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ABSTRACT

DTI offers a unique opportunity to characterize the structural connectivity of the human brain non-invasively by
tracing white matter fiber tracts. Whole brain tractography studies routinely generate up to half million tracts
per brain, which serves as edges in an extremely large 3D graph with up to half million edges. Currently there
is no agreed-upon method for constructing the brain structural network graphs out of large number of white
matter tracts. In this paper, we present a scalable iterative framework called the ǫ-neighbor method for building
a network graph and apply it to testing abnormal connectivity in autism.

1. INTRODUCTION

Structural brain connectivity has been usually modeled as a network graph using white matter fiber tracts in
DTI. The whole gray matter has been traditionally parcellated into n disjoint regions. White matter fibers
provide information of how one gray matter region is connected to another via a n × n connectivity matrix.
The connectivity matrix is then thresholded to produce a binarized adjacency matrix, which is further used in
constructing a graph with n nodes6, 8, 9, 18 However, there is no gold standard for gray matter parcellation which
makes the identification of node depend on the choice of parcellation. Depending on the scale of parcellation,
the parameters of graph, which characterize graph topology, vary considerably up to 95%.6, 18 Another problem
of the parcellation is the arbitrariness of thresholding connectivity matrix. The topological parameters such as
sparsity and clustering coefficients change substantially depending on the level of threshold.8

The problems of parcellation and the subsequent arbitrary thresholding can be avoided if we do not use any
parcellation in building the network. So the question is whether if it is possible to construct a network graph
without the usual parcellation scheme. This paper presents a novel network graph modeling technique called
the ǫ-neighbor construction that avoids parcellation and the subsequent thresholding of the connectivity matrix.
Instead of using the pre-specified parcellation, we propose to use the two end points of fibers as network nodes
while the fibers themselves serve as the edges connecting nodes.

The ǫ-neighbor construction is motivated by the Rips complex of point cloud data,7 which has been used to
characterize the topology of the point cloud data. The Rips complex is a graph constructed by connecting two
data points if they are within specific distance ǫ. The problem of the Rips complex is that given n data points,
it exactly produces a graph with n nodes so the resulting graph becomes very complicated when n becomes
large. Unlike the Rips complex, the ǫ-neighbor method does not use all data points in constructing a graph so
it significantly reduces the complexity of data. Further, while the point cloud data does not have any hidden
topological constraint, the two end points of white matter fibers are connected so we are actually dealing with
paired point cloud data. So the ǫ-neighbor construction is different from building the Rips complex and offers
substantial computational advantage.
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Figure 1. White matter fiber bundles obtained using TEND algorithm.13 The end points of tracts are identified and
colored as red. The surface is the isosurface of the template FA map so most of tracts are expected to end outside of the
surface. The ǫ-neighbor method uses the proximity of the end points in constructing the network graph.

2. DTI ACQUISITION AND PREPROCESSING

The DTI data from 31 subjects were used in this study: (i) 17 subjects with high functioning autism spectrum
disorders (ii) 14 control subjects matched for age, handedness, IQ, and head size. The Autism Diagnostic
Interview-Revised15 was used for diagnoses by trained researchers.3 Diffusion weighted images were acquired in
12 non-collinear diffusion encoding directions with diffusion weighting factor of b=1000 s/mm2 in addition to a
single (b=0) reference image. Eddy current related distortion and head motion of each data set were corrected
using AIR17 and distortions from field inhomogeneities were corrected using custom software algorithms based
on.11 The six tensor elements were calculated using non-linear fitting methods1

We have used nonlinear tensor image registration algorithm given in19 for spatial normalization. This ap-
proach combines full tensor co-registration and high-dimensional diffeomorphic spatial normalization. The regis-
tration is based on an iterative strategy,12, 19 where the initial template was computed as the average of original
DTI. After DTI were alined to a template space, we perform streamline based tractography using the TENsor
Deflection (TEND) algorithm,2, 13 Figure 1 shows the subsampled tractography result for a single subject.

3. ǫ-NEIGHBOR CONSTRUCTION

Suppose a whole brain tractography result yields k number of tracts. The i-th tract consists of two end points ei1

and ei2. In constructing the network graph, we only need to worry about the two end points of of a tract since
all other points along the tract are connected to these two end points. The end points of tracts are considered
as nodes of a graph while the tracts are considered as edges of the graph. The TEND algorithm can generate
upward of half million tracts but it is not practical to construct a massive graph with half million edges. So we
have developed a scalable iterative network graph construction technique called the ǫ-neighbor construction.

Let Gk = {Vk, Ek} be a 3D graph with vertex set Vk and edge set Ek at the k-th iteration. We define the
distance d(p,Gk) of a point p to the graph Gk to be the shortest Euclidean distance between p and all points in
Vk

d(p,Gk) = min
q∈Vk

‖p − q‖.

We say point p is the ǫ-neighbor of graph Gk if d(p,Gk) ≤ ǫ. The threshold ǫ will be called the resolution of

graph and it determines the scale at which we construct the graph. Larger the value of ǫ, cruder the constructed
graph becomes with less number of nodes. Consider a tract with two end points e11 and e12. The algorithm then
starts with the graph G1 = {V1, E1} with V1 = {e11, e12}, E1 = {e11e12}. For the edge set E1, we simply denote
the edge connecting two nodes e11 and e12 as e11e12. In the next iteration, we add the second tract with two
end points e21, e22 to the existing graph G1. There are four possibilities:



Figure 2. Example of constructing 3D network graph by adding one tract at a time to the existing graph. There are four
possible cases of connecting the two end points (indexed 5 and 6) of the tract to the existing graph with nodes {1, 2, 3, 4}.
Depending on the proximity of {5, 6} to nodes {1, 2, 3, 4}, we either do nothing, or add connect one node (either 5 or 6) or
add two nodes (both 5 and 6) to the graph.

(1) e21 and e22 are all ǫ-neighbors of G1. Since the end points e21 and e22 are close to the already existing
graph G1, we do not change the vertex set. i.e. V2 = V1. Now check if the edge e21e22 is in the edge set
E1 and add them if it is not found in the edge set. In this case we have E2 = E1 ∪ {e21e22}.

(2) Only e21 is an ǫ-neighbor. We only to add e22 to V1 and let V2 = V1 ∪ {e21}, E2 = E1 ∪ {e21e22}.

(3) Only e22 is an ǫ-neighbor. We add e21 to V1 and let V2 = V1 ∪ {e22}, E2 = E1 ∪ {e21e22}.

(4) e21 and e22 are not ǫ-neighbors. We add the end points to the vertex set and add the edge to the edge
set. In this case, e21e22 forms a disjoint edge and we have V2 = V1 ∪ {e21, e22}, E2 = E1 ∪ {e21e22}.

The procedure is iteratively performed to every tracts until we exhaust all the tracts. The MATLAB code for
performing ǫ-neighbor construction is given in brainimaging.waisman.wisc.edu/∼chung/graph.

4. CONNECTED COMPONENTS

The constructed 3D networks graph can be uniquely parameterized by transforming the graph into adjacent
matrices. The adjacency matrix A = (aij) of a graph is constructed on the fly at each iteration by checking
if we are adding a new edge to the existing edge set. If nodes i and j are connected, we let aij = 1 and
aij = 0 otherwise. The adjacency matrix is symmetric. The adjacency matrix contains sufficient information to
reconstruct the graph. For the subsequent analysis on connected components, 6mm-neighbor graph was used.
This particular resolution is chosen since it is the largest integer resolution that produces the node numbers
below 1000.

As an illustration of ǫ-neighbor method, we characterize the abnormal brain network in autism using the
connected components of a graph. The number of connected components of a graph is a topological invariant
that measures the number of structurally independent or disjoint subnetworks. It can be interpreted as the
zeroth Betti number β0 in algebraic topology.5 The connected components can be identified using the Dulmage-
Mendelsohn decomposition,16 which has been widely used for decomposing sparse matrices into block triangular
forms in speeding up matrix operations . Figure 3 shows connected components in 4 brain networks. All nodes in
the same connected component are colored identically. Most of nodes belong to the largest connected component
indicating the brain network is highly connected. There are only 4% of nodes that are not connected to the
largest connected component while the remaining 96% are all connected in average. We have plotted those 4%
of nodes that are not part of the largest connected component for all subjects (Figure 4). Figure 4 shows the
clustering pattern between the groups differs. Although these nodes are scattered in most parts of brain, high
concentration of clustering occurs on the right parietal lobe for the control subjects. We tested if the size of the
largest connected components differ between the groups. At 6mm resolution, control subjects have 642.86±68.60

nodes in the largest component while autistic subjects have 607.12 ± 39.39 nodes. Note that we do not need to

http://brainimaging.waisman.wisc.edu/~chung/graph


Figure 3. All nodes in the same connected component are colored identically. DTI-based brain network is characterized
by one dominant component that connects almost all regions of brain.

Figure 4. Superimposition of all 4% of nodes that do not belong the largest cluster for all 30 subjects. Nodes from the
control are colored as blue circle while nodes from the autistic subjects are colored as solid red circle. The control subjects
show high clustering on the right parietal lobe.

account for brain size difference since networks constructed in the normalized space. The cluster size difference
is significant (p-value = 0.079). We expect a larger sample size would increase the statistical significance.

5. ǫ-FILTRATION

The analysis in the previous section characterizes networks at the last iteration of the ǫ-neighbor construction. In
this section, we present the idea of quantifying the network over all iterations via ǫ-filtration, which is motivated
by the Rips filtration in persistent homology.

For each given ǫ, we have Rips complex Gǫ. By increasing the ǫ value, we have the Rips filtration, a sequence
of larger Rips complexes:

Gǫ1
⊂ Gǫ2

⊂ Gǫ3
⊂ · · ·

for ǫ1 ≤ ǫ2 ≤ ǫ3 ≤ · · ·.4, 7, 10 During the Rips filtration, the topological features such as the Betti numbers
change. The topological change over the filtration can be visualized by using the barcode. In the barcode, we
plot the zeroth Betti number β0 over the changing ǫ value. The resulting bar code is a decreasing function
of ǫ and its decreasing pattern can be used to discriminate groups.14 Although the Rips filtration completely
characterizes the topological change of a network, it is difficult to biologically interpret what it really means to
have changing network over scale ǫ.



Figure 5. The size of largest connected component (vertical) over the number of iterations in the ǫ-filtration showing
group difference (control = blue, autism= red). At about 10000 iterations, we have 642.86 ± 68.60 and 607.12 ± 39.39

nodes in the control and autistic subjects respectively. Sudden jumps in the plot is caused by the introduction of hub
nodes that connect all the disjointed components.

Similar to the Rips filtration, the ǫ-filtration is a sequence of networks obtained from the ǫ-neighbor method.
At the k-th iteration, we have a network Gk. As the number of iteration increases, we are generating a sequence
of larger networks

G1 ⊂ G2 ⊂ G3 ⊂ · · · ,

which we will call the ǫ-filtration. On the other hand, the ǫ-filtration is much easier to interpret since it shows
the actual process of network construction.

We computed the size of the largest component in each iteration in the ǫ-filtration (Figure 5). It is always an
increasing function and at about 6000 iterations, we begin to see the significant group difference in the increasing
pattern. For instance, at 6000, 7000 and 8000 iterations, we have the p-values of 0.058, 0.038, 0.04 respectively.
The control network (blue) is integrating into the largest component much faster than the autistic network
(red). The growth of the size of the largest component is higher in controls. A schematic understanding of the
underlying process is given in Figure 6. The control subjects are expected to have hub nodes that speed up the
integration of disjoint components into the largest component.

6. CONCLUSION

We have presented a novel data-driven connectivity graph construction method for DTI. The proposed ǫ-neighbor
network construction can avoid the problem of parcellation and arbitrary connectivity matrix thresholding. The
method is applied in showing abnormal connectivity pattern in autistic subjects in the ǫ-filtration. The autistic
network shows slower integration rate than the control network in the filtration demonstrating reduced network
integration capability and efficiency.
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[10] D. Horak, S. Maletić, and M. Rajković. Persistent homology of complex networks. Journal of Statistical Mechanics:
Theory and Experiment, 2009:P03034, 2009.

[11] P. Jezzard and R.S. Balaban. Correction for geometric distortion in echo planar images from b0 field variations.
Magn. Reson. Med., 34:65–73, 2007.

[12] S. Joshi, B. Davis, M. Jomier, and G. Gerig. Unbiased diffeomorphic atlas construction for computational anatomy.
NeuroImage, 23:151–160, 2004.

[13] M. Lazar, D.M. Weinstein, J.S. Tsuruda, K.M. Hasan, K. Arfanakis, M.E. Meyerand, B. Badie, H. Rowley,
V. Haughton, A. Field, B. Witwer, and A.L. Alexander. White matter tractography using tensor deflection. Human
Brain Mapping, 18:306–321, 2003.

[14] H. Lee, M.K. Chung, H. Kang, B.-N. Kim, and Lee D.S. Discriminative persistent homology of brain networks. In
IEEE International Symposium on Biomedical Imaging (ISBI), 2011.

[15] C. Lord, M. Rutter, and A.L. Couteur. Autism diagnostic interviewrevised: a revised version of a diagnostic interview
for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord., pages 659–685,
1994.

[16] A. Pothen and C.J. Fan. Computing the block triangular form of a sparse matrix. ACM Transactions on Mathematical
Software (TOMS), 16:324, 1990.

[17] R.P. Woods, S.T. Grafton, C.J. Holmes, S.R. Cherry, and J.C. Mazziotta. Automated image registration: I. General
methods and intrasubject, intramodality validation. Journal of Computer Assisted Tomography, 22:139–152, 1998.

[18] A. Zalesky, A. Fornito, I.H. Harding, L. Cocchi, M. Y”ucel, C. Pantelis, and E.T. Bullmore. Whole-brain anatomical
networks: Does the choice of nodes matter? Neuroimage, 50:970–983, 2010.

[19] H. Zhang, B.B. Avants, P.A. Yushkevich, J.H. Woo, S. Wang, L.F. McCluskey, L.B. Elman, E.R. Melhem, and
J.C. Gee. High-dimensional spatial normalization of diffusion tensor images improves the detection of white matter
differences: An example study using amyotrophic lateral sclerosis. IEEE Transactions on Medical Imaging, 26:1585–
1597, 2007.


	Introduction
	DTI Acquisition and Preprocessing
	-Neighbor Construction
	Connected Components
	-filtration
	Conclusion



