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ABSTRACT
The sparse regression framework has been widely used in medical image processing and analysis. However, it
has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace-
Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Tradition-
ally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier
descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher
frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute
significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out
only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation
fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error
of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then
applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population.
The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.

1. INTRODUCTION
There have been many basis function based shape representations such as Fourier descriptors,20 spherical har-
monic representation,4,18,21 wavelets,2,8, 9 wavelets13,25 and Laplace-Beltrami eigenfunction methods.11,14,16,17
These methods parameterize the coordinates of an object as a series expansion involving the basis functions.
These basis representations do not selectively pick basis in reconstructing shapes. Usually the first few terms
are used in the expansion and higher frequency terms are truncated. However, some lower frequency terms
may not necessarily contribute significantly in reconstructing the shape while high frequency terms are actually
important. Motivated by this simple idea, we developed a new sparse shape modeling framework that selectively
filters out basis functions.

In order to show the improved performance of the proposed shape representation, we introduce the statistical
power analysis framework, where the minimum sample size requirement for discriminating between the groups is
used as a criterion for the performance. Since the statistical power has to be computed along every point in the
anatomical structure, it introduces a multiple comparisons problem.6 Currently there is no anatomical study
that shows how to perform the power analysis under multiple comparisons. We show the proposed sparse shape
model can improve the power by 9.1%, which is considered as significant.

The proposed method is subsequently applied in characterizing aging in the hippocampus and amygdala.
The main contributions of this paper are the introductions of (1) the new sparse shape model using the intrinsic
Laplace-Beltrami eigenfunctions and (2) the new power analysis framework under multiple comparisons.
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Figure 1: First six Laplace-Beltrami eigenfunctions on amygdala and hippocampus surfaces.

2. SPARSE SHAPE REPRESENTATION
Consider a real-valued functional measurement Y (p) on a manifold M ⊂ R3. Y can be vectors such as surface
displacement or coordinates or scalars such as length of displacement. Then we assume the following additive
model:

Y (p) = θ(p) + �(p), (1)

where θ(p) is the unknown mean signal to be estimated and �(p) is a zero-mean Gaussian random field. For the
Laplace-Beltrami (LB) operator ∆ of M, the natural intrinsic basis functions are obtained by solving

∆ψj = λjψj , (2)

where the eigenfunctions ψj corresponding to the eigenvalues λj form an orthonormal basis in L
2(M), the space

of square integrable functions on M. We may order eigenvalues as 0 = λ0 ≤ λ1 ≤ λ2 · · · and corresponding
eigenfunctions as ψ0, ψ1, ψ2, · · · . Since LB-operator on an arbitrary curved surface is unknown, the eigenfunctions
are numerically estimated by discretizing the LB-operator using the Cotan discretization.3,5, 14 The first six LB-
eigenfunctions are shown in Figure 1.

Using the eigenfunctions ψj , we can parametrically estimate the unknown mean signal θ(p) as the Fourier
expansion:

�θ(p) =
k�

i=0

βjψj ,

where βj are the Fourier coefficients to be estimated. The Fourier coefficients can be obtained by the usual
least squares estimation (LSE) by solving Y = ψβ, where Y = (Y (p1), · · · , Y (pn))�, β = (β1, · · · , βk)� and
ψ = (ψi(pj)) is an n×k matrix of eigenfunctions evaluated at mesh vertices. The Fourier coefficients β are then
estimated as

�β = (ψ�ψ)−1ψ�Y. (3)

In most basis representation techniques using LB-eigenfunctions or spherical harmonics (SPHARM), only
the first few terms are used in the expansion and higher frequency terms are simply thrown away to reduce
the high frequency noise.14,21 For example, between 12 and 15 degree SPHARM expansions have been used
for hippocampus and caudate surfaces.21 However, some lower frequency terms may not necessarily contribute
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Figure 2: Sparse shape representations for different sparse parameter λ. As λ increases, the shape itself becomes
sparse. For sufficiently large λ, it represents the skeleton of the underlying shape. λ = 1 is used in the study.

significantly in reconstructing the surfaces. Motivated by this idea, we propose to sparsely filter out insignifi-
cant eigenfunctions by imposing the additional L1-norm penalty to sparsely filter out insignificant low degree
coefficients. Following,7 L1-estimation is given by

�β = min
β

||Y −ψβ||22 + λ||β||1, (4)

where the parameter λ > 0 controls the amount of sparsity. Figure 2 shows an example of the shape representation
where surface coordinates are sparsely filtered out.

3. STATISTICAL POWER UNDER MULTIPLE COMPARISONS
The effect of the sparse shape model is quantified using the power analysis. Power analysis is rarely done in
anatomical studies and usually does not account for interdependency of voxels.6,10 In this paper, we show how to
perform the power analysis under spatial dependency of voxels, a multiple comparisons problem. We demonstrate
that the proposed model can boost the statistical power.

The usual hypotheses for testing the significance of the signal in the model (1) under multiple comparisons
are given by

H0 : θ(p) = 0 for all p ∈M vs. H1 : θ(p) > 0 for some p ∈M.

Given a procedure for testing for the significance of θ, the type-I error (denoted as α) is the probability of
rejecting H0 when H0 is true, i.e. α = P (reject H0 | H0 true). On the other hand, the type-II error (denoted as
β) is the probability of not rejecting H0 when H0 is false, i.e. β = P (not reject H0 | H0 false). The power P of
the procedure is defined as 1− β and written as

P = P (reject H0 | H1 true).

The power is the probability of rejecting the null hypothesis that there is no signal when there is an actual
signal. When the test procedure has the power of 0.9, it implies that the method can correctly detect signal 90%
of time when there is a real signal. Statistical power is somewhat similar to classification accuracy in machine
learning. The power is usually given in as a function of sample size. With an infinite number of samples, we can
then achieve 100% power with any method. The statistical power is a good summary measure for numerically
evaluating the performance of a method although it is rarely used in this fashion due to the difficulty of computing
it under multiple comparisons.
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Figure 3: Under H1, there exist nonempty rejection regions M1 where the signal is significant, i.e. θ > 0. The
power is computed with respect to these rejection regions.

3.1 Power under Multiple Comparisons
To compute the power over manifold M, it is necessary to determine the type-I error first. Given a test random
field T (p), we reject H0 if T (p) > h for some thresholding h for all p ∈ M. This is equivalent to the event
supp∈M T (p) > h.6 Hence, the type-I error over M is given by

α = P

�
sup
p∈M

T (p) > h

�
.

The rejection region is taken as the subset of M (Figure 3):

M1 = {x ∈M|T (x) > h}.

Then the over all statistical power P is computed as

P = P

�
sup
t∈M

T (t) > h

���H1

�
. (5)

4. EXPERIMENTAL RESULTS
As part of an ongoing study on midlife in the US (MIDUS II; http://midus.wisc.edu),23 we have high-resolution
T1-weighted inverse recovery fast gradient echo MRI, collected in 124 contiguous 1.2-mm axial slices (TE=1.8
ms; TR=8.9 ms; flip angle = 10◦; FOV = 240 mm; 256 × 256 data acquisition matrix) of 69 middle-age and
elderly adults ranging between 38 to 79 years (mean age = 58.0 ± 11.4 years). There are 23 men and 46 women
in the study. Trained raters manually segmented the left and right amygdala and hippocampus separately. Brain
tissues in the MRI scans were automatically segmented using Brain Extraction Tool (BET).19 Then we performed
a nonlinear image registration using the diffeomorphic shape and intensity averaging technique with the cross-
correlation as the similarity metric through Advanced Normalization Tools (ANTS).1 An initial template was
constructed from a random subsample of 10 subjects. Using the deformation field obtained from warping the
individual image to the template, we aligned the amygdala and hippocampus binary masks to the template
space. The normalized masks were then averaged to produce the final study template. The isosurface of the
template was extracted using the marching cube algorithm.12 The displacement vector field is defined on each
voxel, while the vertices of mesh are located within a voxel. Thus we linearly interpolated the vector field on
mesh vertices from the voxels.
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Figure 4: Age effect on hippocampi. The T-statistic and the corrected p-value are shown. There is no age effect
on the amygdalae. Rejection regions M1 corresponding to 0.05 level are also shown.

4.1 Sparse Shape Analysis
The length of displacement vector field along the template surface was estimated using the sparse framework
with λ = 1 and k = 1000 eigenfunctions. This is a sufficient number of basis functions to represent amygdala
and hippocampus surfaces . Only 5% of the largest coefficients among 1000 estimated coefficients are used in
the sparse representation, which has an effect of smoothing out noisy displacements. The age effect on the
displacement length is regressed over the total brain volume and other variables:

length = β1 + β2 · brain + β3 · age + β4 · gender + �, (6)

where � is a zero mean Gaussian field. The age effect was determined by performing a T-test on the parameter
β3. The results are displayed in Figure 4. We found the regions of highly significant effects of age on the
posterior part of the hippocampi (corrected p-value < 0.05). Particularly on the tail regions of the left and right
hippocampi, we found highly localized age effects which are consistent with other shape modeling studies on the
hippocampus.15,24 We did not find any age effects on the amygdala surface.

4.2 Power Computation by Resampling
The direct power computation using the random field theory requires estimating the smoothness of signal,
which is not trivial.6 Instead we propose a resampling technique. First, we need to identify the threshold h

corresponding to a specific α-level. For T-random field T (x), the threshold h corresponding to the type-I error
at 0.05 is given by

P

�
sup
x∈M

T (x) > h

�
= 0.05,

where M is the surface of interest. For the power computation, it is needed to identify the rejection region M1

as well. The rejection region is taken as the subset of M:

M1 = {x ∈M|T (x) > h}.

Then the over all statistical power P is computed as

P = P

�
sup

x∈M1

T (x) > h

�
,
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Figure 5: Statistical power over sample size computed under multiple comparisons. The sparse regression
increases statistical power.

where the supremum is restricted to the rejection region M1 (Figure 4). The thresholds h corresponding to
α = 0.05 for the left and right hippocampi are 3.71 and 3.77. The resampling based power computation is
performed as follows.

(1) Set the counter c = 0.

(2) Randomly pick n subjects out of total 69 subjects.

(3) For n subjects, perform GLM (6) and obtain the t-statistic values in M1.

(4) If any t-static value is larger than h, increase the counter c← c + 1.

(5) Repeat the above procedures m = 5000 times.

The frequency of rejection c/m approximates the power P as m becomes large for the given sample size n. 5000
resamples are sufficient to guarantee the robust estimation of the power. The resulting power is plotted as a
function of sample size (Figure 5). In the right hippocampus, we have an increase of 0.091 in statistical power
at the sample size 50. This implies that the proposed sparse model can increase the accuracy of detection by up
to 9.1% in smaller sample studies.

5. CONCLUSION
We have presented a new sparse shape modeling framework using the Laplace-Beltrami eigenfunctions. The
proposed framework is demonstrated to increase the statistical power by up to 9.1%. The significant struc-
tural changes found on hippocampi due to normal aging is consistent with the previous hippocampus shape
analyses.15,22
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