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Abstract

In quantifying the amount of gray matter in a population, voxel-
based morphometry (VBM) and cortical thickness analysis are the
two most widely used techniques. There are still many unanswered
methodological questions regarding these methods. It is not clear what
is the optimal amount of registration needed in VBM. It is assumed
that the gray matter density obtained in the VBM will be positively
correlated to cortical thickness but there is no systematic study that
compared these two disparate measurements. The gray matter den-
sity is a 3D measurement defined in voxels in 3D whole brain volume
while the thickenss is a 1D measurement defined along the 2D cortical
surface. Due to this disparate dimensionality, it is not clear how to
compare them in a systematic fashion.

In this paper, we present a novel weighted Fourier Series (WFS)
representation for the cortical surface that enables us to address these
questions in a unified mathematical framework. The WFS represen-
tation is a data smoothing technique formulated as a solution of the
Cauchy problem. This representation provides the explicit smooth
functional estimation of true unknown cortical boundary as a linear
combination of basis functions. Based on this new representation, cor-
tical thickness and gray matter density can be defined and compared
naturally. The basic theory underlying the weighted Fourier Series
representation and its numerical implementation issues are presented
in detail.

As an illustration, this unified approach is applied in the cortical
thickness analysis and the VBM in a group of autistic subjects. The
thickness analysis and VBM results are compared in parallel.
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1 Introduction

The cerebral cortex has a highly convoluted geometry and it is likely that
the local difference in gray matter concentration can characterize a clinical
population. Among many magnetic resonance imaging (MRI) morphometric
techniques proposed in quantifying the amount of gray matter locally, voxel-
based morphometry (VBM) [2] [20] [57] and cortical thickness analysis [11]
[13] [23] [40] have been the two most widely used techniques so far.

Voxel-based morphometry (VBM) is a fully automated image analysis
technique allowing identification of regional differences in gray and white
matters between groups of subjects without a prior region of interest (ROI).
Although there are many variations in VBM, the underpinning procedures
for different VBM are identical. The 3D whole brain MRI is normalized into
a template then each voxel is assigned a probability of that voxel belonging to
a particular tissue class. There are three main tissue classes: cerebrospinal
fluid (CSF), gray matter, and white matter. Afterwards the tissue prob-
ability is used in a general linear model (GLM) [26] to characterizing the
amount of tissue concentration at each voxel.

On the other hand, cortical thickness analysis requires an additional
step of segmenting the cortical surface. The CSF/gray matter interface is
called the outer surface (pial surface) while the gray/white matter interface
is called the inner surface [36]. Then the distance between the outer and
inner surfaces is defined as the cortical thickness. The cortical thickness has
been widely used as an anatomical index for quantifying the amount of gray
matter in the brain [11] [13] [23].

Although VBM and cortical thickness analysis are popular techniques,
in almost all studies, only a single morphometric technique is used to quan-
tify gray matter. Consequently, each study provides only a small vignette
of the overall picture of a population. Further, studies using different mor-
phometric techniques often result in contradictory findings. Therefore it is
necessary to be able to compare and the VBM to the cortical thickness anal-
ysis directly in a unified methodological framework. Studies that effectively
compare different morphometric techniques and anatomical measures will
provide more insight into understanding the population.

As a basic mathematical tool for achieving these goals, we present a
new representation technique called the weighed Fourier series (WFS) rep-
resentation. This is an explicit data smoothing technique formulated as a
solution to a partial differential equation (PDE) and related to the spherical
harmonic (SPHARM) representation [27] [49] indirectly. The basic theo-
retical properties of WFS and its numerical implementation issues will be
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presented in great detail so that readers should be able to implement and
possibly modify the WFS for their own use. Based on WFS, VBM and cor-
tical thickness analysis will be performed in parallel and the results will be
compared and combined together.

The two major contributions of the paper is the theoretical and com-
putational development of WFS, and showing various applications toward
VBM and cortical thickness analysis in a unified framework.

2 Literature Review

We will mainly review literatures that are directly related to our methodol-
ogy and address what is our new contributions in the context of the previ-
ous literatures. Although there are many different morphometric techniques
such as deformation-based morphometry (DBM) [13] [21] and tensor-based
morphometry (TBM) [4] [12] [13] [51] [52], we will not review or address
these methods.

2.1 Voxel-based Morphometry

VBM as implemented in the statistical parametric mapping (SPM) software
(http://www.fil.ion.ucl.ac.uk/spm) starts with normalizing each structural
MRI to the standard SPM template and segmenting it into white and gray
matters, and CSF based on a Gaussian mixture model [2] [20] [29] [57]. In a
slightly different formulation, the tissue density is generated by convoluting
the binary mask of the tissue with a 3D Gaussian kernel [42]. The resulting
density maps are warped into a normalized space and compared across sub-
jects. A modified version of VBM has been also performed along the cortex,
where a fraction of gray matter within a ball of radius 15mm is taken as
gray matter density [51]. This is equivalent to convoluting the binary mask
of the gray matter with a uniform probability distribution of radius 15mm
and interpolating voxel values to the cortical surface mesh. This equivalence
relation is the basis of how we will project the 3D density maps to the 2D
cortical surface and compare them with the cortical thickness in our study.

VBM has been applied to various anatomical studies: normal develop-
ment [29] [42], autism [10], depression [43], epilepsy [37] and Alzheimer’s
disease [32] [51]. Most previous studies in VBM did not compare the tissue
density to cortical thickness or any other morphometric measures so our
study is the first to present the comparative analysis with some counterin-
tuitive results.
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The objective of VBM is to compare regional difference in relative tissue
concentration. It is not necessary for image registration used in VBM to
match every cortical features exactly, but merely corrects for global brain
shape differences. If the image registration was exact, all the segmented im-
ages would appear identical and no statistically significant differences would
be detected [2]. The amount of image registration needed in VBM has been
a contentious issue that has yet to be addressed quantitatively [3] [5] [16]
[38]. The WFS representation will enable us to address this issue in a unified
fashion.

2.2 Cortical Thickness Analysis

The cerebral cortex has the topology of a 2-dimensional convoluted sheet.
Most of the features that distinguish these cortical regions can only be mea-
sured relative to that local orientation of the cortical surface [17]. Unlike 3D
whole brain volume based VBM, 1D cortical thickness measures have the ad-
vantage of providing a direct quantification of cortical geometry. It is likely
that different clinical populations will exhibit different cortical thickness.
By analyzing cortical thickness, brain shape differences can be quantified
locally [13] [24] [36] [40].

The cortical surfaces are usually segmented as triangle meshes that are
constructed from deformable surface algorithms [19] [23] [36]. Then the
cortical thickness is mainly defined and estimated as the shortest distance
between vertices of the two triangle meshes [23] [36]. The mesh construction
and discrete thickness computation procedures introduce substantial noise
in the thickness measure [11] (Figure 5). So it is necessary to increase the
signal-to-noise ratio (SNR) and smoothness of data for the subsequent ran-
dom field based statistical analysis. For smoothing cortical data, diffusion
equation based methods have been used [1] [8] [11] [13]. The shortcoming of
these approaches is the need for numerically solving the diffusion equation
possibly via the finite element technique. This is an additional time com-
putational step on top of the cortical thickness estimation. In this paper,
we present a more direct approach that smoothes and parameterizes the
coordinates of a mesh directly via WFS such that the resulting thickness
measures are already smooth. In the WFS, the cortical surfaces are esti-
mated as a weighted linear combination of smooth basis functions so that
most algebraic operations on the WFS will also be smooth. This is the first
study comparing the result of VBM to a cortical thickness analysis. Taking
the WFS as some sort of ground truth, gray matter density and cortical
thickness are correlated both within a subject and between subjects.
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2.3 Spherical Harmonic Representation

The SPHARM representation [6] has been applied to subcortical structures
such as the hippocampus and the amygdala [27] [31] [34] [49]. In particular,
Gerig et al. used the mean squared distance (MSD) of SPHARM coefficients
in quantifying ventricle surface shape in a twin study [27]. Shen et al. used
the principal component analysis technique on the SPHARM coefficients
of schizophrenic hippocampal surfaces in reducing the data dimension [49].
Recently it has begun to be applied to more complex cortical surfaces [12]
[31] [48]. Gu et al. presented the SPHARM representation as a surface
compression technique, where the main geometric feasures are encoded in
the low degree spherical harmonics, while the noises are in the high degree
spherical harmonics [31].

In SPHARM, the spherical harmonic functions are used in constructing
the Fourier series expansion of the mapping from the cortex to a unit sphere.
So the SPHARM representation is more of an interpolation technique than
a smoothing technique. On the other hand, WFS is a kernel smoothing
technique given as a solution to a particular PDE. The solution to the PDE
is expanded in basis functions similar to the Fourier series expansion with
weights. WFS offers many advantages over previous PDE-based smoothing
techniques. The PDE-based smoothing methods tend to suffer a numerical
convergence problem [1] [13] while WFS has no such problem. Since the
traditional PDE-based smoothing gives an implicit numerical solution, set-
ting up a statistical model is not straightforward. However, WFS provides
an explicit series expansion so it is easy to apply wide variety of statistical
modeling techniques such as the GLM [26] , principal component analysis
(PCA) [49] and functional-PCA [41] [46]. Bulow used the spherical harmon-
ics in isotropic heat diffusion via the Fourier transform on a unit sphere as
a form of hierarchical surface representation [7].

The SPHARM representation will be shown to be the special case of
WFS. In SPHARM, all measurements are assigned equal weights and the
coefficients of the series expansion is estimated in the least squares fashion.
In WFS, closer measurements are weighted more and the coefficients of the
series expansion is estimated in the weighted least squares fashion. So WFS
is more suitable than SPHARM when the realization of the cortical bound-
aries, as triangle meshes, are noisy [12]. In most SPHARM literatures, the
degree of the Fourier series expansion has been arbitrary determined and the
problem of the optimal degree has not been addressed. Our WFS formula-
tion addresses the determination of the optimal degree in a unified statistical
modeling framework. The WFS-based global parametrization is computa-
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tionally expensive compared to the local quadratic polynomial fitting [6] [13]
[17] [33] [45] while providing more accuracy and flexibility for hierarchical
representation.

3 Cauchy problem as a smoothing process

Consider M ∈ R
d to be a compact differentiable manifold. Let L2(M) be

the space of square integrable functions in M with inner product

〈g1, g2〉 =

∫

M
g1(p)g2(p) dµ(p), (1)

where µ is the Lebegue measure such that µ(M) is the total volume of M.
The norm ‖ · ‖ is defined as

‖g‖ = 〈g, g〉1/2.

The linear partial differential operator L is self-adjoint if

〈g1,Lg2〉 = 〈Lg1, g2〉

for all g1, g2 ∈ L2(M). Then the eigenvalues λj and eigenfunctions ψj of
the operator L are obtained by solving

Lψj = λjψj . (2)

Without the loss of generality, we can order eigenvalues

0 < λ0 ≤ λ1 ≤ λ2 ≤ · · ·

and the eigenfunctions to be orthonormal with respect to the inner product
(1). Consider the Cauchy problem of the following form:

∂tg + Lg = 0, g(p, t = 0) = f(p). (3)

The initial functional data f(p) can be further stochastically modeled as

f(p) = ν(p) + ǫ(p), (4)

where ǫ is a stochastic noise modeled as a mean zero Gaussian random field
and ν is the unknown signal to be estiamted. The PDE (3) diffuses noisy
initial data f over time and estimate the unknown signal ν as a solution.
The time t controls the amount of smoothing and will be termed as the band-
width. The unique solution to equation (3) is given by the following theorem.
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Theorem 1 For the self-adjoint linear differential operator L, the unique
solution of the Cauchy problem (3) is given by

g(p, t) =

∞∑

j=0

e−λjt〈f, ψj〉ψj(p). (5)

Proof For each fixed t, g has expansion

g(p, t) =

∞∑

j=0

cj(t)ψj(p). (6)

Substitute equation (6) into (3). Then we obtain

∂tcj(t) + λjcj(t) = 0. (7)

The solution of equation (7) is given by cj(t) = bje
−λjt. So we have solution

g(p, t) =
∞∑

j=0

bje
−λjtψj(p).

At t = 0, we have

g(p, 0) =
∞∑

j=0

bjψj(p) = f(p).

The coefficients bj must be the Fourier coefficients 〈f, ψj〉.

The implication of Theorem 1 is obvious. The solution decreases ex-
ponentially as time t increases and smoothes out high spatial frequency
noises much faster than low frequency noises. This is the basis of many
of PDE-based image smoothing methods. PDE involving self-adjoint linear
partial differential operators such as the Laplace-Beltrami operator or iter-
ated Laplacian have been widely used in medical image analysis as a way to
smooth either scalar or vector data along anatomical boundaries [1] [7] [8]
[13]. These methods directly solve the PDE using standard numerical tech-
niques such as the finite difference method or the finite element method.
The problem with directly solving PDEs is the numerical instability and
the complexity of setting up the numerical scheme. WFS differs from these
previous method in such a way that we only need to estimate the Fourier
coefficients in a hierarchical fashion to solve the PDE.
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3.1 Weighted Fourier Series

We will investigate the properties of the finite expansion of (5) denoted by

Fk
t [f ](p) =

k∑

j=0

e−λjt〈f, ψj〉ψj(p).

This expansion will be called as the weighted Fourier Series (WFS). By re-
arranging the inner product, the WFS can be rewritten as kernel smoothing:

Fk
t [f ](p) =

k∑

j=0

e−λjtψj(p)

∫

S2

f(q)ψj(q) dµ(q) (8)

=

∫

S2

f(q)Kk
t (p, q) dµ(q) (9)

with symmetric positive definite kernel Kk
t given by

Kk
t (p, q) =

k∑

j=0

e−λjtψj(p)ψj(q). (10)

The subscript t is introduced to show the dependence of the kernel on time t.
This shows that the solution of the Cauchy problem (3) can be interpreted
as kernel smoothing.

When the differential operator L = ∆, the Laplace-Beltrami operator,
the Cauchy problem (3) becomes an isotropic diffusion equation. For this
particular case, K∞

t is called the heat kernel with bandwidth t [9] [11]. For
an arbitrary cortical manifold, the basis functions ψj can be computed and
the exact shape of heat kernel can be determined numerically. Although it
can be done by setting up a huge finite element method [44], this is not a
trivial numerical computation. A simpler approach is to use the first order
approximation of the heat kernel for small bandwidth and iteratively apply
it up to the desired bandwidth [11].

The WFS can be reformulated as a kernel regression problem [22]. At
each fixed point p, we estimate unknown signal ν (4) with smooth function
h ∈ L2(M) by minimizing the integral of the weighted squared distance
between f and h:

min
h∈L2(M)

∫

M
Kt(p, q)

∣∣f(q) − h(p)
∣∣2 dµ(q). (11)

The minimizer of (11) is given by the following theorem.
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Theorem 2

Fk
t [f ](p)∫

M Kk
t (p, q) dµ(q)

= arg min
h∈L2(M)

∫

M
Kk

t (p, q)
∣∣f(q) − h(p)

∣∣2 dµ(q).

Proof Since the integral is quadratic in h, the minimum exists and obtained
when

∂

∂h

∫

M
Kk

t (p, q)|f(q) − h(p)|2 dµ(q)

= −2

∫

M
Kk

t (p, q)[f(q) − h(p)] dµ(q) = 0.

Solving the equation, we obtain the result.

Theorem 2 shows the WFS is the solution of a weighted least squares mini-
mization problem.

When L is the Laplace-Beltrami operator with k = ∞, the heat kernel
K∞

t is a probability distribution in M, i.e.
∫

M
K∞

t (p, q) dµ(p) = 1.

For this special case, Theorem 2 simplifies to

F∞
t [f ](p) = arg min

h∈L2(M)

∫

M
K∞

t (p, q)
∣∣f(q) − h(p)

∣∣2 dµ(q).

In minimizing the weighted least squares in Theorem 2, it is possible to
restrict the function space L2(M) to a finite subspace that is more useful in
numerical implementation. Let

Hl = {
l∑

j=0

βjψj(p) : βj ∈ R}

be the subspace spanned by basis ψ0, · · · , ψl. Then we have the following
theorem.

Theorem 3 If
∫
M Kk

t (p, q) dµ(q) = 1 and l ≤ k, then

F l
t [f ](p) = arg min

h∈Hl

∫

M
Kk

t (p, q)|f(q) − h(p)|2 dµ(q).
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Proof Let h(p) =
∑l

j=0 βjψj(p) ∈ Hl. The integral is written as

I(β0, · · · , βl) =

∫

M
Kk

t (p, q)
∣∣∣f(q) −

l∑

j=0

βjψj(p)
∣∣∣
2

dµ(q).

Since the functional I is quadratic in β0, · · · , βl, the minimum exists and it
is obtained when ∂I

∂βj′
= 0 for all j′. By differentiating I and rearranging

terms, we obtain

k∑

j=0

e−λjtψj(p)ψj′(p)

∫

M
f(q)ψj(q) dµ(q)

=

l∑

j=0

βjψj(p)ψj′(p).

Now integrate the equations respect to measure µ(p) and obtain

e−λj′ t〈f, ψj′〉 = βj′ .

If Kk
t is a probability distribution, this theorem holds. For any other sym-

metric positive definite kernel, it can be made to be a probability distribu-
tion by renormalizing it. So Theorem 3 can be applicable in wide variety of
kernels.

3.2 Isotropic Diffusion on Unit Sphere

Let us apply the WFS theory to a unit sphere. Since algebraic surfaces
provide basis functions in a close form, it is not necessary to construct
numerical basis [44]. The WFS in S2 is given by the solution of isotropic
diffusion. The spherical parametrization of S2 is given by the polar angle θ
and the azimuthal angel ϕ:

p = (sin θ cos ϕ, sin θ sin ϕ, cos θ) (12)

with p = (θ, ϕ) ∈ [0, π] ⊗ [0, 2π). The spherical Laplacian ∆ corresponding
to the parametrization (12) is given by

∆ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂2ϕ
.

There are 2l+1 eigenfunctions Ylm(−l ≤ m ≤ l), corresponding to the same
eigenvalue λl = l(l + 1) satisfying

∆Ylm = λlYlm.
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Ylm is called the spherical harmonic of degree l and order m [15, 53]. It is
given explicitly as

Ylm =





clmP
|m|
l (cos θ) sin(|m|ϕ), −l ≤ m ≤ −1,

clm√
2
P 0

l (cos θ), m = 0,

clmP
|m|
l (cos θ) cos(|m|ϕ), 1 ≤ m ≤ l,

where clm =
√

2l+1
2π

(l−|m|)!
(l+|m|)! and Pm

l is the associated Legendre polynomials

of order m.
Unlike many previous imaging literatures on spherical harmonics that

used the complex-valued spherical harmonics [7] [27] [31] [49], only real-
valued spherical harmonics with different normalizing constants are used
throughout the paper for its convenience for setting up a real-valued stochas-
tic model.

For f, h ∈ L2(S2), we define the inner product as

〈f, h〉 =

∫ 2π

ϕ=0

∫ π

θ=0
f(p)h(p) dµ(p),

where Lebesgue measure dµ(p) = sin θdθdϕ. Then with respect to the inner
product, the spherical harmonics satisfies the orthonormal condition

∫

S2

Yij(p)Ylm(p) dµ(p) = δilδjm,

where δil is the Kroneker’s delta. The kernel Kk
t is given by

Kk
t (p, q) =

k∑

l=0

l∑

m=−l

e−l(l+1)tYlm(p)Ylm(q). (13)

The associated WFS is given by

Fk
t [f ](p) =

k∑

l=0

l∑

m=−l

e−l(l+1)tflmYlm(p)

with Fourier coefficient flm = 〈f, Ylm〉. This form of WFS is called the
weighted-SPHARM and it has been used as a global differential parameter-
ization of the cortex for tensor-based morphometry [12]. The special case
Fk

0 [f ] is the traditional SPHARM representation used in representing the
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Figure 1: Plots of RMSE over degree for bandwidths t = 0.01, 0.001, 0.0001,
0. The smoothed outer surfaces are at degree k = 85 showing the bandwidth
controls the amount of smoothing in representing the cortex. The bandwidth
t = 0 corresponds to the traditional SPHARM. As t → 0, the WFS converges
to SPHARM.

Cartesian coordinates of anatomical boundaries [27] [31] [49]. Consider sub-
space

Hk = {
k∑

l=0

l∑

m=−l

βlmYlm : βlm ∈ R} ⊂ L2(S2),

which is spanned by up to the k-th degree spherical harmonics. Then the
SPHARM satifies the least squares minimization problem different from
Theorem 2 and Theorem 3.

Theorem 4

Fk
0 [f ](p) = arg min

h∈Hk

‖f − h‖2. (14)
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Figure 2: Automatic degree selection in the IRF algorithm. For each band-
width t, the optimal degree is automatically selected by checking if adding an
additional degree will be statistically significant. The outer cortical surfaces
are the results of the optimal selection procedure. The optimal degrees are
k = 18(t = 0.01), k = 42(t = 0.001), k = 52(t = 0.0005), k = 78(t = 0.0001).
For our study, t = 0.0001 and the corresponding degree k = 78 is used
through the paper.

4 Numerical Implementation

In constructing the WFS representation, all we need is estimating Fourier
coefficients flm = 〈f, Ylm〉. There are three major techniques for computing
the Fourier coefficients. The first method numerically integrate the Fourier
coefficients over a high resolution triangle mesh [9]. Although this approach
is the simplest to implement numerically and more accurate, due to its brute
force nature of the technique, the computation is extremely slow. The second
method is based on the fast Fourier transform (FFT) [7] [31]. The drawback
of the FFT is the need for a predefined regular grid system so if the mesh
topology is different for each subject as in the case of FreeSurfer [23], a time
consuming interpolation is needed. The third method is based on solving
a system of linear equations [27] [48] [49] that minimize the least squares
problem in Theorem 4. This is the most widely used numerical technique in
SPHARM literatures. However, the direct application of the least squares
estimation is not desirable when the size of the linear equation is extremely
large.

Let

h =
k∑

l=0

l∑

m=−l

βlmYlm(p) ∈ Hk.
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Given n nodes p1, · · · , pn in S2 mesh, the discretization of (14) is given by

‖f − h‖2 ≈
n∑

i=1

[
f(pi) −

k∑

l=0

l∑

m=−l

βlmYlm(pi)
]2

. (15)

The minimum of (15) is obtained when

f(pi) =

k∑

l=0

l∑

m=−l

βlmYlm(pi) (16)

all 1 ≤ i ≤ n. The equation (16) is referred as the normal equation in
statistical literatures. The normal equation is usually solved via a matrix
inversion. Let

f = (f(p1), · · · , f(pn))′

and
βl = (βl,−l, · · · , βl,l)

′.

Also let

Yl =




Yl,−l(p1) · · · Yl,l(p1)
...

. . .
...

Yl,−l(pn) · · · Yl,l(pn)




be a n× (2l+1) submatrix consisting of the l-th degree spherical harmonics
evaluated at each node pi. Then (16) can be rewritten in the following
matrix form:

f = Yβ. (17)

with the design matrix Y = [Y0,Y1, · · · ,Yk] and unknown parameter vec-
tor β = (β′

0, · · · , β′
k)

′. The linear system is solved via

β = (Y′Y)−1Y′f . (18)

The problem with this widely used formulation is that the size of the matrix
Y is n × (k + 1)2, which becomes fairly large and may not fit in most of
computer memories. So it becomes unpractical to perform matrix operation
(18) directly. This is true for many cortical surface extraction tools such
as FreeSurfer [23] that produces no less than n > 100, 000 nodes for each
hemisphere. This computational bottleneck can be overcome by breaking
the least squares problem in the subspace Hk into smaller subspaces using
the iterative residual fitting (IRF) algorithm [48]. The IRF for WFS will
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be given in the following subsection. Although IRF was first introduced in
[48], the correctness of the algorithm was not given in [48]. In this paper, we
present Theorem 5 that proves the correctness of the IRF for the first time.
The IRF can be also used in estimating SPHARM coefficients by letting the
bandwidth t = 0 in the algorithm.

4.1 Iterative residual fitting (IRF) algorithm

Decompose the subspace Hk into smaller subspaces as the direct sum:

Hk = I0 ⊕ I1 · · · ⊕ Ik,

where subspace

Il = {
l∑

m=−l

βlmYlm(p) : βlm ∈ R}

is spanned by the l-th degree spherical harmonics only. Then the IRF es-
timates the Fourier coefficients βl in each subspace Il iteratively from in-
creasing the degree from 0 to k. Suppose we estimated the coefficients
β0, · · · , βl−1 up to degree l − 1 somehow. Then the residual vector rl−1

based on this estimation is given by

rl−1 = f −
l−1∑

j=0

e−j(j+1)tYjβj . (19)

The components of the residual vector rl−1 are identical so we denote all
of them as rl−1. At the next degree l, we estimate the coefficients βl by
minimizing the difference between the residual rl−1 and

∑l
m=−l βlmYlm ∈ Il.

This is formally stated as the following theorem:

Theorem 5

l∑

m=−l

flmYlm = arg min
h∈Il

‖rl−1 − h‖2. (20)

Proof Let h =
∑l

m=−l βlmYlm(p) ∈ Il. The squared norm is denoted as

I(βl,−l, · · · , βl,l) =

∫

S2

[
rl−1(p) −

l∑

m=−l

βlmYlm(p)
]2

dµ(p).
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Since I is quadratic in βlm’s, the minimum is obtained when ∂I
∂βlm′

= 0 for

all m′. By differentiating I with respect to βlm′ and letting it equal to zero,
we obtain

∫

S2

Ylm′(p)
[
rl−1(p) −

l∑

m=−l

βlmYlm(p)
]

dµ(p)

=

∫

S2

Ylm′(p)rl−1(p) dµ(p) − βlm′ . (21)

From (19), we have

rl−1 = f −
l−1∑

j=0

j∑

m=−j

e−j(j+1)tβjmYjm,

which is a linear combination of spherical harmonics up to (l− 1)-th degree
so it is orthonormal to Ylm. Then the first term in (21) simplifies to

∫

S2

Ylm′(p)rl−1(p) dµ(p) = 〈f, Ylm′〉.

Theorem 5 proves that the correctness of IRF procedure. Then the dis-
cretization and the optimization is based on the normal equation approach
(14):

βl = (YlYl)
−1Y′

lrl−1.

Summarizing the results, the IRF algorithm is given below.

Algorithm 1 Iterative Residual Fitting (IRF)

1. Let l = 0.

2. β0 ← (Y0Y0)
−1Y′

0f .

3. l ← l + 1.

4. rl−1 ← f −
∑l−1

j=0 e−j(j+1)tYjβj .

5. βl ← (YlYl)
−1Y′

lrl−1.

6. If l < k, go to step 3.
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Figure 3: Shape of heat kernel with different bandwidth t = 0.01, 0.05, 0.1,
0.5. The horizontal axis is the θ value from the north pole (θ = 0) to the
south pole (θ = π). The weighting scheme used in WFS follows the shape
of the heat kernel.

4.2 Automatic optimal degree selection in IRF

The IRF algorithm hieratically build the WFS from lower to higher degree.
In most previous SPHARM literatures [7] [28] [27] [31] [48] [49], the issue
of the optimal degree has not been addressed. We present a statistical
framework for automatically determining optimal degree in the Algorithm
1. Although increasing the degree of WFS increases the goodness-of-fit, it
also increases the number of coefficients to be estimated quadratically. So
it is necessary to find the optimal degree where the goodness-of-fit and the
number of parameters balance out.

The Fourier coefficients flm can be modeled to follow independent normal
distribution N(µlm, σ2

l ). It is natural to assume the equal variance within
the same degree. This assumption is equivalent to modeling WFS as the
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Figure 4: Plot of FWHM (vertical) over bandwidth t (horizontal) for both
heat kernel and Gaussian kernel. The FWHM has to be numerically esti-
mated in the case of the heat kernel. The numerically computed FWHM is
used in the random field theory based multiple comparison correction.

sum of signal plus noise:

f(pi) =
k∑

l=0

l∑

m=−l

e−λ(λ+1)tµlmYlm(pi) + ǫ(pi), (22)

where ǫ is a zero mean isotropic Gaussian random field.
Then at each iteration, we test if adding the k-th degree terms in the (k−

1)-th degree model is statistically significant by testing the null hypothesis

H0 : µkm = 0 for |m| ≤ k.

The test statistic is constructed from the sum of squared errors (SSE). Let
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the k-th degree sum of squared errors (SSE) be

SSEk =
n∑

i=1

r2
k(pi).

The plot of the root mean squared errors (RMSE),
√

SSEk/n for varying
degree 5 ≤ k ≤ 85 is shown in Figure 1. As the degree k increases, the root
mean squared errors keep decreasing until it flattens out. So it is reasonable
to stop the iteration when the decrease in error is no longer significant.
Under H0, the test statistic is

F =
(SSEk−1 − SSEk)/(2k + 1)

SSEk−1/(n − (k + 1)2)
∼ F2k+1,n−(k+1)2 ,

the F -distribution with 2k + 1 and n − (k + 1)2 degrees of freedom. We
compute the F statistic at each degree and stop the IRF procedure if the
corresponding P-value first becomes bigger than the pre-specified signifi-
cance α (α = 0.01 in this study). For bandwidth t = 0.0001, the optimal
degree is determined to be k = 78 (Figure 2).

4.3 Computing FWHM

Since the WFS representation is a kernel smoothing method, it is useful to
know the full width at the half maximum (FWHM) of the underlying kernel.
The computed FWHM is later used in the random field based multiple com-
parison corrections [11] [13] [56] [55]. Computing the FWHM of heat kernel
used in WFS is not trivial since there is no known close form expression
for FWHM as a function of bandwidth t. Therefore, FWHM is computed
numerically.

For p, q, r ∈ S2, let us define the Cartesian inner product · as p · q =
cos(θ), where θ is an angle between p and q. The heat kernel (13) is sym-
metric along the geodesic circle. If p · q = p · r, we have Kk

t (p, q) = Kk
t (p, r).

This property can be used to simplify the expansion (13) using the harmonic
addition theorem [30] [53].

Theorem 6 (Harmonic addition theorem)

l∑

m=−l

Ylm(p)Ylm(q) =
2l + 1

4π
P 0

l (p · q). (23)

20



Proof Fix the azimuthal angel ϕ = 0 and p be the north pole, i.e. p =
(0, 0, 1). Now by varying q = (sin θ, 0, cos θ) for 0 ≤ θ ≤ π, we have
Ylm(θ, ϕ) = 0 if m 6= 0. Then we have

l∑

m=−l

Ylm(p)Ylm(q) = Yl0(p)Yl0(q) =
2l + 1

4π
P 0

l (1)P 0
l (cos θ).

Note that P 0
l (p) = 1. This implies that the sum of product of the spherical

harmonics is a function of the inner product between p and q only. From
symmetry, if we rotate p back to the original position from the north pole,
the same result should hold.

Using the harmonic addition theorem, we simplify the heat kernel in the
following theorem.

Theorem 7 For any p, q ∈ S2,

Kk
t (p, q) =

k∑

l=0

2l + 1

4π
e−l(l+1)tP 0

l (p · q). (24)

Theorem 7 is used to plot the shape of the heat kernel by fixing p to be
the north pole and by varying θ = cos−1(p · q) (Figure 3). Similar result is
also given in [7]. The maximum of the kernel is obtained at = 0. Then the
FWHM is solved numerically for θ in

1

2

k∑

l=0

2l + 1

4π
e−l(l+1)σ =

k∑

l=0

2l + 1

4π
e−l(l+1)σP 0

l (cos θ).

The FWHM is then 2θ. Figure 4 shows the nonlinear relationship between
bandwidth t and the corresponding FWHM. When t = 0.0001, the cor-
responding FWHM is 0.2262. This is the FWHM we have used in the
subsequent cortical thickness analysis.

5 Unified Surface-based Morphometry via WFS

In this section, we show how the WFS representation is used to quantify
cortical surface shape variations in a group of autistic subjects. The WFS
provides a unified framework for comparing VBM and the cortical thickness
analysis in parallel.
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Figure 5: Cortical thickness measures projected onto an average surface for
better visualization. As the bandwidth increases from t = 0.0001 to t = 0.01,
the amount of smoothing also increases. The first image shows the cortical
thickness obtained from the traditional deformable surface algorithm [11]
[13] [36].

5.1 Data Set

n1 = 12 high functioning autistic (HFA) and n2 =12 normal control (NC)
subjects were screened to be right-handed males. The autistic subjects were
diagnosed via The Autism Diagnostic Interview - Revised (ADI-R) used by a
trained and certified psychologist at the Waisman center at the University of
Wisconsin-Madison [18]. Age distributions for HFA and NC are compatible
at 15.93 ± 4.71 and 17.08 ± 2.78 respectively.

High resolution anatomical magnetic resonance images (MRI) were ob-
tained using a 3-Tesla GE SIGNA scanner with a quadrature head RF coil. A
three-dimensional, spoiled gradient-echo (SPGR) pulse sequence was used to
generate T1-weighted images. Image intensity nonuniformity was corrected
using the nonparametric nonuniform intensity normalization method [50]
and then the image was spatially normalized into the Montreal neurological
institute (MNI) stereotaxic space using a global affine transformation [14].
Afterwards, an automatic tissue-segmentation algorithm based on a super-
vised artificial neural network classifier was used to classify each voxel as
cerebrospinal fluid (CSF), gray matter, or white matter [35]. Subsequently
a deformable surface algorithm [36] is used to generate the outer and the
inner cortical meshes.
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5.2 Stochastic Model

Let Mo and Mi be the outer (pial) and inner surfaces of the brain respec-
tively. The unit sphere S2 is realized as a triangle mesh and deformed to
match the outer and inner surfaces in such a way that anatomical homology
and the topological connectivity of meshes are preserved [36]. The cortical
surfaces can be assumed to be smooth 2-dimensional Riemannian manifolds
parameterized by two parameters [19] [33]. Based on the deformable algo-
rithm [36] that establishes the homology between the S2 mesh and the outer
cortical surface, the Cartesian coordinates of the mapping are discretely pa-
rameterized by the spherical parametrization (12) as

v = (v1(p), v2(p), v2(p)).

The inner surface is parameterized similarly as

w = (w1(p), w2(p), w3(p)).

These discrete coordinate functions are further smoothed by the WFS:

vi(p) =
k∑

l=0

l∑

m=−l

e−l(l+1)tf i
lmYlm(p). (25)

We model vi stochastically as (22) by assuming f i
lm to follow independent

normal distribution N(µi
lm, σ2

l ) for coordinate i, degree l, and order m. This
assumption is equivalent to modeling vi as the sum of signal plus noise:

vi(p) =
k∑

l=0

l∑

m=−l

e−l(l+1)tµi
lmYlm(p) + ǫi(p),

where ǫi is a zero mean Guassian random field with a certain isotropic
covariance function. A similar stochastic modeling approach has been used
in [39] where the canonical expansion of Gaussian random field is used to
model the component of a deformation field.

The mean and the variance functions of the surface are given by

Evi(p) =

k∑

l=0

l∑

m=−l

e−l(l+1)tµi
lmYlm(p), (26)

Vvi(p) =
k∑

l=0

l∑

m=−l

e−2l(l+1)tσ2
l Y

2
lm(p)
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The total variability of the surface is then measured by

∫

S2

Vvi dµ(p) =
k∑

l=0

l∑

m=−l

e−2l(l+1)tσ2
l

indicating the increase of smoothing bandwidth decreases the total variabil-
ity. If

vij(θ, ϕ) =
k∑

l=0

l∑

m=−l

e−l(l+1)tf ij
lmYlm(θ, ϕ) (27)

is the WFS for the j-th subject (1 ≤ j ≤ s), the unknown parameters µi
lm

and σ2
l are estimated as the sample mean and the sample variance:

µ̂i
lm =

1

s

n∑

j=1

f ij
lm, (28)

σ̂2
l =

1

(2l + 1)(s − 1)

l∑

m=−l

s∑

j=1

(f ij
lm − µi

lm)2.

The inner surface is stochastically modeled similarly as

wi(p) =
k∑

l=0

l∑

m=−l

e−l(l+1)tgi
lmYlm(p). (29)

5.3 Surface normalization

Previously cortical surface normalization is performed by minimizing an ob-
jective function that measures the global fit of two surfaces while maximizing
the smoothness of the deformation in such a way that the gyral patterns are
matched smoothly [11] [47] [52]. In the WFS representation, the surface nor-
malization is straightforward and does not require any sort of optimizations
explicitly.

Given surfaces vi1 and vi2 as in (27), the displacement field di that min-
imizes the integral of the squared errors of warping vi1 to vi2 is simply given
by the following theorem.

Theorem 8

vi2 − vi1 = arg min
di∈Hk

∫

S2

[di(vi1) − vi2]
2 dµ(p).
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Figure 6: Multi-scale representation of surface registration toward the av-
erage template. The top is the inner surface while the bottom is the outer
surface. α = 0 is the surface of one particular subject while α = 1 is the
average surface of 24 subject. The amount of registration serves as a multi-
scale representation where the optimal scale for differentiating two groups
should be searched for.

Theorem 8 shows that the optimal displacement in the least squares sense is
obtained by simply taking the difference between two WFS representations.
Unlike other surface registration methods used in warping surfaces between
subjects [11] [47] [52], it is not necessary to consider an additional cost
function that guarantees the smoothness of the displacement field since the
displacement field vi2 − vi1 is already a linear combination of smooth basis
functions. Based on this idea, we normalize WFS surfaces.

Let v̄i be the mean surface obtained by replacing µi
lm in (26) with the

sample mean (28). Figure 6 shows the mean surface for 24 subjects used in
the study. The mean surface serves as a template for a statistical analysis
later. For subject j, the displacement from surface vij to the template is

∆vij = v̄i − vij .

Consider surface

vij(α) = vij + α∆vi = (1 − α)vij + αv̄i, (30)

which is the trajectory of the deformation from vij to the template v̄i param-
eterized by α ∈ [0, 1]. When α = 0, vij(α) is the j-th subject surface while
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Figure 7: Left: plot of image registration variability c(α). Middle: plot of
the maximum of T statistic at each scale. Right: plot of corrected P-value
corresponding to the maximum of T statistic. At α = 0.4, the minimum
P-value of less than 0.1 is obtained so we choose α = 0.4 to be the optimal
scale that separates the two groups. The lines are the best fitting quadratic
curve in the least squares sense.

when α = 1 it is the template surface. The parameter α controls the amount
of registration from the coarse-to-fine scale toward the template. Figure 6
shows vi(α) at 11 different scales between 0 and 1 with 0.1 increment for a
single subject. The larger the value of α, the smaller the image registration
variability across the subjects with respect to the template. This is shown
from the total variability computed at each scale α:

∫

S2

V(vij) dµ(p) = c(α)
k∑

l=0

l∑

m=−l

e−2l(l+1)tσ2
l ,

where

c(α) =
n − 1

n2
α2 +

(
1 −

n − 1

n
α
)2

is decreasing over 0 ≤ α ≤ 1 (Figure 7).

5.4 Optimal Voxel-based Morphometry

Based on the multi-scale representation of surface registration, the optimal
amount of registration needed in VBM is determined. The gray matter
density is constructed using the 3D Euclidian distance map of the surfaces
at each scale. For the outer surface Mo(α) at scale α, the distance map at
each voxel x is defined as

disto(x) = min
y∈Mo(α)

‖x − y‖,
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Figure 8: Left: contour plot of the average distance map in mm at scale
α = 0. Right: Gaussian kernel smoothing of the gray matter density map
with 10mm FWHM.

where ‖ · ‖ is the Euclidian norm. The minimum is found using the nearest
neighbor search algorithm on an optimized k-D tree [25]. Similarly we denote
the distance map for the inner surface Mi(α) as disti(x). Then the average
distance map is defined as

dist(x) =
disto(x) + disti(x)

2
.

The average distance map for a subject is shown in Figure 8. The minimum
of the average distance is always obtained in the middle of the outer and the
inner surfaces, where the probability of a voxel belong to the gray matter
class should be the highest. Then we define the gray matter density as

density(x) = exp
[
−

dist2(x)

2ρ2

]
, (31)

where parameter ρ2 controls the spread of density. In this paper, we used
ρ2 = 3. The gray matter density is always between 0 and 1 and it obtains
its maximum in the interior of the gray matter region, where the average
distance map obtains the minimum. The density map is further convoluted
with the 3D Gaussian kernel K with 10mm FWHM to increase the smooth-
ness and normality of data [2] [10] (Figure 8). The smoothed density map
K ∗ density(x) is stochastically modeled as a Gaussian random field.
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At each scale, we construct the smoothed density map for each subject.
Then the two sample t-test statistic T with the equal variance assumption
is computed on the convoluted gray matter density maps at each voxel [10] .
The resulting T random field T (x) is distributed as a student t distribution
with ν = n1 + n2 − 2 degrees of freedom at each voxel x. Based on the
random field theory [56] [55] [54], the test statistic, which accounts for the
multiple comparison correction, is the maxima of T field over the gray matter
Mg. The corresponding corrected P-value is computed using the following
formula:

P
(

sup
x∈Mg

T (x) > h
)

≈
Vol(Mg)

FWHM3

(4 ln 2)3/2

(2π)2

(ν − 1

ν
h2 − 1

)(
1 +

h2

ν

)− ν−1

2

,

where Vol(Mg) = 2.13 × 105mm3 is the volume of the gray matter of the
template. The gray matter volume is estimated by computing the volume
bounded by the outer and inner meshes [13]. Restricting the search region
from the whole brain volume to the gray matter boosts the signal detection
power. The optimal image registration scale is determined to be the one that
provides the maximal discrepancy between the groups. Hence, the minimum
corrected P-value can be chosen as a criteria for determining the optimal
scale. The maximum T statistic value and its corresponding corrected P-
value at each scale are plotted in Figure 7 showing that the optimal scale is
obtained when α = 0.4. At this scale, the maximum T-stat. is 5.43 while the
minimum T-stat. is -5.04. The random field theory based thresholding of
h = ±5.35 gives the corrected P-value of 0.1. Figure 9 shows the optimally
constructed T-stat. map thresholded at ±4.0 and interpolated into the
nearest point in the cortical surface showing increased gray matter density
in the localized areas of the autistic subjects.

5.5 Cortical Thickness Analysis

The previously available approaches for computing the cortical thickness
in discrete triangle meshes produce noisy thickness measures [11] [23] [36].
So it is necessary to smooth the thickness measurements along the cortex
via PDE based smoothing techniques [1] [8] [13]. On the other hand, the
WFS provides smooth functional representation of the outer and inner sur-
faces so that the distance measures between the surfaces should be already
smooth.Hence, the WFS avoids this additional step of thickness smoothing
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Figure 9: T statistic map for gray matter density and cortical thickness
thresholded at between -4 and 4 for the comparison purpose. In the gray
matter density results, signals are mainly detected in either the inner sur-
face or the outer surface but not in the middle surface. This validates the
conjecture in VBM that the signal will be mainly detected around the tis-
sue boundary. The gray matter density results and the thickness results do
not overlap reconfirming that the thickness and gray matter density are not
positive correlated measurements. Our study directly demonstrates that the
VBM and cortical thickness analysis SPMs will not overlap.

done in most of thickness analysis literatures [13] [11] . It is not necessary
to perform data smoothing in the WFS formulation.

Using Theorem 8, we establish the homology between the outer and the
inner surfaces in the least squares fashion. We will call this homology as
the WFS-correspondence. For the outer surface (25) and the inner surface
(29), the cortical thickness is defined to be the Euclidean distance between
the WFS-correspondence:

thick(p) =
[ k∑

l=0

l∑

m=−l

e−2l(l+1)t(gi
lm − f i

lm)2
]1/2

.
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Figure 10: Top: gray matter density projected onto inner, mid and outer
surfaces. On the inner surface, the deep sulcal regions show the low density
while the gyral ridges show high density. On the outer surface, this is oppo-
site. The deep sulcal regions show high density while the gyral ridges show
lower density. The middle surface shows high density. Bottom: Scatter plot
of gray matter density over thickness. They show negative correlations.

A similar approach has been proposed for measuring the closeness be-
tween two surfaces [27]; however, this is the first study using the spherical
harmonics in defining the cortical thickness. Figure 5 shows the comparison
of cortical thickness computed from the traditional deformable surface al-
gorithm [36] and the WFS-correspondence. The cortical thickness obtained
from the traditional approach introduces a lot of triangle mesh noise into its
estimation while the WFS-correspondance approach dose not. The spatial
smoothness of the thickness is controlled by the bandwidth t.

For the group comparision between the autistic and the normal control
groups, two sample t-test is performed. The corresponding corrected P-value
is computed using the following formula:

P
(

sup
p∈S2

T (p) > h
)

≈
1

FWHM2

(4 ln 2)

(2π)1/2

Γ(ν+1
2 )

(ν
2 )1/2Γ(ν

2 )
h
(
1 +

h2

ν

)− ν−1

2

,
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Figure 11: Correlation of thickness and gray matter density for 24 subjects
mapped on both the inner and the outer surfaces. Most of both inner and
outer surfaces show negative correlation. Thicker cortical regions are less
convoluted so the gray matter density tend to be lower.

where FWHM is from the heat kernel used in the WFS. We used FWHM
= 0.2262 corresponding to bandwidth t = 0.0001. Then for the threshold
h = ±4.5, we obtain the corrected P-value of 0.1. The minimum T-stat. is
-4.73 while the maximum T-stat. is 4.83. Figure 9 shows the T-stat. map
thresholded at ±4.

5.6 Comparing Cortical Thickness and Gray Matter Density

Most morphometric studies [2] [5] [11] [13] [23] [29] perform VBM and corti-
cal thickness analysis separately and it is not clear if two anatomical indices
measure the same anatomical characteristic. Although both the gray matter
density and the cortical thickness are presumed to measure the amount of
gray matter, it is unclear if these two measures are positively correlated.
Comparing the SPM of density and thickness in Figure 9, no statistically
significant regions overlap. Since both metrics have been assumed to be the
indicators of the amount of gray matter, the result is paradoxical. So we
have correlated these two metrics within a subject (Figure 10) and across
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[t]

Figure 12: Simple 2D schematic showing the negative correlation between
thickness and gray matter density. Gray colored pixels are the gray matter.
The black circles are the contour of heat kernel. There are less gray matter
pixels in region (c) than region (a) although the thickness in region (c) is
thicker than that of region (a). The gray matter density in the middle of the
gray matter (b) is close to 1 for all subject indicating very small between-
subject and between-group variability. Because of the small between-group
variability, VBM does not usually detect signal in the middle of the gray
matter. Most of the significant signal detected in VBM is near the tissue
boundary where the between-group variability is high.
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subjects (Figure 11) to further investigate the relationship. Surprisingly the
scatter plot in Figure 10 shows negative correlation within a subject. By as-
signing the density value of a voxel that contains a vertex of a cortical mesh
to the vertex, we can project the gray matter density onto inner, middle
and outer surfaces. The middle surface is obtained by averaging the inner
and the outer surfaces in the WFS-correspondance. Surfaces show different
patterns of a negatively correlated scatter plots. Figure 11 shows complex
pattern of nonuniformity of density. On the outer surface, deep sulci have
higher density compared to gyri while on the inner surface, the pattern is
opposite. The middle surface shows higher density compared to the outer
and the inner surfaces as expected. These complex patterns of the nonuni-
formity of density is due to the folding pattern of the cortex. Since the sulci
on the outer surface and the gyri on the inner surface are highly folded,
these regions should have more gray matter within the sphere of fixed ra-
dius as illustrated in Figure 12. On the other hand, thin cortical regions
will fold more than thick cortical regions. This inverse geometric relation is
causing the negative correlation between density and thickness and, in turn,
the resulting SPM differ in the regions of statistically significant difference.
We further computed the correlation between two measures across 24 sub-
jects. Figure 10 shows a similar result showing negative correlation across
subjects in most regions of cortex. Based on this primary result, it is clear
that gray matter density and cortical thickness should be analyzed together
in a multivariate fashion rather than analyzing separately.

6 Conclusions and Discussions

In this paper, we presented a unified theoretical framework for the WFS and
detailed numerical implementation issues. The WFS is used as a smooth
global parametrization of the cortex. It is a very flexible functional esti-
mation technique for scalar and vector data projected onto a unit sphere.
The WFS can be also viewed as a cortical data smoothing technique. The
WFS is shown to be a solution of the Cauchy problem in PDE and for a
specific weights, it becomes diffusion smoothing [13]. As an application of
this novel approach, we used the WFS as a tool for comparing the VBM
and the cortical thickness analysis. Using the WFS representation as the
ground truth, cortical thickness and gray matter density are constructed,
and morphometric analysis on these indices are performed.

In the VBM, the problem of determining optimal amount of image reg-
istration has been addressed. It was shown that the opimal scale is obtained
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somewhere between global affine registration and the WFS-correspondance
based nonlinear warping. This multi-scale VBM incorporates the convoluted
nature of the gray matter using the WFS more accurately than the previous
3D-based VBM. The explicit mathematical representation of the WFS-based
surface-to-surface registration enabled us to construct the trajectory of the
deformation field. This trajectory is used as a parameter for controlling the
amount of image registration in a multi-scale fashion. Then the optimal
VBM is chosen that gives the maximal discrimination between the two clin-
ical groups. In the cortical thickness analysis, the thickness is established
using the same WFS- correspondence. Afterwards, the SPMs of the VBM
and the thickness are compared to show the statistically significant regions
do not overlap. This surprising result is caused by the negative correlation
between density and thickness. Increased folding increases the gray mat-
ter density while decreasing thickness. This should serve as a spring board
for investigating further on comparing the VBM and the cortical thickness
analysis.
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