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Although there are many imaging studies on traditional ROI-based amygdala volumetry, there are very few
studies on modeling amygdala shape variations. This paper presents a unified computational and statistical
framework for modeling amygdala shape variations in a clinical population. The weighted spherical
harmonic representation is used to parameterize, smooth out, and normalize amygdala surfaces. The
representation is subsequently used as an input for multivariate linear models accounting for nuisance
covariates such as age and brain size difference using the SurfStat package that completely avoids the
complexity of specifying design matrices. The methodology has been applied for quantifying abnormal local
amygdala shape variations in 22 high functioning autistic subjects.
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Introduction

The amygdala is an important brain substructure that has been
implicated in abnormal functional impairment in autism (Dalton
et al., 2005; Nacewicz et al., 2006; Rojas et al., 2000). Since structural
abnormality might be the cause of the functional impairment, there
have been many studies on amygdala volumetry. However, previous
amygdala volumetry results have been inconsistent. Aylward et al.
(1999) and Pierce et al. (2001) reported that amygdala volume was
significantly smaller in autistic subjects while Howard et al. (2000)
and Sparks et al. (2002) reported a larger volume. Haznedar et al.
(2000) found no volume difference. Schumann et al. (2004) reported
age dependent amygdala volume difference in autistic children and
indicated age dependency as the cause of the discrepancy. All these
previous studies traced the amygdalae manually and by counting the
number of voxels within the region of interest (ROI), the total volume
of the amygdala was estimated. The limitation of the traditional ROI-
based volumetry is that it cannot determine if the volume difference is
diffuse over the whole ROI or localized within specific regions of the
ROI (Chung et al., 2001). We present a novel computational and
statistical framework that enables localized amygdala shape charac-
terization and able to overcome the limitation of the ROI-based
volumetry.
Previous shape models

Although there are extensive literature on local cortical shape
analysis (Chung et al., 2005; Fischl and Dale, 2000; Joshi et al., 1997;
Taylor and Worsley, 2008; Thompson and Toga, 1996; Lerch and
Evans, 2005; Luders et al., 2006; Miller et al., 2000), there are not
many literature on amygdala shape analysis other than Cates et al.
(2008), Qiu and Miller (2008) and Khan et al. (1999) mainly due to
the difficulty of segmenting amgydala. On the other hand, there is
extensive literature on shape modeling other subcortical structures
using various techniques.

The medial representation (Pizer et al., 1999) has been success-
fully applied to various subcortical structures including the cross
sectional images of the corpus callosum (Joshi et al., 2002) and
hippocampus/amygdala complex (Styner et al., 2003), and ventricle
and brain stem (Pizer et al., 1999). In the medial representation, the
binary object is represented using the finite number of atoms and
links that connect the atoms together to form a skeletal representa-
tion of the object. The medial representation is mainly used with the
principal component analysis type of approaches for shape classifi-
cation and group comparison.

Unlike the medial representation, which is in a discrete represen-
tation, there is a continuous parametric approach called the spherical
harmonic representation (Gerig et al., 2001; Gu et al., 2004; Kelemen
et al., 1999; Shen et al., 2004). The spherical harmonic representation
has been mainly used as a data reduction technique for compressing
global shape features into a small number of coefficients. The main
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global geometric features are encoded in low degree coefficients
while the noise will be in high degree spherical harmonics (Gu et al.,
2004). The method has been used to model various subcortical
structures such as ventricles (Gerig et al., 2001), hippocampi (Shen
et al., 2004) and cortical surfaces (Chung et al., 2007). The spherical
harmonics have global support. So the spherical harmonic coefficients
contain only the global shape features and it is not possible to directly
obtain local shape information from the coefficients only. However, it
is still possible to obtain local shape information by evaluating the
representation at each fixed point, which gives the smoothed version
of the coordinates of surfaces. In this fashion, the spherical harmonic
representation can be viewed asmesh smoothing (Chung et al., 2007).
Instead of using the global basis of spherical harmonics, there have
been attempts of using the local wavelet basis for parameterizing
cortical surfaces (Nain et al., 2007; Yu et al., 2007).

Other shape modeling approaches include distance transforms
(Leventon et al., 2000), deformation fields obtained by warping
individual substructures to a template (Miller et al., 1997) and the
particle-based method (Cates et al., 2008). A distance transform is a
function that for each point in the image is equal to the distance from
that point to the boundary of the object (Golland et al., 2001). The
distance map approach has been applied in classifying a collection of
hippocampi (Golland et al., 2001).The deformation fields based
approach has been somewhat popular and has been applied to
modelingwhole 3D brain volume (Ashburner et al., 1998; Chung et al.,
2001; Gaser et al., 1999), cortical surfaces (Chung et al., 2003;
Thompson et al., 2000), hippocampus (Joshi et al., 1997), and
cingulate gyrus (Csernansky et al., 2004). The particle-based method
uses a nonparametric, dynamic particle system to simultaneously
sample object surfaces and optimize correspondence point positions
(Cates et al., 2008).

Available computer packages

Over the years, various neuroimage processing and analysis
packages have been developed. The SPM (www.fil.ion.ucl.ac.uk/
spm) and AFNI (afni.nimh.nih.gov) software packages have been
mainly designed for the whole brain volume based processing and
massive univariate linear model type of analyses. The traditional
statistical inference is then used to test hypotheses about the
parameters of the model parameters. The subsequent multiple
comparisons problem is addressed using the random field theory or
random simulations. Although SPM and AFNI are probably two most
widely used analysis tools, their analysis pipelines are based on
univariate general linear models and they do not have a routine for a
multivariate analysis. Therefore, they do not have the subsequent
routine for correcting multiple comparison corrections for the
multivariate linear models as well.

There are also few surface based tools such as the surface mapper
(SUMA) (Saad et al., 2004) and FreeSurfer (surfer.nmr.mgh.harvard.
edu). SUMA is a collection of mainly cortical surface processing tools
and does not have the support for multivariate linear models. The
spherical harmonic modeling tool SPHARM-PDM (www.nitrc.org/
projects/spharm-pdm) is also available (Styner et al., 2006).
SPHARM-PDM supports for multivariate analysis of covariance
(MANCOVA), which is a subset of the more general multivariate
linear modeling framework.

For general multivariate linear modeling, one has to actually use
statistical packages such as Splus (www.insightful.com), R (www.r-
project.org) and SAS (www.sas.com). These statistical packages do
not interface with imaging data easily so the additional processing
step is needed to read and write imaging data within the software.
Further these tools do not have the random field based multiple
comparison correction procedures so the users are likely export
analyzed statistics map to SPM or fMRISTAT (www.math.mcgill.ca/
keith/fmristat) increasing the burden of additional processing steps.
Our contributions

In this paper, we use the weighted spherical harmonic representa-
tion for parameterization, surface smoothing and surface registration
in a unified Hilbert space framework. Chung et al. (2007) presented
the underlying mathematical theory and a new iterative algorithm for
estimating the coefficients of the representation for extremely large
meshes such as cortical surfaces. Here we apply the method to real
autism surface data in a truly multivariate fashion for the first time.

Our approach differs from the traditional spherical harmonic
representation in many ways. Although the truncation of the series
expansion in the spherical harmonic representation can be viewed as
a form of smoothing, there is no direct equivalence to the full width at
half maximum (FWHM) usually associated with kernel smoothing. So
it is difficult to relate the unit of FWHM widely used in brain imaging
to the degree of spherical harmonic representation. On the other
hand, our new representation can easily relate to FWHMof smoothing
kernel so we have a clear sense of how much smoothing we are
performing beforehand.

The traditional representation suffers from the Gibbs phenomenon
(ringing artifacts) (Gelb, 1997) that usually happens in representing
rapidly changing or discontinuous data with smooth periodic basis.
Our new representation can substantially reduce the amount of Gibbs
phenomenon by weighting the coefficients of the spherical harmonic
expansion. The weighting has the effect of actually performing heat
kernel smoothing, and thus reducing the ringing artifacts. We
quantify the improved performance of our new representation in
both the real and simulated data.

Since the proposed new representation requires a smooth map
from amygdala surfaces to a sphere, we have developed a new and
very fast surface flattening technique based on the propagation of
heat diffusion. By tracing the integral curve of heat gradient from a
heat source (amygdala) to a heat sink (sphere), we can obtain the
flattening map. Since solving an isotropic heat equation in a 3D
image volume is fairly straightforward, our proposed method offers
a much simpler numerical implementation than available surface
flattening techniques such as conformal mappings (Angenent et al.,
1999; Gu et al., 2004; Hurdal and Stephenson, 2004) quasi-isometric
mappings (Timsari and Leahy, 2000) and area preserving mappings
(Brechbuhler et al., 1995). The established spherical mapping is used
to parameterize an amygdala surface using two angles associated
with the unit sphere. The angles serve as coordinates for represent-
ing amygdala surfaces using the weighted linear combination of
spherical harmonics. The tools containing the weighted spherical
harmonic representation and the surface flattening algorithm can be
found in http://www.stat.wisc.edu/~mchung/research/amygdala.
It should be pointed out that our representation and parameteriza-
tion techniques are general enough to be applied to various brain
structures such as the hippocampus and caudate that are topolog-
ically equivalent to a sphere.

Based on the weighted spherical harmonic representation of
amygdalae, various multivariate tests were performed to detect the
group difference between autistic and control subjects. Most of
multivariate shape models on coordinates and deformation vector
fields have mainly used the Hotelling's T-square as a test statistic (Cao
andWorsley, 1999; Chung et al., 2001; Collins et al., 1998; Gaser et al.,
1999; Joshi et al., 1997; Thompson et al., 1997). The Hotelling's T-
square statistic tests for the equality of vector means without
accounting the additional covariates such as gender, brain size and
age. Since the size of amygdala is dependent on brain size and possibly
on age as well, there is a definite need for a model that is able to
include these covariates explicitly. The proposed multivariate linear
model does exactly this by generalizing the Hotelling's T-square
framework to incorporate additional covariates.

In order to simplify the computational burden of setting up the
proposed multivariate linear models, we have developed the SurfStat
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Fig. 1. Amygdala manual segmentation at (a) axial (b) coronal and (c) midsagittal
sections. The amygdala (AMY) was segmented using adjacent structures such as
anterior commissure (AC), hippocampus (HIPP), inferior horn of lateral ventricle (IH),
optic radiations (OR), optic tract (OT), temporal lobe white matter (TLWM) and
tentorial notch (TN).
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package (http://www.math.mcgill.ca/keith/surfstat) that offers a
unified statistical analysis platform for various 2D surface mesh and
3D image volume data. The novelty of SurfStat is that there is no need
to specify design matrices that tend to baffle researchers not familiar
with contrasts and design matrices. SurfStat supersedes fMRISTAT,
and contains all the statistical and multiple comparison correction
routines.
Methods

Surface parameterization

Once the binary segmentation Ma of an object is obtained either
manually or automatically, the marching cubes algorithm (Lorensen
and Cline, 1987) was applied to obtain a triangle surface mesh ∂Ma.
The weighted spherical harmonic representation requires a smooth
mapping from the surface mesh to a unit sphere S2 to establish a
coordinate system. We have developed a new surface flattening
algorithm based on heat diffusion.

We start with putting a larger sphere Ms that encloses the binary
object Ma. Fig. 1 shows an illustration with the binary segmentation
of amygdala. The center of the sphereMs is taken as the average of the
mesh coordinates of ∂Ma, which forms the surface mass center. The
radius of the sphere Ms is taken in such a way that the shortest
distance between the sphere to the binary object Ma is fixed (5 mm
for amygdalae). The final flattening map is definitely affected by the
perturbation of the position of the sphere but since we are fixing it to
be the mass center of surface for all amygdalae, we do not need to
worry about the perturbation effect.

The binary object Ma is assigned the value 1 while the enclosing
sphere is assigned the value −1, i.e.

f ðMa;σÞ = 1 and f ðMs;σÞ = −1 ð1Þ

for all σ ∈ [0,∞). The parameter σ is the diffusion time. Ma and Ms

serve as a heat source and a heat sink respectively. Then we solve
isotropic diffusion

∂f
∂σ = Δ f ð2Þ

with the given boundary condition (1). Δ is the 3D Laplacian. When
σ→∞, the solution reaches the heat equilibrium state where the
additional diffusion does not make any change in heat distribution.
The heat equilibrium state is also obtained by letting ∂f

∂σ = 0 and
solving for the Laplace equation

Δ f = 0 ð3Þ

with the same boundary condition. This will result in the equilibrium
state denoted by f(x,σ=∞). Once we obtained the equilibrium state,
we trace the path from the heat source to the heat sink for every mesh
vertices on the isosurface of Ma using the gradient of the heat
equilibrium ∇ f(x,∞). Similar formulation called the Laplace equation
method has been used in estimating cortical thickness bounded by
outer and inner cortical surfaces by establishing correspondence
between two surfaces by tracing the gradient of the equilibrium state
(Yezzi and Prince, 2001; Jones et al., 2006; Lerch and Evans, 2005).

The heat gradients form vector fields originating at the heat source
and ending at the heat sink (Fig. 2). The integral curve of the gradient
field at a mesh vertex p ∈ ∂Ma establishes a smooth mapping from
the mesh vertex to the sphere. The integral curve τ is obtained by
solving a system of differential equations

dτ
dt

ðtÞ = ∇f ðτðtÞ;∞Þ

with τ(t=0)=p. The integral curve approach is a widely used
formulation in tracking white matter fibers using diffusion tensors
(Basser et al., 2000; Lazar et al., 2003). These methods rely on
discretizing the differential equations using the Runge–Kutta method,
which is computation intensive. However, we avoided the Runge–
Kutta method and solved using the idea of the propagation of level
sets. Instead of directly computing the gradient field ∇ f(x,∞), we
computed the level sets f(x,∞)= c of the equilibrium state

http://www.math.mcgill.ca/keith/surfstat


Fig. 2. (a) The heat source (amygdala) is assigned a value of 1 while the heat sink is assigned a value of−1. The diffusion equation is solved with this boundary condition. (b) After a
sufficient number of iterations, the equilibrium state f(x,∞) is reached. (c) The gradient field∇ f(x,∞) shows the direction of heat propagation from the source to the sink. The integral
curve of the gradient field is computed by connecting one level set to the next level sets of f(x,∞). (d) Amygdala surface flattening is done by tracing the integral curve at each mesh
vertex. The numbers c=1.0,0.6,⋯,−1.0 correspond to the level sets f(x,∞)=c. (e) Amygdala surface parameterization using the angles (θ,φ). The point θ=0 corresponds to the
north pole of a unit sphere.
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corresponding to varying c between −1 and 1. The integral curve is
then obtained by finding the shortest path from one level set to the
next level set and connecting them together in a piecewise fashion.
This is done in an iterative fashion as shown in Fig. 2, where five level
sets corresponding to the values c=0.6, 0.2, −0.2, −0.6, −1.0 are
used to flatten the amygdala surface. Once we obtained the spherical
mapping, we can then project the angles (θ,φ) onto ∂Ma and the two
angles serve as the underlying parameterization for the weighted
spherical harmonic representation.

For the proposed flattening method to work, the binary object has
to be close to either star-shape or convex. For shapes with a more
complex structure, the gradient lines that correspond to neighboring
nodes on the surface will fall within one voxel in the volume, creating
numerical singularities inmapping to the sphere. Othermore complex
mapping methods such as conformal mapping (Angenent et al., 1999;
Gu et al., 2004; Hurdal and Stephenson, 2004) can avoid this problem
but is more numerically demanding. On the other hands our approach
is simpler and more computationally efficient because it works for a
limited class of shapes.
Weighted spherical harmonic representation

The parameterized amygdala surfaces, in terms of spherical angles
θ,φ, are further expressed using the weighted spherical harmonic
representation (Chung et al., 2007), which expresses surface
coordinate functions as a weighted linear combination of spherical
harmonics. The automatic degree selection procedure was also
introduced in the previous work but for the completeness of our
paper, the method is briefly explained in the “Optimal degree
selection” section.
The mesh coordinates for the object surface ∂Ma are parameter-
ized by the spherical angles Ω=(θ,φ) ∈ [0,π] ⊗ [0,2π) as

pðθ;φÞ = ðp1ðθ;φÞ;p2ðθ;φÞ;p2ðθ;φÞÞ:

The weighted spherical harmonic representation is given by

pðθ;φÞ = ∑
k

l=0
∑
l

m=−l
e−lðl+1Þσ flmYlmðθ;φÞ;

where

flm = ∫
π

θ = 0
∫

2π

φ = 0
pðθ;φÞYlmðθ;φÞ sin θdθdφ

are the spherical harmonic coefficient vectors and Ylm are spherical
harmonics of degree l and order m defined as

Ylm =

clmP
jm j
l ðcos θÞ sinð jm jφÞ; −l ≤ m ≤ −1;
clmffiffiffi
2

p P jm j
l ðcos θÞ; m = 0;

clmP
jm j
l ðcos θÞ cosð jm jφÞ; 1 ≤ m ≤ l;

8>>>><
>>>>:

where clm =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l+1
2π

ðl− jm jÞ!
ðl + jm j Þ!

r
and Pl

m is the associated Legendre

polynomial of orderm. The associated Legendre polynomial is given by

Pm
l ðxÞ =

ð1−x2Þm=2

2ll!
dl+m

dxl+m
ðx2−1Þl; x ∈ ½−1;1� :

image of Fig.�2
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The first few terms of the spherical harmonics are

Y00 =
1ffiffiffiffiffiffi
4π

p ; Y1;−1 =

ffiffiffiffiffiffi
3
4π

r
sin θ sin φ;

Y1;0 =

ffiffiffiffiffiffi
3
4π

r
cos θ;Y1;1 =

ffiffiffiffiffiffi
3
4π

r
sin θ cos φ:

The coefficients flm are estimated in a least squares fashion (Chung
et al., 2007; Gerig et al., 2001; Shen et al., 2004).

Many previous imaging and shape modeling literature have used
the complex-valued spherical harmonics (Bulow, 2004; Gerig et al.,
2001; Gu et al., 2004; Shen et al., 2004), but we have only used real-
valued spherical harmonics (Homeier and Steinborn, 1996) through-
out the paper for the convenience in setting up a real-valued
stochastic model. The relationship between the real- and complex-
valued spherical harmonics is given in Blanco et al. (1997), and
Homeier and Steinborn (1996). The complex-valued spherical
harmonics can be transformed into real-valued spherical harmonics
using a unitary transform.

In the subsequent multivariate linear modeling, some sort of
surface smoothing is necessary before the random field theory based
multiple comparison correction is performed. One important property
of the weighted spherical harmonic representation is that the
representation can be considered as kernel smoothing. On a unit
sphere, the heat kernel is defined as

Kσ ðΩ;Ω′Þ = ∑
∞

l=0
∑
l

m=−l
e−lðl+1ÞσYlmðΩÞYlmðΩ′Þ: ð4Þ

The heat kernel is symmetric and positive definite, and

∫S2KσðΩ;Ω′Þ dμðΩÞ = 1:

The bandwidth σ controls the dispersion of the kernel weights. As
σ→0,

Kσ ðΩ;Ω′Þ→ δðΩ−Ω′Þ;

the Dirac-delta function. On the other hand, as σ→∞,

lim
σ→∞

KσðΩ;Ω′Þ = 1
4π

:

Heat kernel smoothing of the coordinate function p is defined as

Kσ T pðΩÞ = ∫
S2
Kσ ðΩ;Ω′ÞpðΩ′Þ dμðΩ′Þ: ð5Þ

By substituting (4) into (5) and interchanging the integral with the
summation, we have

Kσ T pðΩÞ = ∑
∞

l=0
∑
l

m=−l
e−lðl+1Þσh f ;YlmiYlmðΩÞ; ð6Þ

which is the infinite dimensional weighted spherical harmonic
representation. Hence, the weighted Fourier representation can be
considered as kernel smoothing and it inherits all the necessary
properties of kernel smoothing.

Optimal degree selection

Since it is impractical to sum the representation to infinity, we
need a rule for truncating the series expansion. Given the bandwidth
σ of heat kernel, we automatically determine if increasing degree k
has any effect on the goodness of the fit of the representation. In all
spherical harmonic literature (Gerig et al., 2001, 2004; Gu et al., 2004;
Shen and Chung, 2006; Shen et al., 2004), the truncation degree is
simply selected based on a pre-specified error bound. On the other
hand, our proposed statistical framework is based on a type-I error.

Although increasing the degree increases the goodness-of-fit of
the representation, it also increases the number of coefficients to be
estimated quadratically. It is necessary to find the optimal degree
where the goodness-of-fit and the number of parameters balance out.
Consider the k-th degree error model:

pðΩÞ = ∑
k−1

l=0
∑
l

m=−l
e−lðl+1Þσ flmYlmðΩÞ

+ ∑
k

m=−k
e−kðk+1Þσ fkmYkmðΩÞ + �ðΩÞ;

ð7Þ

where � is a zeromeanGaussian random field.We test if adding the k-th
degree terms to the k−1-th degree model is statistically significant by
formally testing

H0 : fk;− k = fk;−k+1 = ::: = fk;k−1 = fk;k = 0:

This can be easily done using the F-statistic 2k+1 and n−(k+1)2

degrees of freedom. At each degree, we compute the corresponding p-
value and stop increasing the degree if it is smaller than pre-specified
significance α=0.01. For bandwidths σ=0.01,0.001,0.0001, the
approximate optimal degrees are 18, 42 and 78 respectively. In our
study, we have used k=42 degree representation corresponding to
bandwidth σ=0.001. The bandwidth 0.01 smoothes out too much
local details while the bandwidth 0.0001 introduces too much voxel
discretization error into the representation.

Reduction of Gibbs phenomenon

The weighted spherical harmonic representation fixes the Gibbs
phenomenon (ringing effects) associated with the traditional Fourier
descriptors and spherical harmonic representation by weighting the
series expansion with exponential weights (Chung et al., 2007). The
exponential weights make the representation converge faster and
reduces the amount of ringing artifacts. The Gibbs phenomenon often
arises in Fourier series expansion of discrete data.

To numerically quantify the amount of overshoot, we define the
overshoot as the maximum of L2 norm of the residual difference
between the original and the reconstructed surface as

sup
ðθ;φÞ∈S2

jjpðθ;φÞ− ∑
k

l=0
∑
l

m=−l
e−lðl+1Þσ flmYlmðθ;φÞjj:

If surface coordinates are abruptly changing or their derivatives are
discontinuous, the Gibbs phenomenon will severely distort the
surface shape and the overshoot will never converge to zero.

We have reconstructed a cube and a left amygdala with various
degree presentation and the bandwidth showing more ringing
artifacts and overshoot in the traditional representation compared
to the proposed weighted version. The exponentially decaying
weights make the representation converge faster and reduce the
Gibbs phenomenon significantly. Fig. 3 shows the comparison of
overshoots between the two representations. The plots display the
amount of overshoot for the traditional representation (black) and the
weighted version (red). The weighted spherical harmonic represen-
tation shows less amount of overshoot compared to the traditional
technique.

Surface normalization

MRIs were first reoriented manually to the pathological plane for
the manual binary segmentation of amygdalae (Convit et al., 1999).
The images then further underwent a 6-parameter rigid-body



Fig. 3. The first (third) row shows the significant Gibbs phenomenon in the spherical harmonic representation of a cube (left amygdala) for degrees k=18,42,78. The second
(fourth) row is the weighted spherical harmonic representation at the same degrees but with bandwidth σ=0.01,0.001,0.0001 respectively. The color scale for amygdala is the
absolute error between the original and reconstructed amygdalae. In almost all degrees, the traditional spherical harmonic representation shows more prominent Gibbs
phenomenon compared to the weighted version. The plots display the amount of overshoot for the traditional representation (black) vs. the weighted version (red).
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alignment with manual landmarking (Nacewicz et al., 2006). The
aligned left amygdalae are displayed in Fig. 4 showing an approximate
initial alignment. The proposed weighted spherical harmonic repre-
sentations were then obtained. The additional alignment beyond the
rigid-body alignment was done by matching the weighted spherical
harmonic representations. Note we are not trying to match the
original noisy surfaces but rather their smooth analytic representa-
tions. The correspondence is established by matching the coefficient
of spherical harmonics at the same degree and order. This guarantees
the sum of squares errors to be minimum in the following sense.
Consider two surface coordinates p and q given by the representations

pðΩÞ = ∑
k

l=0
∑
l

m=−l
e−lðl+1Þσ flmYlmðΩÞ

and

qðΩÞ = ∑
k

l=0
∑
l

m=−l
e−lðl+1ÞσglmYlmðΩÞ;
where flm and glm are Fourier vectors. Suppose the surface p is
deformed to p+d under the influence of the displacement vector field
d. We wish to find d=(d1,d2,d3) that minimizes the discrepancy
between p+d and q in the finite subspaceHk, which is spanned by up
to degree k spherical harmonics. The restriction of the search space to
the finite subspace simplifies the computation as follows:

∑
k

l=0
∑
l

m=−l
e−lðl+1Þσðglm− flmÞYlmðΩÞ = arg min

d1 ;d2 ;d3∈Hk

‖p + d−q‖
2
:

ð8Þ

The proof is given in Chung et al. (2007). The optimal displacement in
the least squares sense is obtained by simply taking the difference
between two weighted spherical harmonic representation and
matching coefficients of the same degree and order. (8) can be used
to establish the correspondence across different meshes with
different mesh topology, i.e. mesh connectivity. For instance, the
first surface in Fig. 4-(a) has 1270 vertices and 2536 faces while the
second surface has 1302 vertices and 2600 faces. We establish
correspondence between topologically different meshes by matching

image of Fig.�3


Fig. 4. (a) Five representative left amygdala surfaces. (b) 42 degree weighted spherical harmonic representation. Surfaces have different mesh topology. (c) However, meshes can be
resampled in such a way that all meshes have identical topology with exactly 2562 vertices and 5120 faces. Identically indexed mesh vertices correspond across different surfaces in
the least squares fashion. (d) Spherical harmonic basis Y22 is projected on each amygdala to show surface correspondence. Note that the red colored left most corners more or less
align properly.
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a specific point p(Ω0) in one surface to q(Ω0) in the other surface and
it is optimal in the least squares fashion. Since the representation is
continuously defined in any Ω ∈ [0,π] ⊗ [0,2π), it is possible to
resample surface meshes using a topologically different spherical
mesh. We have uniformly sampled the unit sphere and constructed a
spherical meshwith 2563 vertices and 5120 faces. This spherical mesh
serves as a common mesh topology for all surfaces. After the
resampling, all surfaces will have the identical mesh topology as the
spherical mesh, and the identical vertex indices will correspond
across different surfaces (Fig. 4-(c)). This is also illustrated in Fig. 4-
(d), where the pattern of basis Y22 corresponds across different
amygdalae. A similar idea of uniform mesh topology has been
previously used for establishing MNI cortical correspondence
(Chung et al., 2003, 2005; Macdonald et al., 2000; Lerch and Evans,
2005; Taylor and Worsley, 2008; Worsley et al., 2004).

Denote the surface coordinates corresponding to the i-th surface as
pi. Then we have the representation

piðΩÞ = ∑
k

l=0
∑
l

m=−l
e−lðl+1Þσ f ilmYlmðΩÞ: ð9Þ
There are total (k+1)2×3 coefficients to be estimated. Assume there
are total n surfaces, the average surface p is given as

p̄ =
1
n
∑
n

i=1
∑
k

l=0
∑
l

m=−l
e−lðl+1Þσ f ilmYlm: ð10Þ

In our study, the average left and right amygdala templates are
constructed by averaging the spherical harmonic coefficients of all 24
control subjects. The template surfaces serve as the reference
coordinates for projecting the subsequent statistical parametric
maps (Figs. 7 and 8).

Validation
The methodology is validated in simulated surfaces where the

ground truth is exactly known. In order not to bias the result, we have
used an intrinsic geometric method using the Laplace–Beltrami
eigenfunctions as a way to simulate surfaces with the known ground
truth (Lévy and Inria-Alice, 2006). For the surface coordinates p, we
have the Laplace–Beltrami operator Δ and its eigenfunctions ψj

satisfying

ψj = λjΔψj

image of Fig.�4
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where

0 = λ0 b λ1 ≤ λ2 ≤::::

Then each surface can be represented as a linear combination of the
Laplace–Beltrami eigenfunctions:

p = ∑
∞

j=0
fjψj;

where fj = hp;ψji. Note that low degree coefficients represent global
shape features and high degree coefficients represent high frequency
local shape features. So by changing the high degree coefficients a bit,
we can simulate new surfaces with similar global features but with
the exact surface correspondence.

For the first simulated surface, we simply used the left amygdala
surface of a randomly selected subject with 1000 basis ψj (Fig. 5-(a)).
Now if we reuse the first five coefficients fj while changing the
remaining coefficients to gj, we can obtain the second simulated
surface given by

q = ∑
4

j=0
fjψj + ∑

999

j=5
gjψj :

This is shown in Fig. 5-(b) where the global shape is similar to (a) but
local shape features differ substantially. The high degree coefficients gj
were obtained from the remaining 45 amygdala surfaces to generate
45 simulated surfaces. This process generates one fixed surface which
serves as a template and 45 matched surfaces with the known
displacement fields. The simulated surface went through the
proposed processing pipeline and the weighted spherical harmonic
representations were computed. The displacement between the
representations is given by the minimum distance (8). Fig. 5-(f)
shows the estimated displacement which shows a smoother pattern
than the ground truth. This is expected since the ground truth is the
distance between noisy surfaces while the estimated displacement is
the distance between smooth functional representations. However,
the pattern of estimation does follow the pattern of the ground truth
sufficiently well. In fact the mean relative error over each surface is
0.116±0.011.

Multivariate linear models

Multivariate linear models (Anderson, 1984; Taylor and Worsley,
2008; Worsley et al., 2004) generalize widely used univariate general
Fig. 5. (a) (b) Simulated surfaces with the known displacement field between them. (c) The d
(f) The estimated displacement from the weighted spherical harmonic representations.
linear models (Worsley et al., 1996) by incorporating vector valued
response and explanatory variables. The weighted spherical harmonic
representation of surface coordinates will be taken as the response
variable P. Consider the following multivariate linear model at each
fixed point (θ,φ)

Pn × 3 = Xn × pBp× 3 + Zn× rGr × 3 + Un× 3∑3 × 3; ð11Þ

where P=(p1′, p2′,…, pn′)′ is the matrix of weighted spherical
harmonic representation, X is the matrix of contrasted explanatory
variables, and B is the matrix of unknown coefficients. Nuisance
covariates are in thematrix Z and the corresponding coefficients are in
the matrix G. The subscripts denote the dimension of matrices. The
components of Gaussian random matrix U are zero mean and unit
variance. ∑ accounts for the covariance structure of coordinates.
Then we are interested in testing the null hypothesis

H0 : B = 0:

For the reduced model corresponding to B=0, the least squares
estimator of G is given by

Ĝ0 = ðZ′ZÞ−1Z′P:

The residual sum of squares of the reduced model is

E0 = ðP−ZĜ0Þ′ðP−ZĜ0Þ

while that of the full model is

E = ðP−XB̂−ZĜÞ′ðP−XB̂−ZĜÞ:

Note that Ĝ is different from Ĝ0 and estimated directly from the full
model. By comparing how large the residual E is against the residual
E0, we can determine the significance of coefficients B. However, since
E and E0 are matrices, we take a function of eigenvalues of EE0−1 as a
statistic. For instance, Lawley–Hotelling trace is given by the sum of
eigenvalues while Roy's maximum root R is the largest eigenvalue. In
the case there is only one eigenvalue, all these multivariate test
statistics simplify to Hotelling's T-square statistic. The Hotelling's T-
square statistic has been widely used in modeling 3D coordinates and
deformations in brain imaging (Cao and Worsley, 1999; Chung et al.,
2001; Gaser et al., 1999; Joshi, 1998; Thompson et al., 1997). The
random field theory for Hotelling's T-square statistic has been
available for a while (Cao and Worsley, 1999). However, the random
isplacement inmm. (d) (e) Correspondingweighted spherical harmonic representation.
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field theory for the Roy's maximum root has not been developed until
recently (Taylor and Worsley, 2008; Worsley et al., 2004).

The inference for Roy'smaximum root is based on the Roy's union–
intersection principle (Roy, 1953), which simplifies the multivariate
problem to a univariate linear model. Let us multiply an arbitrary
constant vector ν3×1 on both sides of (11):

Pν = XBν + ZGν + U∑ν: ð12Þ

Obviously (12) is a usual univariate linear model with a Gaussian
noise. For the univariate testing on Bν=0, the inference is based on
the F-statistic with p and n−p−r degrees of freedom, denoted as Fν.
Then Roy's maximum root statistic can be defined as R=maxνFν. Now
it is obvious that the usual random field theory can be applied in
correcting for multiple comparisons. The only trick is to increase the
search space, in which we take the supreme of the F random field,
from the template surface to a much higher dimension to account for
maximizing over ν as well.

SurfStat

SurfStat package was developed to utilize a model formula and
avoids the explicit use of design matrices and contrasts, which tend to
be a hindrance to most end users not familiar with such concepts.
SurtStat can import MNI (Macdonald et al., 2000), FreeSurfer (surfer.
nmr.mgh.harvard.edu) based cortical mesh formats as well as other
volumetric image data. The model formula approach is implemented
in many statistics packages such as Splus (www.insightful.com) R
(www.r-project.org) and SAS (www.sas.com). These statistics
packages accept a linear model like

P = Group + Age + Brain

as the direct input for linear modeling avoiding the need to explicitly
state the design matrix. P is a n×3 matrix of coordinates of weighted
spherical harmonic representation, Age is the age of subjects, Brain is
the total brain volume of subject and Group is the categorical group
variable (0=control, 1=autism). This type of model formula has yet
to be implemented in widely used SPM or AFNI packages.

Simulation study

We have performed two simulation studies to determine if the
proposed pipeline can detect a small artificial bump. A similar bump test
was done in Yu et al. (2007) for testing the effectiveness of a spherical
wavelet representation. In the first simulation, we have generated the
binary mask of a sphere with radius 10 mm. Then we obtained the
weighted spherical harmonic representation (6) of the sphere with
σ=0.001 and degree k=42. Taking the estimated coefficients flm as the
ground truth, we simulated 20 spheres (group A) by putting noise N(flm,
Fig. 6. Simulation results. (a) A small bumpwith a height of 1.5 mmwas added to a sphere wi
bumped spheres showing no group difference (p=0.35). (c) A small bump with a height
randomly simulated 20 spheres and 20 bumped spheres showing significant group differen
(flm/20)2) in the spherical harmonic coefficients. The standard deviation
is taken as the 20th of the estimated coefficient. We have also given a
bump of height 1.5 mm to the sphere and simulated 20 bumped sphere
(Fig. 6-(a)). Two groups of surfaces are fed into the multivariate linear
model testing for the group effect. The T-statistic map is projected on the
average of 40 simulated surfaces (Fig. 6-(b)). Since the bump is so small
with respect to the noise level, we did not detect any the bump
(p=0.35).

In the second simulation, we increased the height of the bump to
3 mm (Fig. 6-(c)) and repeated the first simulation. The resulting T-
statistic map is projected on the average of 40 simulated surfaces (Fig.
6-(d)). Unlike the first simulation study, we have detected the bump
in yellow and red regions (pb0.0003). These experiments demon-
strate that the proposed framework works for detecting a sufficiently
large shape difference, and further demonstrate that what we
detected in the real data is of a sufficiently large shape difference.
Otherwise, we simply wouldn't detect the signal in the first place.
Application: amygdala shape modeling in autism

Image and data acquisition

High resolution T1-weighted magnetic resonance images (MRI)
were acquiredwith a GE SIGNA 3-Tesla scanner with a quadrature head
coil with 240×240 mm field of view and 124 axial sections. Details on
image acquisition parameters are given in Dalton et al. (2005) and
Nacewicz et al. (2006). T2-weighted images were used to smooth out
inhomogeneities in the inversion recovery-prepared images using FSL
(www.fmrib.ox.ac.uk/fsl). A total of 22 high functioning autistic and 24
normal control MRI were acquired. Subjects were all males aged
between 8 and 25 years. The Autism Diagnostic Interview-Revised
(Lord et al., 1994) was used for diagnoses by trained researchers K.M.
Dalton and B.M. Nacewicz (Dalton et al., 2005).

MRIs were first reoriented to the pathological plane for optimal
comparison with anatomical atlases (Convit et al., 1999). Image
contrast wasmatched by alignment of white and graymatter peaks on
intensity histograms. Manual segmentation was done by a trained
expert B.M. Nacewicz who has been blind to the diagnoses (Nacewicz
et al., 2006). The manual segmentation also involves refinement
through plane-by-plane comparison with ex vivo atlas sections (Mai
et al., 1997). The reliability of the manual segmentation protocol was
validated by two raters on 10 amygdalae resulting in interclass
correlation of 0.95 and the spatial reliability (intersection over union)
average of 0.84. Fig. 1 shows themanual segmentation of an amygdala
in three different cross sections. The amygdala (AMY) was traced in
detail using various adjacent structures such as anterior commissure
(AC), hippocampus (HIPP), inferior horn of lateral ventricle (IH), optic
radiations (OR), optic tract (OT), temporal lobe white matter (TLWM)
and tentorial notch (TN).
th a radius of 10 mm. (b) T-statistic of comparing randomly simulated 20 spheres and 20
of 3 mm was added to a sphere with a radius of 10 mm. (d) T-statistic of comparing
ce (pb0.0003).

http://www.insightful.com
http://www.r-project.org
http://www.sas.com
http://www.fmrib.ox.ac.uk/fsl
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The total brain volume was also computed using an automated
threshold-based connected voxel search method, and manually
edited afterwards to ensure proper removal of CSF, skull, eye regions,
brainstem and cerebellum using in-house software Spamalize (Oakes
et al., 1999; Rusch et al., 2001; Nacewicz et al., 2006). The brain
volumes are 1224±128 and 1230±161 cm3 for autistic and control
subjects. The volume difference is not significant (p=0.89).

A subset of subjects (10 controls and 12 autistic) went through a
face emotion recognition task consisting of showing 40 standardized
pictures of posed facial expressions (8 each of happy, angry and sad,
and 16 neutral) (Dalton et al., 2005). Subjects were required to press a
button distinguishing neutral from emotional faces. The faces were
black and white pictures taken from the Karolinska Directed
Emotional Faces set (Lundqvist et al., 1998). The faces were presented
using E-Prime software (www.pstnet.com) allowing for the measure-
ment of response time for each trial. iView system with a remote eye-
tracking device (SensoMotoric Instruments, www.smivision.com)
was used at the same time to measure gaze fixation duration on
eyes and faces during the task. The system records eye movements as
the gaze position of the pupil over a certain length of time along with
the amount of time spent on any given fixation point. It has been
hypothesized that subjects with autism should exhibit diminished eye
fixation duration relative to face fixation duration. If there is no
confusion, we will simply refer gaze fixation as the ratio of durations
fixed on eyes over faces. Note that this is a unitlessmeasure. Our study
enables us to show that abnormal gaze fixation duration is correlated
with amygdala shape in spatially localized regions.

Amygdala volumetry

We have counted the number of voxels in amygdala segmentation
and computed the volume of both left and right amygdalae. The
volumes for control subjects (n=22) are left 1892±173 mm3, and
right 1883±171 mm3. The volumes for autistic subjects (n=24) are
left 1858±182 mm3, and right 1862±181 mm3. The volume differ-
ence between the groups is not statistically significant based on the
two sample t-test (p=0.52 for left and 0.69 for right). The testing was
done using SurfStat. Previous amygdala volumetry studies in autism
have been inconsistent (Aylward et al., 1999; Haznedar et al., 2000;
Nacewicz et al., 2006; Pierce et al., 2001; Schumann et al., 2004;
Sparks et al., 2002). Aylward et al. (1999) and Sparks et al. (2002)
reported that significantly smaller amygdala volume in the autistic
subjects while Howard et al. (2000) and Sparks et al. (2002) reported
a larger volume. Haznedar et al. (2000) and Nacewicz et al. (2006)
found no volume difference. This inconsistency might be due to the
lack of control for brain size and age in statistical analysis (Schumann
et al. 2004).

Local shape difference

From the amygdala volumetry result, it is still not clear if shape
differencemight be still present within amygdala. It is possible to have
no volume difference while having significant shape difference. So we
have performed multivariate linear modeling on the weighted
spherical harmonic representation. We have tested the effect of
group variable in the model

P = 1 + Group;

which resulted in the threshold of 26.99 at α=0.1. On the other hand
the maximum F-statistic value is 13.55 (Fig. 7-(a)). So we could not
detect any shape difference in the left amygdala. For the right
amygdala, the threshold is 26.64 which is far larger than the
maximum F-statistic value of 12.11. So again there is no statistically
significant shape difference in the right amygdala.
We have also tested the effect of Group variable while accounting
for age and the total brain volume in the SurfStat model form

P = Age + Brain + Group: ð13Þ

The maximum F-statistics are 14.77 (left) and 12.91 (right) while the
threshold corresponding to the α=0.1 is 14.58 (left) and 14.61
(right). Hence, we still did not detect group difference in the right
amygdala (Fig. 7-(d)) while there seems to be a bit weak group
difference in the left amygdala (Fig. 7-(c)). However, they did not pass
the α=0.01 test so our result is inconclusive. The enlarged area in the
figure shows the average surface coordinate difference (autism-
control) in the region of the maximum F-value.

Head circumference and brain enlargement are linked to autism
(Dementieva et al., 2005; Tager-Flusberg and Joseph, 2003) and thus
the covariate Brain in the model (13) may introduce a scaling related
effect that was originally not present in the data. However, we did not
find significant brain volume difference between the groups
(p=0.89). The brain size difference does not significantly compound
our result. From Fig. 8, we can see that the results between with and
without covariating Brain are not much different (they are all
statistically insignificant). Therefore, Brain in the model mostly
accounts for subject-specific brain size difference rather than the
group-specific brain size difference.

Brain and behavior association

Among total 46 subjects, 10 control and 12 autistic subjects went
through face emotion recognition task and gaze fixation (Fixation)
was observed. The gaze fixation are 0.30±0.17 (control) and 0.18±
0.16 (autism). Note that these are unitless measures. Nacewicz et al.
(2006) showed the gaze fixation duration correlate differently with
amygdala volume between the two groups; however, it was not clear
if the association difference is local or diffuse over all amygdala. So we
have tested the significance of the interaction between Group and
Fixation using multivariate linear models. The reduced model is

P = Age + Brain + Group + Fixation

while the full model is

P = Age + Brain + Group + Fixation + GroupTFixation ð14Þ

and we tested for the significance of the interaction Group⁎Fixation.
We have obtained regions of significant interaction in the both left

(pb0.05) and right (pb0.02) lateral nuclei in amygdalae (Fig. 8). The
largest cluster in the right amygdala shows highly significant
interaction (maxF=65.68, p=0.003). The color bar in Fig. 8-(b) has
been thresholded at 40 for better visualization. The scatter plots of the
z-coordinate of the displacement vector field vs. Fixation are shown at
the two most significant clusters in each amygdala. The red lines are
linear regression lines. The significance of interaction implies
difference in regression slopes between groups in a multivariate
fashion. Note that there are three different slopes corresponding to x,
y and z coordinates but due to the space limitation, we did not show
other coordinates.

The total number of unknown parameters in our most complicated
model (14) is 6×3=18 including the constant terms. This is a large
number of parameters to estimate if (14) was a univariate linear
model. However, in our multivariate setting, it is a reasonable number
of parameters since we are also tripling the number of measurements
as well. Note that Roy's maximum root statistic is based on
maximizing an F-statistic with 1 and n−1−5 degrees of freedom.
Since the number of subjects is n=22+24, we have the sufficient
degrees of freedom not to worry about the over-fitting problem.
Unfortunately, practical power approximation for Roy's maximum
root statistic does not exist although that of Lawley–Hotelling trace is

http://www.pstnet.com
http://www.smivision.com


Fig. 7. F-statistic map of shape difference displayed on the average left amygdala (a) and right amygdala (b). We did not detect any significant difference at α=0.01. The left
amygdala (a) is displayed in such a way that, if we fold along the dotted lines and connect the identically numbered lines, we obtain the 3D view of the amygdala. The top middle
rectangle corresponds to the axial view obtained by observing the amygdala from the top of the brain. (c) and (d) show the F-statistic map of shape difference accounting for age and
the total brain volume. The arrows in the enlarged area show the direction of shape difference (autism-control).
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available (Barton and Cramer, 1989; O'Brien and Muller, 1993) so the
discussion of the parameter over-fitting is still an open statistical
problem.

Discussion

Summary

The paper proposes a unified multivariate linear modeling
approach for a collection of binary neuroanatomical objects. The
unified framework is applied to amygdala shape analysis in autism.
The surfaces of the binary objects are flattened using a new technique
based on heat diffusion. The coordinates of amygdala surfaces are
smoothed and normalized using the weighted spherical harmonic
representation. The multivariate linear models accounting for nui-
sance covariates are used using a newly developed SurfStat package.

Since surface data is inherentlymultivariate, traditionally Hotelling's
T-square approach has been used on surface coordinates in a group
comparison that cannot account for nuisance covariates. On the other
hand, theproposedmultivariate linearmodel generalizes theHotelling's
T-square approach so thatwe can constructmore complicated statistical
models while accounting for additional covariates. The model formula
basedmultivariate linearmodeling tool SurfStat has been developed for
this purpose and publicly available. We have applied the proposed
methods to 22 autistic subjects to test if there is a localized shape
differencewithin an amygdala.Wewere able to localize regions,mainly
in the right amygdala, that showsdifferential association of gazefixation
with anatomy between the groups.

Anatomical findings

ManyMRI-basedvolumetric studieshave shown inconsistent results
in determining if there are any abnormal amygdala volume difference
(Aylward et al., 1999; Howard et al., 2000; Haznedar et al., 2000; Pierce
et al., 2001; Schumann et al., 2004; Sparks et al., 2002; Nacewicz et al.,
2006). These studies focus on the total volume difference of amygdala
obtained from MRI and was unable to determine if the volume
difference is locally focused within the subregions of amygdala or
diffuse over all regions.

Although we did not detect a statistically significant shape
difference within amygdala at the 0.01 level, we detected a significant
group difference of shape in relation to the gaze fixation duration

image of Fig.�7


Fig. 8. F-statistic map of interaction between group and gaze fixation. Red regions show significant interaction for (a) left and (b) right amygdalae. For better visualization, the color
bar for the right amygdala (b) has been thresholded at 40 since themaximum F-statistics at the largest cluster is 65.68 (p=0.003). The scatter plots show the particular coordinate of
the displacement vector from the average surface vs. gaze fixation. The red lines are regression lines.
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mostly in the both lateral nuclei (largest clusters in Fig. 8). The lateral
nucleus receives information from the thalamus and cortex, and relay
it to other subregions within the amygdala. Our finding is consistent
with literature that reports that autistic subjects fail to activate the
amygdala normally when processing emotional facial and eye
expressions (Baron-Cohen et al., 1999; Critchley et al., 2000;
Barnea-Goraly et al., 2004). There are two anatomical studies that
additionally support our findings. A post-mortem study shows there is
an increased neuron-packing density of the medial, cortical and
central nuclei, and medial and basal lateral nuclei of the amygdala in

image of Fig.�8
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five autopsy cases (Courchesne, 1997). Further, reduced fractional
anisotropy is found in the temporal lobes approaching the amygdala
bilaterally in a diffusion tensor imaging study (Barnea-Goraly et al.,
2004).

The inconsistent amygdala volumetry results seem to be caused by
the local volume and shape difference of the lateral nuclei that may or
may not contribute to the total volume of amygdala. Further diffusion
tensor imaging studies on the white matter fiber tracts connecting the
lateral nuclei would shed a light on the abnormal nature of lateral
nucleus of the amygdala and its structural connection to other parts of
the brain.

Methodological limitations

There are few methodological limitations in our proposed study.
Surface flattening is based on tracing the streamline of the gradient of
heat equilibrium. The proposed flattening technique is simple enough
to be applied to various binary objects. However, for the proposed
flattening method to work, the binary object has to be close to star-
shape or convex. Theoretically, the solution to the Laplacian equation
is uniquely given and the heat gradient will never cross within the
space between the inner and outer boundaries. However, for more
complex structures like cortical surfaces, the gradient lines that
correspond to neighboring nodes on the surface may fall within one
voxel in the volume, creating overlapping nonsmooth mapping to the
sphere. The overlapping problem can be avoided by subsampling the
voxel grid in a much finer resolution but extending the method to
cortical surfaces is left as a future study.

Although the proposed framework of diffusion-based flattening
and the weighted spherical harmonic representation provide surface
registration beyond the initial affine transformations, the accuracy is
not high compared to other optimization based registration (Heimann
et al., 2005; Meier and Fisher, 2002; Styner et al., 2003). It is likely that
the optimization based methods will outperform our method.
Although the comparative analysis against these methods is the
beyond the scope of the current paper, the simulation study in
“Optimal degree selection” section demonstrates that the proposed
method provides sufficiently good accuracy (relative error of 0.116±
0.011).

Although the proposed weighted spherical harmonic approach
streamlines various image processing tasks such as smoothing,
representation and registration within a unified mathematical repre-
sentation, we did not compare the performance with other available
shape representation techniques such as the medial representation
(Pizer et al., 1999) and wavelets (Yu et al., 2007). This is beyond the
scope of the current paper and requires an additional comparative
study.
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Appendix A

We illustrate the SurfStat package by showing the step-by-step
command lines for multivariate linear models used in the study. The
detailed description of the SurfStat package can be found in http://
www.math.mcgill.ca/keith/surfstat. The SurfStat is a general purpose
surface analysis package and it requires additional codes for amygdala
specific analysis. The extension to amygdala shape modeling can be
found in http://www.stat.wisc.edu/~mchung/research/amygdala.

Given an amygdala mesh surf, which is, for instance, given as a
structured array of the form

surf =
vertices : 1270x3 double½ �

faces : 2536x3 double½ �

the amygdala flattening algorithm will generate the corresponding
unit sphere mesh sphere that has identical topology as surf. The
weighted spherical harmonic representation P with degree k=42 and
the bandwidth σ=0.001 is computed from

N P; coeff½ � = SPHARMsmooth surf ; sphere;42;0:001ð Þ;

The coordinates of the weighted spherical harmonic representa-
tion have been read into an array of size 46 (subjects)×2562
(vertices)×3 (coordinates) P. Brain size (brain), age (age), group
variable (group) are read into 46 (subjects)×1 vectors. The group
categorical variable consists of strings ‘control’ and ‘autism’. We now
convert these to terms that can be combined into a multivariate linear
model as follows:

NBrain = term brainð Þ;
NAge = term ageð Þ;
NGroup = term groupð Þ;
NGroup
autism control
−−−−−−−−−−
0
0
1
1
:
:
:

1
1
0
0
:
:
:

To test the effect of group, the linear model of the form P=1+
Group is fitted by

NE = SurfStatLinMod P;1 + Group;Avgð Þ;

where Avg is the average surface obtained from the weighted
spherical harmonic representation.

We specify a group contrast and calculate the T-statistic:

Ncontrast = Group:autism − Group:control
contrast =
−1
−1
1
1
1
:
:
:

LM = SurfStatT E; contrastð Þ;

LM.t gives the vector of 2562 T-statistic values for all mesh vertices.
Instead of using the contrast and T-statistic, we can test the effect of
group variable using the F-statistic as well:

NE0 = SurfStatLinMod P;1ð Þ;
NLM = SurfStatF E; E0ð Þ;

E0 contains the information about the sum of squared residual of the
reduced model P=1 in E0.SSE while E contains that of the full model
P=1+Group. Based on the ratio of the sum of squared residuals,
SurfStatF computes the F-statistics. To display the F-statistic value on

http://www.math.mcgill.ca/keith/surfstat
http://www.math.mcgill.ca/keith/surfstat
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top of the average surface, we use FigureOrigami(Avg, LM.t) which
produces Fig. 7.

We can determine the random field based thresholding
corresponding to α=0.01 level:

Nresels = SurfStatLinModðLMÞ;
Nstat thresholdðresels; lengthðLM:tÞ;1; LM:df ;0:01; ½ �; ½ �; ½ �; LM:kÞ
peak threshold =

26:9918

resels computes the resels of the random field and peak_threshold is
the threshold corresponding to 0.1 level.

We can construct a more complicated model that includes the
brain size and age as covariates:

NE0 = SurfStatLinMod P;Age + Brainð Þ;
NE = SurfStatLinMod P;Age + Brain + Group;Avgð Þ;
NLM = SurfStatF E;E0ð Þ;

LM.t contains the F-statistic of the significance of group variable while
accounting for age and brain size. We can also test for interaction
between gaze fixation Fixation and group variable:

NE0 = SurfStatLinMod P;Age + Brai + Group + Fixationð Þ;
NE = SurfStatLinMod P;Age+Brain+Group+Fixation+Group*Fixation;Avgð Þ;
NLM = SurfStatF E;E0ð Þ;
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