autocorrelation, and ε∼N(0, σ2I).

Note under this setting, even the naive ordinary least square (OLS) estimator

of β is unbiased, but the variance estimator of the estimator of a given contrast

cT β where c is a column vector of the same length as β will be biased without

knowing the true K. By multiplying a smoothing matrix S to both sides of

equation (3.2.1), we have

Sy = SXβ + SKε. (3.2.2)

If we select the smoothing matrix S properly, we may end up with the

following relation SKaK
T
a ST ≈ SKKTST , where Ka is an assumed matrix for

K. The variance estimator of the estimator cT β̂ with the OLS β̂ from equation

(3.2.2) will generally be less biased relative to the true variance of cT β̂ than the

variance estimator of the corresponding estimator for cT β without smoothing.

The OLS estimator of β̂ for equation (3.2.2) is

β̂ = (XTSTSX)+XTST Sy, (3.2.3)

where + is the pseudo inverse that satisfies the Moore-Penrose conditions.

Let V = KKT, then the covariance for the estimator β̂ is

V ar(β̂) = σ2(XTSTSX)+XTSTSVSTSX(XTSTSX)+T
. (3.2.4)
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Given a contrast cT β, an approximate t-test statistic for testing H0 : cTβ = 0

can be constructed as

T =
cT β̂

√

cT ̂V ar(β̂)c

. (3.2.5)

To get the estimate ̂V ar(β̂), we replace σ2 in equation (3.2.4) with

σ̂2 =
(Ry)TRy

tr(RVa)
, (3.2.6)

where R = I−SX(XTSTSX)+XTST , and Va = KaK
T
a is an approximation to

the true V. The V in equation (3.2.4) is replaced with Va as well.

The degrees of freedom for the t-test statistic can be estimated with

d̂f =
[tr(RVa)]

2

tr(RVaRVa)
. (3.2.7)

It was found in Carew et al. (2003) that Va = SST where S is the smoothing

matrix from the GCV spline works quite well, we will use this setting for the

later analysis.

3.3 Partial Spline Model Approach

Another approach to the same problem is the partial spline model (Wahba,

1990; Chiang et al., 1999; and elsewhere)

y = X2γ + f(t) + ε, (3.3.1)



40

Where X2 is a matrix with the columns for the signals and nuisance as in the

GLM approach, γ is a parameter vector, f(·) is a smooth function, t is an n×1

vector representing the time points at which y is observed, and ε∼N(0, σ2I).

The solution for γ and f(·) is found by solving the optimization problem

min
γ∈Rp,f∈H

1

n
‖y − X2γ − f(t)‖2 + λ

∫ tn

t1

(f ′′(s))2ds, (3.3.2)

where H is a reproducing kernel hilbert space (RKHS), λ is the smoothing

parameter, t1 and tn are the first and last time points respectively.

If we cast the partial spline model in a stochastic process setting (Wahba,

1990), we have

f(t) = (f(t1), f(t2), · · · , f(tn))
T ∼ N(X1δ, bΣ), (3.3.3)

where X1 is a matrix composed of the columns that span the null space of

the given penalty functional (second part of equation (3.3.2)), δ is an unknown

vector of parameters, Σ is the kernel matrix corresponding to the given penalty,

b is a scale parameter, and f(t) is assumed to be independent of ε.

If we let X = (X1 X2), α = (δT γT )T , then

y = Xα + Nb,σ, (3.3.4)

where Nb,σ ∼ N(0, bΣ + σ2I).

It is shown in Wahba (1990) that the minimum variance linear unbiased

estimator of α is

α̂ = (δ̂T γ̂T )T = (XTM−1X)−1XTM−1y, (3.3.5)
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where M = Σ+(σ2/b)I. When the parameters b, σ2, and λ satisfy the equation

λ = σ2/(nb), the optimal estimate of X2γ +f(t) under the optimization setting

will be equal to the corresponding estimate under the stochastic setting.

Using the GCV estimate λ∗ of λ from equation (3.3.2) where the GCV

criterion is defined as

V (λ) =
1
n
‖y − X2γ − f(t)‖2

[ 1
n
tr(I− A(λ))]2

, (3.3.6)

we can get an estimate of σ2 as σ̂2 = ‖y−X2γ̂−fλ∗(t)‖2

tr(I−A(λ∗))
. The A(·) in the previous

two expressions is the smoothing matrix for the optimization problem (3.3.2),

f.(t) is the solution to f(t) with the given smoothing parameter.

Notice α̂ has the distribution N(α, b(XTM−1X)−1), an approximate χ2 statitic

for testing H0 : cT α = 0 vs H1 : cT α 6=0 can be constructed as

T2 =
(cT α̂)2

b̂cT (XTM̂−1X)−1c
, (3.3.7)

where b̂ = σ̂2/(nλ∗), and M̂ = Σ + nλ∗I. The χ2 statistic has one degree of

freedom.

3.4 Simulation Study

Two simulations were done to compare the partial spline model against the

generalized linear model with GCV smoothing (Smoothing+GLM). The purpose

was to see if the partial spline model is viable in the fMRI data analysis.

For the first simulation, we employed the scheme that had been used in

Carew et al. (2003). First, we used the SPM package to fit a generalized linear
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model on a real data set, the resulting t-map was used to select the 100 “most

activated” voxeles (i.e., the 100 time series with the largest t-test statistics in

magnitude among the whole brain); then the 100 time series were fitted with a

linear model containing the constant term and a convolved boxcar function, the

residuals of the linear model were used to find the auto-regressive coefficients

of an AR(8) model. Using these coefficients, we constructed 100 AR(8) noise

sequences (one for each set of coefficients). Each of these noise sequences plus

the boxcar function (Figure 3.4.1) is our simulated time series. One example of

the time series is given in Figure 3.4.2.

For the second simulation, the data we used to simulate the smoothing

functions was from a subject who was resting under the scanner when the images

were scanned. The same positions (100 voxels) of the brain as in the last

experiment were selected. A smoothing spline was fitted to each time series;

the fitted values were scaled to [0, 1] and then used as the smooth background

in the simulated time series. One arbitrary part about the simulation was that

the time series for the subject at rest is 2 times the length of the time series for

the same subject in motion. So I just dropped the additional length of the time

series to get length 110 time series. The signal part in the simulation was the

boxcar function (Figure 3.4.1) multiplied by the constant 0.6. The simulated

time series were the sum of the signal part, the smooth background, and the

white noise (sd=0.5). One example of the time series is given in Figure 3.4.3.
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Figure 3.4.2: One example of simulated time series from the signal+AR noise
paradigm
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Figure 3.4.3: One example of simulated time series from the signal+smooth
background+white noise paradigm

3.5 Analysis and Results

Both the Smoothing+GLM and the partial spline model were fitted to the 2

sets of simulated time series. In both models, the matrix X has 5 columns. The

first 4 are polynomials up to order 3 (in the increasing order), which are used as

the drift for the time series. The last column of X is the boxcar function given

in Figure 3.4.1. In the partial spline model, X2 consists of the last 3 columns

of X. The contrast c of interest is (0, 0, 0, 0, 1)T for both models. Note this is

a slightly different convention as commonly used in the statistics community.

The t-test statistics and χ2-test statistics were calculated for the corresponding

models and the p-values were obtained. Some model diagnostics were done for
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each model under both simulation schemes.

The boxplots of the p-values for the partial spline model and those for the

smoothing+GLM are given in Figure 3.5.1 (a) and (b) for simulation scheme

1 and 2 respectively. Figure 3.5.1 (a) shows that under the signal+AR noise

setting, the smoothing+GLM seems to detect more time series with signals (at

level=.05) than does the partial spline model. Also, the p-values for the smooth-

ing+GLM have a smaller variance than those for the partial spline model. But

as far as hypothesis testing is concerned, the results from these two models

are close under the simulation setting. Under the other simulation setting (sig-

nal+smooth background+white noise), the partial spline model is doing better

(Figure 3.5.1 (b)) than the smoothing+GLM. Now the partial spline model can

detect almost all the time series with signals.

The diagnostic plots for the model fitting on the time series given in Figure

3.4.2 and 3.4.3 are shown in Figure 3.5.2-3.5.5. It seems that under simulation

scheme 1, both the partial spline model and the smoothing+GLM fit the time

series quite well, with the residuals from the model fitting and the fitted values

appearing to be independent and the normality of the residuals appearing to

be met. Under the simulation scheme 2, the model fitting of the partial spline

model seems to be better than that of the smoothing+GLM.
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Figure 3.5.1: Boxplots of p-values for the partial spline model and smooth-
ing+GLM fitted to data simulated under different schemes. (a) signal+AR
noise; (b) signal+smooth background+white noise.
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Figure 3.5.2: Diagnositic plots of the residual vs fitted values for the partial
spline model and the smoothing+GLM fitted to a time series simulated under
signal+AR noise scheme. (a) Partial spline model; (b) Smoothing+GLM.
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Figure 3.5.3: Quantile-Quantile plots for the partial spline model and the
smoothing+GLM fitted to a time series simulated under signal+AR noise
scheme. (a) Partial spline model; (b) Smoothing+GLM.
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Figure 3.5.4: Diagnositic plots of the residual vs fitted values for the partial
spline model and the smoothing+GLM fitted to a time series simulated under
signal+smooth background+white noise scheme. (a) Partial spline model; (b)
Smoothing+GLM.
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Figure 3.5.5: Quantile-Quantile plots for the partial spline model and the
smoothing+GLM fitted to a time series simulated under signal+smooth back-
ground+white noise scheme. (a) Partial spline model; (b) Smoothing+GLM.
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3.6 Summary and Discussion

We proposed applying the partial spline model to fMRI data analysis. A hy-

pothesis testing procedure was given and simulations were done. The partial

spline model was compared against the smoothing+GLM (a popular model in

fMRI data analysis). Our results show that under different simulation schemes,

the partial spline model does a quite good job in terms of model fitting and

hypothesis testing. Since it is unkown what the true underlying distribution of

the time series is in fMRI data analysis, expert opinions might be needed to

tell if the partial spline model is comparable to the traditional model after both

models are applied to the real data and other procedures are performed.
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Chapter 4

A Hybrid Loss for Support

Vector Machine

4.1 Motivation

In this chapter we consider the problem of classifying an object, based on a

vector of attributes, into one of two or more categories. There are many ways

for solving the problem which include the support vector machine (SVM), tree

methods, neural network, boosting, and etc.. We will study support vector

machine for the classification problem, focusing only on the two class case.

Under the SVM setting, we need to solve an optimization problem that

consists of the sum of two parts (Wahba, 2002), i.e., the cost of using a given

function to classify the data and the smoothness of the function. Different

choices of the loss functions used in the cost part generally lead to different so-

lutions (Hastie et al., 2001). And two of the popular choices are the hinge loss

and the logistic loss. The square loss is also used quite often because many fast

algorithms are available with the corresponding optimization problem. Some
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concerns one may have for choosing a loss function include the Fisher consis-

tency, spareness, and whether estimating conditional probabilities (Bartlett and

Tewari, 2004) is associated with a given loss function. The latter two are a little

more of interest since most convex loss functions we have seen are Fisher consis-

tent, i.e., the sign of the function that minimizes the expected loss with respect

to a given loss function is the same as the sign of the Bayes rule (Lin, 2001).

Among the loss functions we have listed, the hinge loss has sparse solutions,

but it doesn’t estimate the conditional probabilities p(1|x) where x is a given

attribute vector and 1 represents the positive class. The other 2 loss functions

(logistic loss and square loss) estimate the probabilities, but they don’t have

sparse solutions. Our goal is to find a loss function that has the nice properties

of both the hinge loss and the logistic loss. The advantage of having sparsity is

the reduction in computing when the decision rule is used in prediction. And

the niceness of being able to estimate conditional probabilities is to give one

more information about the data.

4.2 New Hybrid Loss

Notice the difference between the hinge loss and the logistic loss (Wahba, 2002;

Hastie et al., 2001). The logistic loss log(1 + e−τ ) is differentiable everywhere

in (−∞,∞), while the the hinge loss max{1− τ, 0} is joined together with two

linear segments. A natural thought is to change the logistic loss to piecewise

function too, while maintaining some level of continuity (Wahba, 2002).
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Figure 4.2.1: Plot of the new loss function with parameter θ = 1.8: also overlaid
are the hinge loss and the misclassification loss functions. Note we changed the
natural logarithm in the new loss function to base 2 logarithm to make all the
loss functions pass the same point (0, 1).
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The proposed hybrid loss function is given in the following,

l(τ) =







ln(1 + e−τ ) , if τ ≤ θ

ln(1 + e−θ) − τ−θ
1+eθ , if θ < τ ≤ (1 + eθ)ln(1 + eθ) − θeθ

0 , if τ > (1 + eθ)ln(1 + eθ) − θeθ.

(4.2.1)

In the equation, there is one parameter θ which controls how much one wants

to truncate the original logistic loss. The plot for the hybrid loss with θ = 1.8 is

given in Figure 4.2.1. For convenience, we define (∗) = (1 + eθ)ln(1 + eθ)− θeθ.

Note that the loss function has first order continuity at τ = θ, zero-th order

continuity across the whole real line, and is convex, it can serve as a surrogate

for the 0-1 misclassification loss (Figure 4.2.1). Since the hybrid loss is a mix of

the logistic loss and the hinge loss, we expect the new loss has the nice properties

of both loss functions.

Bartlett (2003) studied the sparseness vs estimating conditional probabilities

for a family of loss function of the form max{(1 − τ)2
+, (1 − γ)2}, where (·)+ is

the plus function defined as max{·, 0}, and γ is an unknown parameter in the

interval (0, 1]. This loss function should have similar properties as our hybrid

loss. The differences between our loss function and Bartlett’s loss function are

similar to those between the logistic loss and the square loss, i.e., we obtain

better estimate of probabilities at the price of slightly more computation.
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4.3 General SVM and RKHS Framework

Under the reproducing kernel hilbert space (RKHS) framework, the optimiza-

tion problem for support vector machine can be formulated as

arg min
h∈HK

d∈R

1

n

n∑

i=1

l(yi(h(xi) + d)) + λ‖h‖2
HK

, (4.3.1)

where HK is a RKHS with kernel K, λ is the smoothing parameter, and n is

the number of observations. It is known from Wahba (2002) that the solution

h(x) to the optimization problem has the form

h(x) =

n∑

j=1

cjK(x, xj). (4.3.2)

Also, we have ‖
∑n

j=1 cjK(·, xj)‖2
HK

= cT Knc, where c = (c1, · · · , cn)
T , and Kn

is a matrix with the i, j-th entry K(xi, xj).

Plugging the expression for norm and equation (4.3.2) into equation (4.3.1),

we get the new form of the optimization problem

argmin
c,d

1

n

n∑

i=1

l(yi[

n∑

j=1

cjK(xi, xj) + d]) + λcT Knc. (4.3.3)

Let f(x) = h(x) + d, the optimal solution for the data. The observations

(xj, yj)’s which have corresponding cj’s equal to 0 are called support vectors

(SV). Different kernels used can have an influence on the sparseness of the

representation of f(x). The common choices for kernels are the polynomial

kernel (1 + 〈x, x′〉)m where m is an integer and the Gaussian kernel exp(−‖x −

x′‖2/(2σ2)).
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4.4 Theoretical Properties of the Hybrid Loss

Let P be the distribution of (X, Y ) ∈ X × {±1}, PX be the distribution of the

attribute vector X, and denote the conditional distribution P (Y = 1|X = x)

by p(1|x) for short, the population minimizer argminfE[l(Y f(X))|X = x] for

the hybrid loss l(·) is

f̂(x) =







−(∗) , if logit(p) ≤ ln 1+e−(∗)

1+eθ

−logit(1−p
p

1
1+eθ ) , if ln1+e−(∗)

1+eθ < logit(p) ≤ −θ

logit(p) , if − θ < logit(p) ≤ θ

logit( p
1−p

1
1+eθ ) , if θ < logit(p) ≤ ln 1+eθ

1+e−(∗)

(∗) , if logit(p) > ln 1+eθ

1+e−(∗) .

(4.4.1)

In the above expression, (∗) is defined as before, p = p(1|x), and logit(p) =

ln p
1−p

, ∀ 0 < p < 1. We omit the cases p(1|x) = 0 or 1. For p(1|x) = 0, f̂(x)

can be any number ≤ −(∗); for p(1|x) = 1, f̂(x) can be any number ≥ (∗). The

derivation of this minimizer is given in Appendix B.1. A plot of f̂(x) vs p(1|x)

is given in Figure 4.4.1. The population minimizer shows that the loss function

estimates the conditional probability when the true probability is away from 0

or 1. With the population minimizer, we can show that the hybrid loss is Fisher

consistent (Appendix B.2).

In addition, using the value of f(x) to estimate the true probability p(1|x),



58

0.0 0.2 0.4 0.6 0.8 1.0

−4
−2

0
2

4

p(1|x)

f̂(x
)

Figure 4.4.1: Plot the population minimizer f̂(x) vs the conditional probability
function p(1|x). The middle part is the logit of p(1|x).
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we have

p̂(1|x) ∈







[0, 1+e−(∗)

2+eθ+e−(∗) ] , if f(x) ≤ −(∗)
1+ef(x)

2+eθ+ef(x) , if − (∗) < f(x) ≤ −θ

ef(x)

1+ef(x) , if − θ < f(x) ≤ θ

1+eθ

2+eθ+e−f(x) , if θ < f(x) ≤ (∗)

[ 1+eθ

2+eθ+e−(∗) , 1] , if f(x) > (∗).

(4.4.2)

Note the hybrid loss doesn’t give an exact estimate of the probability when

the population minimizer (or the estimate from the data) is above or below

some thresholds.

To see if the hybrid loss generates sparse solutions, we use some results from

Steinwart (2003). We can show (Appendix B.3) that the proportion of support

vectors for the hybrid loss is bounded below by some constant in probability.

Proposition 4.4.1. Let K be a universal kernel (Steinwart, 2001) and P be

a probability measure on X × {±1} with no discrete components on X . Then

for the hybrid loss SVM using a regularization sequence (λn) with λn → 0,

nλ3
n → ∞, nλ2

n/ log n → ∞, and all ε > 0, we have

P n(T ∈ (X × {±1})n : #SV (fT,λn
) ≥ (SL,P − ε)n) → 1,

where fT,λn
is the solution to the SVM optimization problem (4.3.1) with the

data T = {((x1, y1), · · · , (xn, yn)) ∈ (X ×{±1})n} and smoothing parameter λn,

SL,P is equal to

E

[

p(1|X)I

logit(p(1|X))≤ln 1+eθ

1+e−(∗)

ff + (1 − p(1|X))I

logit(p(1|X))≥ln 1+e−(∗)
1+eθ

ff

]

.
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If the data is distributed such that the conditional probability p(1|X) =

P (Y = 1|X) takes some values close to 0 or 1 with non-zero probabilities with

respect to the marginal probability PX , we would expect some sparsity in the

solution of the hybrid loss. Note that the Gaussian kernel (among others) is

universal (Steinwart, 2001) which basically requires any continuous function

from X to R can be approximated as close as one wants by some function in

HK in terms of infinity norm.

4.5 The Optimization Problem

Plugging the hybrid loss into equation (4.3.3) and introducing some slack vari-

ables ξi’s to relax the the hybrid loss l(·) at the right corner point (∗), we get

the mathematical program for the hybrid loss SVM

min
c,d,ξ

eT ξ + nλcT Knc, subject to







l1(yi(
∑n

j=1 cjK(xi, xj) + d)) ≤ ξi

ξi ≥ 0, ∀ 1 ≤ i ≤ n.
(4.5.1)

In the above expression, ξ = (ξ1, ξ2, · · · , ξn)
T , e = (

n
︷ ︸︸ ︷

1, 1, · · · , 1)T . The function

l1(τ) is equal to l(τ) when τ ≤ (∗); passing that point, l1(τ) just extends l(τ)

all the way down. l1(·) has only 2 pieces instead of 3.

A slight transformation of the above problem is

min
c,d,ξ

eT ξ + nλcT Knc, subject to







yi(
∑n

j=1 cjK(xi, xj) + d) ≥ g(ξi)

ξi ≥ 0, ∀ 1 ≤ i ≤ n,
(4.5.2)
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where g(·) is the inverse function of l1(·). Since l1(·) is strictly decreasing and

differentiable everywhere, g(·) has the same properties. The final simplification

of the optimization problem is

min
c,d,η

eT l1(η) + nλcT Knc, subject to







yi(
∑n

j=1 cjK(xi, xj) + d) ≥ ηi

ηi ≤ (∗), ∀ 1 ≤ i ≤ n,
(4.5.3)

where η = (η1, η2, · · · , ηn)T , and l1(η) = (l1(η1), l1(η2), · · · , l1(ηn))T , and (∗) is

defined as before.

Note the optimization problem now has nonlinear objective and linear con-

straints which are in a form readily solvable with the MINOS package (Murtagh

and Saunders, 1983). I wrote some Fortran code to compute the hybrid loss

support vector machine with MINOS. Some further derivation can be done to

find the dual problem of the optimization problem. The KKT conditions can

be found after the dual problem is derived.

4.6 Choosing the Parameters

For the support vector machine under the regularized RKHS framework, we

always face the problem of choosing the right smoothing parameter λ. If we use

the Gaussian kernel for the reproducing kernel, we need to choose the kernel

parameter σ2 as well. Note for the hybrid loss, there is another parameter θ

that controls how much to truncate. All of these parameters requires some way

of choosing them.
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We use the 5-fold cross validation for choosing both the smoothing parameter

λ and the kernel parameter σ2. The method was used because it is available

with any SVM, and we need to compare the hybrid loss against the hinge loss

and the logistic loss. Also, 5-fold seems to be a compromise between the leave-

out-one and the 10-fold. The 5-fold cross validation actually works well for a

lot of applications.

To choose the parameter θ in the loss function, we have to use a different

procedure. Notice the plot for the hybrid loss function (Figure 4.2.1), the loss is

nondecreasing with the increase of θ and a given margin τ . We make a table for

different θ’s, where each θ corresponds to a truncation proportion. We choose

the θ that gives a desired proportion.

4.7 Simulation Study

We did some simulation to see if the hybrid loss is doing what we expected. Both

one dimensional case and two dimensional case were tried. Gaussian kernels

were used with all the SVMs, and 5-fold cross validation was used to choose the

smoothing parameters and kernel parameters. The value θ used in the hybrid

loss SVM was 1.0.
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4.7.1 1-D Simulation

For the 1-D case, we sampled 300 data points from the normal distribution

N(0, 2) as the values for the attribute variable X. The conditional probability

function p(1|x) had the form (0.5 sin(0.4πx)+0.5)·I{−1.25<x<1.25}+I{x≥1.25}. This

means about one third (2(1−Φ( 1.25√
2
))≈0.38) of the data has probabilities equal

to either 0 or 1, , where Φ(·) is the standard normal cumulative distribution

function. We wanted to see how the estimates from the hybrid loss differ from

the ones from the logistic loss and those from the hinge loss.

The results are shown in Figure 4.7.1. The performance of the logistic loss

was quite surprising, which shows the true conditional probability is estimated

accurately. The smoothing parameter might have played some role in condition-

ing the estimates. The estimates from the hinge loss are close to the population

minimizer sign(p(1|x)−1/2). The estimates from the hybrid loss go to its pop-

ulation minimizer too. The hybrid loss does give a solution that is a mix of the

solution from the hinge loss and the one from the logistic loss.

4.7.2 2-D Simulation

For the 2-D simulation, we sampled 400 (X1, X2)’s from the uniform distribution

on the square [−1, 1]2. The conditional distribution p(1|(x1, x2)) was chosen to

be [0.5 sin(
√

2π(r− 3
√

2
8

))+0.5]·I{√
2

8
<r< 5

√
2

8
}+I{r≥ 5

√
2

8
}, where r =

√

x2
1 + x2

2, the

distance between the point (x1, x2) and the origin. This conditional distribution

implies that about 41% of data points have conditional probability p(1|(x1, x2))
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Figure 4.7.1: 1-D simulation results. The triangles and crosses represent the
data for positive class and negative class respectively with their horizontal po-
sitions corresponding to the x values. The raw estimates from hinge loss SVM
were plotted. For the logistic regression and the hybrid method, the transfor-
mation 2ef/(1 + ef) − 1 was applied to the estimates.
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either 0 or 1. The SVMs with the 3 different loss functions were fitted to the

data. The result for the hybrid loss is given in Figure 4.7.2.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 4.7.2: 2-D simulation result. The solid circles from the innermost to the
outermost are the x’s with the logit(p(1|x)) equal to −(∗), 0, (∗) respectively.
The dotted lines are the contours on the estimates from the hybrid method with
the corresponding levels.

The plot shows that the solution from the hybrid loss goes to the population

minimizer with the selection of the λ and σ2 by 5-fold cross validation. This im-

plies that we can use the hybrid loss to target a specific value of the conditional

probability, while the new loss provides further conditioning of the estimates

from the logistic loss with a smoothing parameter.
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Table 4.8.1: Summary of Wisconsin Breast Cancer Data

item value
number of instances 699
number of attributes 9

attribute type integer value 1-10
number of classes 2

missing attribute values 16 with missing values
class distribution 458 benign, 241 malignant

4.8 Real Data Example

To see how the hybrid loss is doing as a classification method and its other

properties, we applied the new loss along with the hinge loss and the logistic loss

to the Wisconsin Breast Cancer data downloaded from UCI machine learning

data repository (URL http://www.ics.uci.edu/∼mlearn/MLRepository.html).

The data set we used was donated by Dr. Olvi Mangasarian of Univer-

sity of Wisconsin-Madison. It has been used in Wolberg and Mangasarian

(1990), Zhang (1992), and Aaron (1998). The classification accuracy was high,

at around 93%.

The summary of the data is given in Table 4.8.1. We can see all the attributes

are ordered numbers, and there are some cases with missing values. To simplify

the computation, I just deleted all the cases with missing attributes and treated

the scale numbers as truly numeric. The actual data set being used has size

683.

The number of misclassified cases for the hinge loss, the logistic loss, and the
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hybrid loss on the 683 cases with the (λ, σ2)’s selected by 5-fold cross validation

and θ set to 1 are 18, 17, 16 respectively. The accuracy is around 97%. It

appears that number of support vectors for hybrid loss is between that for the

hinge loss and that for the logistic loss, with the hinge loss having the most

sparse solution. The box-plots of of the raw estimates from the 3 loss functions

are given in Figure 4.8.1. It shows that the hybrid loss has a truncation effect

on the estimates relative to those from the logistic loss. The histogram of the

transformed estimates (with the inverse logit transformation) for the logistic loss

and that for the hybrid loss are given in Figure 4.8.2 (a) and (b) respectively.

We can see the overall shape of the estimates from hybrid loss still looks like

that of the logistic loss, with the truncation effect quite evident.
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Figure 4.8.1: Box-plots of the estimates from different loss functions on Wis-
consin Breast Cancer data. Logit stands for logistic loss in the plot.
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Figure 4.8.2: Histograms of the estimates from 2 loss functions on Wisconsin
Breast Cancer data. (a) Logistic loss; (b) Hybrid loss. The estimates were
transformed with the function ef/(1 + ef).
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4.9 Summary and Discussion

In this chapter, we presented a new loss function that is a hybrid of the logistic

loss and the hinge loss. We expected our new loss to have the advantages of the

previous 2 loss functions, i.e., it can estimate probabilities in certain region and

give sparse solutions at the same time. The population minimizer of the new

loss function and the asymptotic bound for the proportion of support vectors

were given. The mathematical program for the SVM with the hybrid loss was

derived and the SVM was implemented with MINOS. Simulations with the new

loss function were done and application to Wisconsin Breast Cancer data were

tried. Our new loss function seems to deliver what we expected. And it does a

reasonable job in terms of classification as well.

Some further work on the new SVM would be to find some other (maybe

better) ways of selecting the smoothing parameter, the kernel parameter, and

the parameter in the loss function. The computation might need to be sped up

a little bit. Finally, finding more applications for the hybrid loss requires some

more work.
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Chapter 5

Concluding Remarks

We presented 3 topics in the thesis. The first two were related to the magnetic

resonance image analysis. And the third one was on studying a new hybrid loss

for support vector machine.

For the first topic, MRI segmentation with thin plate spline thresholding,

a novel smoothing technique was proposed for structural images. Due to the

huge data size of image data, we designed a divide and conquer technique to

smooth the data, and thresholds were found during the smoothing process. The

combination of the smoothing and thresholding seems to do a very good job

in terms of segmentation. Many indices were computed for comparing the new

segmentation method against the other methods. And contours and isosurfaces

were drawn to show the boundaries and surfaces found by the methods. There

are a lot of of directions worth further studies.

The second topic was on functional MRI analysis. Because the real time

series will never have the covariance structure as one expects. Many techniques

were come up to cope with misspecification. We showed by simulation that

partial spline with its corresponding hypothesis testing is a good way for fMRI
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analysis. Also, the amount of smoothing determined by generalized cross vali-

dation seems to be about right for the splines. Application of partial splines to

the image volume of the whole brain warrants some prospects.

The last topic was on the hybrid loss for support vector machine. We pro-

posed a new loss function to achieve the sparsity and to be able to estimate

the conditional probabilities in certain region. The theoretical proofs were done

and mathematical program was derived. The support vector machine was im-

plemented with MINOS. The hybrid loss seems to have both the nice properties

of the hinge loss and the logistic loss. This topic can be related to the MRI

analysis if we can reduce the image for each subject to some attribute vector

and classification needs to be done.

All of these topics have in common is the smoothing, with the first one using

the thin plate spline, the second one using the partial spline, and the third

one utilizing the Gaussian kernel smoothing spline in the classification setting.

Different ways of choosing the smoothing parameters and other parameters were

studied. In all the applications, cross validation seems to be a very useful tool,

be it the generalized cross validation with a constant factor, the generalized

cross validation, or the 5-fold cross validation.

In summary, we studied smoothing in 3 different settings. We expect more

problems can be solved with clever ways of smoothing.
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Appendix A

Some Computer Code

A.1 Conversion of Data to VTK Format

function vertface2vtk(v,f,fname,description)

% VERTFACE2VTK Save a set of vertice coordinates and faces to

% vtk format.

% VERTFACE2VTK(v,f,fname,description)

% v is a Nx3 matrix of vertex coordinates.

% f is a Mx3 matrix of vertex indices.

% fname is the filename for the output vtk data.

% description is a brief description of the data.

if (nargin<=3), description = ’ ’; end

fid = fopen(fname,’w’);

fprintf(fid, ’# vtk DataFile Version 1.0\n’);

fprintf(fid, ’%s\n’, description);
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fprintf(fid, ’ASCII\n\n’);

npts = size(v,1);

fprintf(fid, ’DATASET POLYDATA\n’);

fprintf(fid, ’POINTS %d float\n’, npts);

for i=1:npts

fprintf(fid,’%f %f %f\n’,v(i,1),v(i,2),v(i,3));

end

nfaces = size(f,1);

fprintf(fid,’POLYGONS %d %d\n’, nfaces, nfaces*4);

for i=1:nfaces

fprintf(fid,’3 %d %d %d\n’,f(i,1)-1,f(i,2)-1,f(i,3)-1);

end

fclose(fid);
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A.2 Rendering a Surface with VTK

# This example shows how to use VTK to render a surface which

# contains a lot of details. The following is in TCL language.

package require vtk

package require vtkinteraction

# We start by reading some data that was generated by our method

vtkPolyDataReader reader

reader SetFileName "$VTK_DATA/surf_gray_white_tps.vtk"

# We want to preserve topology (not let any cracks form). This

# may limit the total reduction possible, which we have specified

# at 70%.

vtkDecimatePro deci

deci SetInput [reader GetOutput]

deci SetTargetReduction 0.7

deci PreserveTopologyOn

vtkPolyDataNormals normals

normals SetInput [reader GetOutput]

normals FlipNormalsOn

vtkPolyDataMapper isosurfMapper
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isosurfMapper SetInput [normals GetOutput]

vtkActor isosurfActor

isosurfActor SetMapper isosurfMapper

eval [isosurfActor GetProperty] SetColor 0.8 0.7 0.7

# Create the RenderWindow, Renderer and the Interactor

vtkRenderer ren1

vtkRenderWindow renWin

renWin AddRenderer ren1

vtkRenderWindowInteractor iren

iren SetRenderWindow renWin

# Add the actor to the renderer, set the background and size

ren1 AddActor isosurfActor

ren1 SetBackground 1 1 1

renWin SetSize 250 250

# add 2 events to the renderer

iren AddObserver UserEvent {wm deiconify .vtkInteract}

iren AddObserver KeyPressEvent KeyPress

vtkWindowToImageFilter w2i
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vtkPostScriptWriter psw

proc KeyPress {} {

set key [iren GetKeySym]

if { $key == "z" } {

puts "write image to ps file."

w2i SetInput renWin

w2i Modified

psw SetInput [w2i GetOutput]

psw SetFileName "vtkimgout.ps"

psw Write

}

}

# set the camera

vtkCamera cam1

cam1 SetFocalPoint 0 0 0

cam1 SetPosition 1 1 1

cam1 ComputeViewPlaneNormal

cam1 SetViewUp 1 0 0
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cam1 OrthogonalizeViewUp

ren1 SetActiveCamera cam1

ren1 ResetCamera

iren Initialize

# prevent the tk window from showing up then start the event loop

wm withdraw .
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Appendix B

Derivation and Proof

B.1 Derivation of the Population Minimizer for

the Hybrid Loss

Denoting E[l(Y f(X))|X = x] by E(f) for short, we have

E(f) =







p·ln(1 + e−f) , f ≤ −(∗)

p·ln(1 + e−f ) + (1 − p)[ln(1 + e−θ) + f+θ
1+eθ ] , −(∗) < f ≤ −θ

p·ln(1 + e−f) + (1 − p)·ln(1 + ef) , −θ ≤ f < θ

p[ln(1 + e−θ) − f−θ
1+eθ ] + (1 − p)·ln(1 + ef) , θ < f ≤ (∗)

(1 − p)·ln(1 + ef ) , f > (∗).
(B.1.1)

Then taking partial derivative of the above function w.r.t. f , we get

∂

∂f
E(f) =







− p
1+ef , f ≤ −(∗)

− p
1+ef + 1−p

1+eθ , −(∗) < f ≤ −θ

− p
1+ef + (1−p)ef

1+ef , −θ < f ≤ θ

− p
1+eθ + (1−p)ef

1+ef , θ < f ≤ (∗)
(1−p)ef

1+ef , f > (∗).

(B.1.2)
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In the above equations (∗) = (1+ eθ)ln(1+ eθ)− θeθ, and p = P (Y = 1|X = x).

Noting the signs of the derivatives when f is in different intervals, and letting

the derivative be 0 in the interval if 0 is attainable, we get the minimizer f̂(x)

of the expected conditional loss as in the following,

f̂(x) =







−(∗) , if logit(p) ≤ ln 1+e−(∗)

1+eθ

−logit(1−p
p

1
1+eθ ) , if ln1+e−(∗)

1+eθ < logit(p) ≤ −θ

logit(p) , if − θ < logit(p) ≤ θ

logit( p
1−p

1
1+eθ ) , if θ < logit(p) ≤ ln 1+eθ

1+e−(∗)

(∗) , if logit(p) > ln 1+eθ

1+e−(∗) .

(B.1.3)

For the special cases of p(1|x) = 0 or 1, it is easy to find the corresponding

f̂(x) is any number ≤ −(∗) or any number ≥ (∗). �

B.2 Proof of the Fisher Consistency of the Hy-

brid Loss

Using some results from Lin (2001), we only need to check 2 conditions and to

show that the global minimizer f̂(·) of E[l(Y f(X))] exists.

The 2 conditions in Lin (2001) are:

1. l(τ) < l(−τ), ∀τ > 0.

2. l′(0) 6= 0 exists.
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The first condition is satisfied by the hybrid loss with the parameter θ sat-

isfying (∗) = (1 + eθ)ln(1 + eθ) − θeθ > 0. Similarly, the second condition is

satisfied with the same restriction.

The global minimizer of of E[l(Y f(X))] exists based on our previous deriva-

tion and the fact that the marginal p.d.f. p(x) ≥ 0, ∀x.

The thing remaining to show is (∗) > 0, ∀θ ∈ R. Consider first the θ ≤ 0

case, (1 + eθ)ln(1 + eθ) > 0 in this case, and −θeθ ≥ 0 too. If θ > 0, 1 + eθ > eθ

and ln((1 + eθ) > θ > 0. In both cases, we have (∗) > 0. So the hybrid loss is

Fisher consistent. �

B.3 Proof of the Sparseness of the Hybrid Loss

We will prove the sparseness of the hybrid loss for the θ ≥ 0 case. The proof of

the θ < 0 case is similar, but more technical handling is required.

Using the Theorem in Steinwart (2003), we only need to check a few condi-

tions and calculate some quantities for the hybrid loss. In Steinwart’s notation,

L(y, t) is equal to l(yt), where l(·) is the hybrid loss.

First we need to show that the hybrid loss is strongly admissible. Notice

that the Fisher consistency implies admissibility (i.e. the population minimizer

estimates the correct sign when p(1|x) is not equal to 1/2), the thing remaining

to be shown is the cardinality of F ∗
L(a) is 1 for all a∈(0, 1) with a6=1/2. This is

evident from equation (B.1.3).

Secondly we need to show that the hybrid loss is regular. Using Steinwart’s
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definition and noting that the hybrid loss is convex, we have

|L|Y ×[−a,a]|1 =
ea

1 + ea
, ∀ a > 0. (B.3.1)

In the above expression, we used the fact that the hybrid loss is differentiable

except at one corner point (∗). The inequality f(x1) − f(x0) ≥ f ′(x0)(x1 − x0)

holds for any convex and differentiable function f .

Notice that ea/(1 + ea) takes value in (1/2, 1) for any a > 0, we have

|L|Y ×[−γa,γa]|1 < 1 < 2|L|Y ×[−a,a]|1, ∀ a > 0, γ > 0. (B.3.2)

The infinity norm of the hybrid loss in a given interval is

‖L|Y ×[−a,a]‖∞ = ln(1 + ea). (B.3.3)

Using the trivial inequality 1 + xγ < (1 + x)γ, for any x > 0 and γ > 1, we

get

ln(1 + eγa) < ln(1 + ea)γ = γ ln(1 + ea), ∀ a > 0, γ > 1. (B.3.4)

For the case 0 < γ ≤ 1, we have

ln(1 + eγa) ≤ ln(1 + ea), ∀ a > 0, 0 < γ ≤ 1. (B.3.5)

If we let cγ = max{2, γ}, and also notice the monotone property of the loss

function L(y, t) for given y = 1 and y = −1, we proved the hybrid loss is regular.

The hybrid loss is convex by our definition. We now need to calculate a

few quantities. For the hybrid loss, δλ =
√

L(1,0)+L(−1,0)
λ

=
√

2 ln 2
λ

, and C =
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sup{
√

K(x, x) : x ∈ X} is a constant for a given kernel (C = 1 for Gaussian

kernel), we have

|Lλn
|1 =

e

q

2 ln 2
λn

C

1 + e

q

2ln2
λn

C
= O(1), as λn → 0, (B.3.6)

and

‖Lλn
‖∞ = ln(1 + e

q

2ln2
λn

C
) = O(λ−1/2

n ), as λn → 0. (B.3.7)

Since F ∗
L(1/2) = 0 and the loss function L(y, t) is differentiable at t =

0 for both y = 1 and y = −1 when the parameter θ ≥ 0, we then have

∂2L(±1, F ∗
L(1/2)) = ∓1/2 respectively, this implies SL,P = P (S), where

S = {(x, y) ∈ Xcont×{±1} : 0 6∈ ∂2L(y, F ∗
L(p(1|x))∩R)}. (B.3.8)

In the above expression, Xcont = {x ∈ X : PX({x}) = 0} and R = (−∞,∞).

By focusing our attention to the class of distribution P (X, Y ) with continuous

marginal distribution PX (i.e. Xcont = X ), we have

S =

{

(x, 1) : η(x) ≤ ln
1 + eθ

1 + e−(∗)

}
⋃

{

(x,−1) : η(x) ≥ ln
1 + e−(∗)

1 + eθ

}

,(B.3.9)

where η(x) = logit(p(1|x)).

The proportion of support vectors can be bounded below by

SL,P = P (S) = E

[

p(1|X)I

η(X)≤ln 1+eθ

1+e−(∗)

ff + (1 − p(1|X))I

η(X)≥ln 1+e−(∗)
1+eθ

ff

]

in probability if the kernel K is universal, and the regularization sequence (λn)

satisfies λn → 0, nλ3
n → ∞, and nλ2

n/ log n → ∞. �
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