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We present a novel kernel regression framework for smoothing scalar surface data using the
Laplace–Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions,
we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with
the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat
diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is
validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to
characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0
and 20 by regressing the length of displacement vectors with respect to a surface template.
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1. Introduction

In medical imaging, anatomical surfaces extracted from MRI
and CT are often represented as triangular meshes. The image seg-
mentation and surface extraction processes themselves are likely
to introduce noise to the mesh coordinates. It is therefore impera-
tive to reduce the mesh noise while preserving the geometric
details of the anatomical structures for various applications.

Diffusion equations have been widely used in image processing
as a form of noise reduction since 1990 (Perona and Malik, 1990).
Numerous techniques have been developed for surface fairing and
mesh regularization (Sochen et al., 1998; Malladi and Ravve, 2002;
Tang et al., 1999; Taubin, 2000) and surface data smoothing
(Andrade et al., 2001; Chung et al., 2001, 2005; Chung and
Taylor, 2004; Cachia et al., 2003a,b; Joshi et al., 2009). Isotropic
heat diffusion on surfaces has been introduced in brain imaging
for subsequent statistical analysis involving the random field the-
ory (RFT) that assumes an isotropic covariance function as a noise
model (Andrade et al., 2001; Chung and Taylor, 2004; Cachia et al.,
2003a,b). Since then, isotropic diffusion has been the standard
smoothing technique.

Iterated kernel smoothing has been another widely used
method in approximately solving diffusion equations on surfaces
(Chung et al., 2005; Han et al., 2006). It is often used in smoothing
anatomical surface data including cortical curvatures (Luders et al.,
2006b; Gaser et al., 2006), cortical thickness maps (Luders et al.,
2006a; Bernal-Rusiel et al., 2008), hippocampus surfaces (Shen
et al., 2006; Zhu et al., 2007) and magnetoencephalography
(MEG) (Han et al., 2007) and functional-MRI (Hagler et al., 2006;
Jo et al., 2007) data on the brain surface. Due to its simplicity, it
is the most widely used form of surface data smoothing in brain
imaging. In iterated kernel smoothing, kernel weights are spatially
adapted to follow the shape of the heat kernel in a discrete fashion
along a manifold. In the tangent space of the manifold, the heat
kernel with a small bandwidth can be approximated linearly using
the Gaussian kernel. The heat kernel with a large bandwidth is
then constructed by iteratively applying the Gaussian kernel with
the small bandwidth. However, this process compounds the lin-
earization error at each iteration.

We propose a new kernel regression framework that constructs
the heat kernel analytically using the eigenfunctions of the
Laplace–Beltrami (LB) operator, avoiding the need for the linear
approximation used by Chung et al. (2005) and Han et al. (2006).
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Although a few studies have introduced the heat kernel in
computer vision and machine learning, they mainly used the heat
kernels to compute shape descriptors or to define a multi-scale
metric (Belkin et al., 2006; Sun et al., 2009; Bronstein and
Kokkinos, 2010; de Goes et al., 2008). These studies did not use
the heat kernels in regressing functional data on manifolds. This
is the first study to use the heat kernel in the form of regression
for the subsequent statistical analysis. There have been significant
developments in kernel methods in the machine learning
community (Schölkopf and Smola, 2002; Nilsson et al., 2007;
Shawe-Taylor and Cristianini, 2004; Steinke and Hein, 2008; Yger
and Rakotomamonjy, 2011). However, to the best of our knowl-
edge, the heat kernel has never been used in such frameworks.
Most kernel methods in machine learning deal with the linear
combination of kernels as a solution to penalized regressions. On
the other hand, our kernel regression framework does not have a
penalized cost function.

Wavelets have recently been popularized for surface and
graph data. For instance, spherical wavelets were used on brain
surface data already mapped onto a sphere (Nain et al., 2007;
Bernal-Rusiel et al., 2008). Since the wavelet basis has local
supports in both space and scale, the wavelet coefficients
provide shape features that describe local shape variation at a
variety of scales and spatial locations. However, spherical wavelets
require a smooth mapping from the surface to a unit sphere, thus
introducing a serious metric distortion that compounds subse-
quent statistical parametric maps (SPM). Furthermore, such basis
functions are only orthonormal for data defined on the sphere
and result in a less parsimonious representation for data defined
on other surfaces compared to the intrinsic LB-eigenfunction
expansion (Seo and Chung, 2011). To remedy the limitations of
spherical wavelets, the diffusion wavelet transform on graph data
structures has been proposed (Antoine et al., 2010; Coifman and
Maggioni, 2006; Hammond et al., 2011; Kim et al., 2012).

The primary methodological contribution of this study is the
establishment of a unified regression framework that combines
the diffusion-, kernel- and wavelet-based methods in a coherent
mathematical fashion for scalar data defined on manifolds. We
unify the apparent differences between the methods while provid-
ing detailed theoretical justifications. This paper extends the work
by Kim et al. (2011), which introduced heat kernel smoothing to
smooth out surface noise in the hippocampus and amygdala.
Although the idea of diffusion wavelet transform for surface
meshes was explored by Kim et al. (2012), the relationship
between the wavelet transform and the proposed kernel regression
was not investigated. For the first time, the mathematical equiva-
lence between the two constructs is explained.

The proposed kernel regression framework was subsequently
applied in characterizing the growth pattern of the mandible sur-
faces obtained in CT and identifying the regions of the mandible
that show the most significant localized growth. The length of
the displacement vector field was regressed over the mandible sur-
face to increase the signal-to-noise ratio (SNR) and hence statistical
sensitivity. To our knowledge, this is the first growth modeling
of the mandible surface in a continuous fashion without using ana-
tomic landmarks.

2. Methods

2.1. Isotropic diffusion on manifolds

Consider a functional measurement YðpÞ observed at each point
p on a compact manifoldM� R3. We assume the following linear
model on Y:

YðpÞ ¼ hðpÞ þ �ðpÞ; ð1Þ
where hðpÞ is the unknown mean signal to be estimated and �ðpÞ is a
zero-mean Gaussian random field. We may assume further
Y 2 L2ðMÞ, the space of square integrable functions on M with
the inner product:

hf ; gi ¼
Z
M

f ðpÞgðpÞ dlðpÞ; ð2Þ

where l is the Lebesgue measure such that lðMÞ is the total area of
M.

Imaging data such as electroencephalography (EEG), magne-
toencephalography (MEG) (Han et al., 2007) and functional-MRI
(Hagler et al., 2006; Jo et al., 2007), and anatomical data such as
cortical curvatures (Luders et al., 2006b; Gaser et al., 2006), cortical
thickness (Luders et al., 2006a; Bernal-Rusiel et al., 2008) and
surface coordinates (Chung et al., 2005) can be considered as
functional measurements. Functional measurements are expected
to be noisy and require filtering to boost signal.

Surface measurements have often been filtered using the isotro-
pic diffusion equation of the form (Andrade et al., 2001; Chung
et al., 2001; Cachia et al., 2003a; Rosenberg, 1997)

@f
@r
¼ Df ; f ðp;r ¼ 0Þ ¼ YðpÞ; ð3Þ

where D is the Laplace–Beltrami operator defined on manifold M.
The diffusion time r controls the amount of smoothing. It can be
shown that the unique solution of (3) is given by a kernel con-
volution as follows. A Green’s function or a fundamental solution
of the Cauchy problem (3) is given by the solution of the following
equation:

@f
@r
¼ Df ; f ðp;r ¼ 0Þ ¼ dðpÞ; ð4Þ

where d is the Dirac delta function. The heat kernel Kr is a Green’s
function of (4) (Evans, 1998), i.e.,

@Kr

@r
¼ DKr; Krðp;r ¼ 0Þ ¼ dðpÞ:

Since the differential operators are linear in (4), we can further
convolve the terms with the initial data Y such that

@

@r
ðKr � YÞ ¼ DðKr � YÞ; Kr � Yðp;r ¼ 0Þ ¼ YðpÞ;

where

Kr � YðpÞ ¼
Z
M

Krðp; qÞYðqÞ dlðqÞ:

Hence Kr � Y is a solution of (3).

2.2. Diffusion smoothing

Isotropic diffusion (3) has been solved by various numerical
techniques (Chung, 2001; Andrade et al., 2001; Cachia et al.,
2003a,b; Chung and Taylor, 2004). For diffusion smoothing, the
diffusion equation needs to be discretized using the cotan for-
mulation (Chung, 2001; Chung and Taylor, 2004; Qiu et al.,
2006). Since there are many different cotan formulations, we fol-
low the formulation introduced in Chung (2001). The diffusion
Eq. (3) is discretized as

@f
@r
¼ �A�1Cf; ð5Þ

where f ¼ ðf ðp1;rÞ; . . . ; f ðpn;rÞÞ
0 is the vector of measurements over

all mesh vertices at time r. A ¼ ðAijÞ is the stiffness matrix and
C ¼ ðCijÞ is the global coefficient matrix, which is the assemblage
of individual element coefficients. The sparse matrices A and C
are explicitly given as follows.



Fig. 1. The heat kernel shape with bandwidths 0.025 (left), 1.25 (middle) and 5 (right) on a mandible surface. The level sets of the heat kernel form geodesic circles.

Fig. 2. Schematic of heat kernel smoothing. Given functional data on a surface, we first compute the eigenfunctions wj and the Fourier coefficients bj . Then, we combine all the
terms and reconstruct the functional signal back.
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Let T�ij and Tþij denote two triangles sharing the vertex pi and
its neighboring vertex pj in a mesh. Let the two angles opposite

to the edge containing pi and pj be /ij and hij respectively for Tþij
and T�ij . The off-diagonal entries of the stiffness matrix are

Aij ¼
1

12
jTþij j þ jT

�
ij j

� �
if pi and pj are adjacent and Aij ¼ 0 otherwise. j � j denotes the area of

a triangle. The diagonal entries are summed as Aii ¼
Pn

j¼1Aij. The
off-diagonal entries of the global coefficient matrix are

Cij ¼ �
1
2
ðcot hij þ cot /ijÞ

if pi and pj are adjacent and Cij ¼ 0 otherwise. The diagonal entries

are similarly given as the sum Cii ¼ �
Pn

j¼1Cij.
The ordinary differential Eq. (5) is then further discretized at

each point using the forward finite difference scheme:

fðpi;rnþ1Þ ¼ fðpi;rnÞ þ ðrnþ1 � rnÞbDf ðpi;rnÞ; ð6Þ

where bDf ðpi;rnÞ is the estimated Laplacian obtained from the i-th

row of �A�1Cf. For the forward Euler scheme to converge, we need
to have a sufficiently small step size Dr ¼ rnþ1 � rn (Chung, 2001).

2.3. Iterated kernel smoothing

The diffusion Eq. (3) can be approximately solved by iteratively
performing Gaussian kernel smoothing (Chung et al., 2005). The
weights of the kernel are spatially adapted to follow the shape of
the heat kernel along a surface mesh. Heat kernel smoothing with
a large bandwidth can be broken into iterated smoothing with
smaller bandwidths (Chung et al., 2005):

Kmr � Y ¼ Kr � � � � � Kr|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m times

� Y: ð7Þ

Then using the parametrix expansion (Rosenberg, 1997; Wang,
1997), we approximate the heat kernel with the small bandwidth
locally using the Gaussian kernel:

Krðp; qÞ ¼
1ffiffiffiffiffiffiffiffiffiffi

4pr
p exp � d2ðp; qÞ

4r

" #
½1þ Oðr2Þ�; ð8Þ

where dðp; qÞ is the geodesic distance between p and q. For
sufficiently small bandwidth r, all kernel weights are concentrated
near the center, so the first neighbors of a given mesh vertex are
sufficient for approximation. Unfortunately, this approximation
compounds error at each iteration. For numerical implementation,
we used the normalized truncated kernel given by

Wrðp; qiÞ ¼
exp � d2ðp;qiÞ

4r

h i
Pr

j¼0 exp � d2ðp;qjÞ
4r

h i ; ð9Þ

where q1; . . . ; qr are r neighboring vertices of p ¼ q0. Denote the
truncated kernel convolution as

Wr � YðpÞ ¼
Xr

i¼0

Wrðp; qiÞYðqiÞ: ð10Þ

The iterated heat kernel smoothing is then defined as

Wmr � YðpÞ ¼Wr � � � � �Wr|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
m times

� YðpÞ:



Fig. 3. Gibbs phenomenon (ringing artifacts) is visible in the spherical harmonic series expansion with degree 78 via the least squares estimation (LSE) of the step function
defined on a sphere. In contrast, the heat kernel regression with the same degree and bandwidth 0.0001 shows fewer visible artifacts.
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2.4. Heat kernel regression

We present a new regression framework for solving the isotro-
pic diffusion Eq. (3). Let D be the Laplace–Beltrami operator onM.
Solving the eigenvalue equation

Dwj ¼ �kwj; ð11Þ

we order the eigenvalues

0 ¼ k0 < k1 6 k2 6 � � �

and corresponding eigenfunctions w0;w1;w2; . . . (Rosenberg, 1997;
Chung et al., 2005; Lévy, 2006; Shi et al., 2009). The first eigenvalue
and eigenfunction are trivially given as k0 ¼ 0 and w0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lðMÞ

p
.

It is possible to have multiple eigenfunctions corresponding to the
same eigenvalue.

The eigenfunctions wj form an orthonormal basis in L2ðMÞ.
There is extensive literature on the use of eigenvalues and eigen-
functions of the Laplace–Beltrami operator in medical imaging
and computer vision (Lévy, 2006; Qiu et al., 2006; Reuter et al.,
2009; Reuter, 2010; Zhang et al., 2007, 2010). The eigenvalues have
been used in caudate shape discriminators (Niethammer et al.,
2007). Qiu et al. used eigenfunctions in constructing splines on
cortical surfaces (Qiu et al., 2006). Reuter used the topological
features of eigenfunctions (Reuter, 2010). Shi et al. used the Reeb
graph of the second eigenfunction in shape characterization
and landmark detection in cortical and subcortical structures
(Shi et al., 2008, 2009). Lai et al. used the critical points of the
second eigenfunction as anatomical landmarks for colon surfaces
(Lai et al., 2010). Since the direct application of eigenvalues and
eigenfunctions as features of interest is beyond the scope of this
paper, we will not pursue the issue in detail here.

Using the eigenfunctions, the heat kernel Krðp; qÞ is defined as

Krðp; qÞ ¼
X1
j¼0

e�kjrwjðpÞwjðqÞ; ð12Þ

where r is the bandwidth of the kernel. Fig. 1 shows examples of
the heat kernel with different bandwidths. Then the heat kernel
regression or heat kernel smoothing of functional measurement Y is
defined as

Kr � YðpÞ ¼
X1
j¼0

e�kjrbjwjðpÞ; ð13Þ

where bj ¼ hY;wji are Fourier coefficients (Chung et al., 2005)
(Fig. 2). The kernel smoothing Kr � Y is taken as an estimate for
the unknown mean signal h in (1). The degree of truncation of the
series expansion can be automatically determined using the
forward model selection procedure.
Unlike previous approaches to heat diffusion (Andrade et al.,
2001; Chung and Taylor, 2004; Joshi et al., 2009; Tasdizen et al.,
2006), the proposed method avoids the direct numerical dis-
cretization of the diffusion equation. Instead we discretize the
basis functions of the manifold M by solving for the eigensystem
(11) to obtain kj and wj.

2.5. Diffusion wavelet transform

We can establish the equivalence between the proposed kernel
regression and recently popular diffusion wavelets. This mathe-
matical equivalence eliminates the need for constructing wavelets
using complicated computational machinery as has often been
done in previous studies (Antoine et al., 2010; Hammond et al.,
2011; Kim et al., 2012), and offers a simpler but more unified
alternative.

Consider a wavelet basis Wr;qðpÞ obtained from a mother wave-
let W with scale and translation parameters r and q respectively in
a Euclidean space:

Wr;qðpÞ ¼
1
r

W
p� q
r

� �
:

Generalizing the idea of scaling a mother wavelet in Euclidean
space to a curved surface is trivial. The difficulty arises when one
tries to translate a mother wavelet on a curved surface since it is
unclear how to define translation along the surface. If one tries
to modify the existing spherical wavelet framework to an arbitrary
surface (Nain et al., 2007; Bernal-Rusiel et al., 2008), one immedi-
ately encounters the problem of establishing regular grids on an
arbitrary surface. Recent work based on diffusion wavelets bypass
this problem by taking the bivariate kernel as a mother wavelet
(Antoine et al., 2010; Hammond et al., 2011; Mahadevan and
Maggioni, 2006; Kim et al., 2012).

For some scale function g that satisfies the admissibility condi-
tions, diffusion wavelet Wr;qðpÞ at position p and scale r is given by

Wr;qðpÞ ¼
Xk

j¼0

gðkjrÞwjðpÞwjðqÞ;

where kj and /j are eigenvalues and eigenfunctions of the Laplace–
Beltrami operator. The wavelet transform is then given by

hWr;q;Yi ¼
Z
M

Wr;qðpÞYðpÞ dlðpÞ: ð14Þ

By letting gðkjrÞ ¼ expð�kjrÞ, we have the heat kernel as the
wavelet, i.e.,

Wr;pðqÞ ¼ Krðp; qÞ:



Fig. 4. Eigenfunctions of various degrees for a sample mandible surface. The eigenfunctions are projected on the surface smoothed by the proposed heat kernel smoothing
with bandwidth r ¼ 0:5 and degree k ¼ 132. The smoothed surface is obtained by heat kernel smoothing applied to the coordinates of the surface mesh with the same
parameter while preserving the topology of mesh. The first eigenfunction is simply w0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lðMÞ

p
. The color scale is thresholded for better visualization. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The bandwidth r of the heat kernel is the scale parameter,
while the translation is achieved by shifting one argument in the
bivariate heat kernel. Subsequently, wavelet transform (14) can
then be rewritten as

hWr;p;Yi ¼
Xk

j¼0

e�kjrbjwjðqÞ; ð15Þ

with bj ¼ hY;wji. The expression (15) is the finite truncation of the
heat kernel regression in (12). Hence, diffusion wavelet analysis
can be simply performed within the proposed heat kernel regres-
sion framework without any additional wavelet machinery. We
therefore do not distinguish between the heat kernel regression
and the diffusion wavelet transform.

Although the heat kernel regression is constructed using the
global basis functions wj, surprisingly the kernel regression at each
point p coincides with the wavelet transform at that point. Hence,
it also inherits the localization property of wavelets at that point.
This is clearly demonstrated in the simulation study shown in
Fig. 3, where a step function of value 1 in the circular band
1=8 < h < 1=4 (angle from the north pole) and of value 0 outside
of the band was constructed. Note that, on a sphere, the Laplace–
Beltrami operator is the spherical Laplacian and its eigenfunctions
are spherical harmonics Ylm of degree l and order m. Then the step
function was reconstructed using the spherical harmonic series
expansion

YðpÞ ¼
XL

l¼0

Xl

m¼�l

blmYlmðpÞ;

where the spherical harmonic coefficients blm ¼ hY;Ylmi were
obtained by the least squares estimation (LSE). On the unit sphere,
we used the heat kernel regression of the form

YðpÞ ¼
XL

l¼0

Xl

m¼�l

e�lðlþ1ÞrblmYlmðpÞ;

with small bandwidth r ¼ 0:0001 and degree L ¼ 78. The spherical
harmonic expansion shows severe ringing artifacts compared to the
kernel regression, which inherits the localization power of wavelets.
Thus the Gibbs phenomenon was not significantly visible.
2.6. Parameter estimation in heat kernel regression

Since the closed form expression for the eigenfunctions of the
Laplace–Beltrami operator on an arbitrary surface is unknown,
the eigenfunctions are numerically computed by discretizing the
Laplace–Beltrami operator. To solve the eigensystem (11), we need
to discretize it on mandible triangular meshes using the cotan for-
mulation (Chung, 2001; Chung and Taylor, 2004; Shi et al., 2009;
Qiu et al., 2006; Lévy, 2006; Reuter et al., 2006, 2009; Rustamov,
2007; Zhang et al., 2007; Vallet and Lévy, 2008; Wardetzky, 2008).

Among the many different cotan formulations used in computer
vision and medical image analysis, we used the formulation given
in Chung (2001) and Qiu et al. (2006). It requires discretizing (11)
as the following generalized eigenvalue problem:

Cw ¼ kAw; ð16Þ

where the global coefficient matrix C is the assemblage of individ-
ual element coefficients and A is the stiffness matrix. We solved
(16) using the Implicitly Restarted Arnoldi Method (Hernandez
et al., 2006; Lehoucq et al., 1998) without consuming large amounts
of memory and time for sparse entries. Fig. 4 shows the first few
eigenfunctions for a mandible surface.

Once we obtain the eigenfunctions numerically, we estimate
the kernel regression parameters bj using the least squares estima-
tion (LSE) technique. Note bj ¼ hY;wji, the Fourier coefficients with
respect to basis wj. b0; b1; . . . ; bk are then estimated simultaneously
by minimizing the sum of squared residual:

arg min
b0 ;...;bk

YðpÞ �
Xk

j¼0

bjwjðpÞ
�����

�����
2

: ð17Þ

The least squares method is often used in estimating the coeffi-
cients in spherical harmonic expansion (Shen et al., 2004; Styner
et al., 2006; Chung et al., 2008). Suppose we have n mesh vertices
p1; . . . ; pn. Let

Y ¼ ðYðp1Þ; . . . ;YðpnÞÞ
0

be the surface measurements over all n vertices. Denote the j-th
eigenfunction evaluated at n vertices as
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Wj ¼ ðwjðp1Þ; . . . ;wjðpnÞÞ
0
:

The minimum in (17) is achieved when

Y ¼ Wb; ð18Þ

where W ¼ ðW0; . . . ;WkÞ is the matrix of size n� ðkþ 1Þ. The LSE
estimation of coefficients b is then given bybb ¼ ðW0WÞ�1W0Y: ð19Þ

Since it is expected that the number of mesh vertices is substan-
tially larger than the number of eigenfunctions to be used, W0W is
well conditioned and invertible. The numerical implementation is
available at http://www.stat.wisc.edu/mchung/mandible with the
full data set used in the study.

2.7. Random field theory (RFT)

Once we have smoothed functional data on a surface, we apply
the statistical parametric mapping (SPM) framework for analyzing
and visualizing statistical tests performed on the template surface
that is often used in structural neuroimaging studies (Andrade
et al., 2001; Lerch and Evans, 2005; Wang et al., 2010; Worsley
et al., 1995; Yushkevich et al., 2008). Since test statistics are
constructed over all mesh vertices on the mandible, multiple
comparisons need to be accounted for using the RFT (Taylor and
Worsley, 2007; Worsley et al., 1995, 2004). The RFT assumes the
measurements to be a smooth Gaussian random field. Heat kernel
smoothing will make data smoother and more Gaussian and
enhance the SNR (Chung et al., 2005). The proposed kernel regres-
sion framework can then be naturally integrated into the
RFT-based statistical inference approach (Taylor and Worsley,
2007; Worsley et al., 2004, 1995).

We assume h is an unknown group level signal and � is a zero-
mean unit-variance Gaussian random field in (1). The model
assumptions are not as restrictive as it seems since we can always
normalize the data in this fashion. We further assume the random
field � is the convolution of heat kernel Ks on Gaussian white noise
W with bandwidth s, i.e., �ðpÞ ¼ Ks �WðpÞ. Previously, the smooth-
ness of noise, i.e., kernel bandwidth s, was estimated using the
RESEL (resolution element) technique, which requires estimating
the quantity Var @�ðpÞ=@p½ � along mesh surfaces, which can intro-
duce a bias (Worsley et al., 1999; Hayasaka et al., 2004; Kilner
and Friston, 2010). Thus, surface data is often smoothed with band-
width r that is sufficiently larger than s so that any high frequency
noise smaller than r is masked out. This provides a motivation for
developing the heat kernel regression framework.

In (1), we are interested in determining the significance of h, i.e.,

H0 : hðpÞ ¼ 0 for all p 2 M;

vs: H1 : hðpÞ > 0 forsome x 2 M: ð20Þ

Note that any point p0 that gives hðp0Þ > 0 is considered as sig-
nal. The hypothesis (20) is an infinite dimensional multiple com-
parisons problem for continuously indexed hypotheses over the
manifoldM. The underlying group level signal h is estimated using
the proposed heat kernel regression. Subsequently, a test statistic
is often given by a T- or F-field YðpÞ (Worsley et al., 1995, 2004).

The multiple comparisons corrected p-value is then computed
through by the RFT (Adler, 1981; Cao and Worsley, 2001; Taylor
and Worsley, 2007; Worsley, 2003). For the F-field Y with a and
b degrees of freedom defined on 2D manifoldsMF , it is known that

P sup
p2MF

YðpÞ > h

 !
� l2ðMTÞq2ðhÞ þ l0ðMFÞq0ðhÞ ð21Þ

for a sufficiently large threshold h, where ldðMFÞ is the d-th
Minkowski functional of MF and qd is the d-th Euler characteristic
(EC) density of Y (Worsley et al., 1998). The Minkowski functionals
are given by

l2ðMTÞ ¼ areaðMTÞ=2;
l0ðMTÞ ¼ vðMTÞ ¼ 2:

The EC-density for F-field is then given by

q2 ¼
1

4pr2

C aþb�2
2

� �
C a

2

� �
C b

2

� � ah
b

	 
ða�2Þ
2

1þ ah
b

	 
�ðaþb�2Þ
2

ðb� 1Þah
b
� ða� 1Þ

� �
;

q0 ¼ 1� PðFa;b 6 hÞ;

where PðFa;b 6 hÞ is the cumulative distribution function of F-stat
with a and b degrees of freedom. The second order term
l2ðMTÞq2ðhÞ dominates the expression (21) and it explicitly has
the bandwidth r of the kernel regression, thus incorporating the
proposed kernel framework into the RFT.

3. Experiments

3.1. CT image preprocessing

We applied the proposed smoothing method to CT images of
mandibles obtained from several different models of GE multi-slice
helical CT scanners. The CT scans were acquired directly in the
axial plane with 1.25 mm slice thickness, matrix size of
512� 512 and 15–25 cm field of view (FOV). Image resolution
varied as voxel size ranged from 0:25 mm3 to 0:49 mm3 as deter-
mined by the ratio of FOV divided by the matrix. CT scans were
converted to DICOM format and Analyze 8.1 software package
(AnalyzeDirect, Inc., Overland Park, KS) was then used in segment-
ing binary mandible structure based on histogram thresholding.

Image acquisition and processing artifacts and partial voluming
produce topological defects such as holes and handles in any
medical image. In CT images of mandibles, unwanted cavities,
holes and handles in the binary segmentation mainly result from
differences in CT intensity between relatively low density
mandible and teeth and more dense cortical bone and the interior
trabecular bone (Andresen et al., 2000; Loubele et al., 2006). In
mandibles, these topological noises can appear in thin or cancel-
lous bone, such as in the condylar head and posterior palate
(Stratemann et al., 2010). An example is shown in Fig. 5, where
the tooth cavity forms a bridge over the mandible. If we
apply the isosurface extraction on the topologically defective
segmentation results, the resulting surface will have many tiny
handles (Wood et al., 2004; Yotter et al., 2009). These handles
complicate subsequent surface mesh operations such as smoothing
and parameterization. It is thus necessary to correct the topology
by filling the holes and removing handles. If we correct such
topological defects, it is expected that the resulting isosurface is
topologically equivalent to a sphere.

Various topology correction techniques have been proposed in
medical image processing. Rather than attempting to repair the
topological defects of the already extracted surfaces (Wood et al.,
2004; Yotter et al., 2009), we performed the topological simpli-
fication on the volume representation directly using morphological
operations (Guskov and Wood, 2001; Van Den Boomgaard and Van
Balen, 1992; Yotter et al., 2009). The direct correction on surface
meshes can possibly cause surfaces to intersect each other (Wood
et al., 2004). By checking the Euler characteristic, the holes were
automatically filled up using morphological operations to make
the mandible binary volume topologically equivalent to a solid
sphere. All areas enclosed by the higher density bone included in
the mandible definition are morphed into being in the definition
of the mandible object. The hole-filled images were then converted
to surface meshes via the marching cubes algorithm.

http://www.stat.wisc.edu/mchung/mandible


Fig. 5. Upper panel: Topological correction on mandible binary segmentation and surface. Disjointed tiny speckles of noisy components are removed by labeling the largest
connected component, and holes and handles are removed by the 2D morphological closing operations applied sequentially to each image dimension (a ? b ? c ? d). Lower
panel left: Surface reconstruction showing holes and handles in the teeth regions. The isosurface has Euler characteristic v ¼ 50. Lower panel right: After the correction with
v ¼ 2.

Fig. 6. Cavity patching by topological closing operations. Left: Surface model of the binary volume that simulates a tooth cavity. Middle: The 3D image volume based closing
operation does not properly patch the cavity region. Right: The 2D image slice based closing operation patches the cavity region properly.

M.K. Chung et al. / Medical Image Analysis 22 (2015) 63–76 69
In our semi-automated algorithm, we first removed the speck-
les of noise components by identifying the largest connected com-
ponent in the binary volume. The resulting binary mandible
volume was a single connected component with many small holes
and handles. Then we applied the morphological closing operation
in each 2D slice of CT images one by one in all three axes.
Recombining the topology-corrected 2D slices resulted in topologi-
cally correct surface meshes (Fig. 5). We used 2D topological clos-
ing operations mainly because of better performance and relatively
simpler implementation than 3D topological closing operations. In
2D topological operations, we need to consider only 8 neighboring
pixels compared to 26 neighboring voxels in a 3D image volume.
There are many large concave regions left out by teeth and fillings.
These regions may not be closed with a single 3D closing operation
but can be easily patched up with a sequence of 2D closing opera-
tions, which put more constraints on the underlying topology.
Instead of performing a single 3D closing operation that may not
work, we sequentially performed 2D closing operations in each
image slice in the x-, y- and z-directions. In Fig. 5 upper panel,
(a) is the binary volume before any closing operation, (b) is after
the 2D closing operation in the x-direction, (c) is after the 2D clos-
ing operation in the y-direction and (d) is after the 2D closing
operation in the z-direction. Each time we apply the 2D closing
operation, the holes get smaller. Fig. 6 shows a simulated cavity
example that was not patched by the 3D closing operation (Van
Den Boomgaard and Van Balen, 1992) but was easily patched by
the sequential application of 2D closing operations. Note that any
3D object, whose every 2D cross-section is topologically equivalent
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to a solid disk, is topologically equivalent to a solid sphere. The
problem of 3D topology correction can be thus reduced to a much
simpler problem of 2D topology correction of multiple slices.
Unfortunately, we cannot perform the closing operations to infi-
nitely many possible 2D cross-sections in 3D image volumes.
Therefore, we applied the 2D operations in the three axial direc-
tions. So there is a small chance the operation may not work in
practice. Therefore, at the end of the processing, we performed a
visual inspection of the processed volume. Further, we double
checked the Euler characteristic of the resulting surface meshes.
Note that for each triangle, there are three edges. For a closed sur-
face topologically equivalent to a sphere, two adjacent triangles
share the same edge. The total number of edges E is thus
E ¼ 3F=2, where F is the number of faces. If V is the total number
of vertices, the Euler characteristic of a sphere is given by
v ¼ V � Eþ F ¼ 2. Thus, we checked if the resulting mesh satisfies
the condition V � F=2 ¼ 2. 77 binary mandible volumes used in the
study produced the topologically correct surfaces without excep-
tion. Fig. 5 lower panel shows an example of before and after the
topology correction.

3.2. Validation of heat kernel smoothing on mandible surfaces

The accuracy of the heat kernel construction using LB-
eigenfunctions on a unit sphere using the ground truth can be
found in Kim et al. (2011) so the results are not reproduced here.
In this paper, we compared the performance of the proposed kernel
regression against iterated kernel smoothing and diffusion
smoothing using the real mandible data. The comparison results
are similar for all 77 mandible surfaces used in the study, so only
the results for one representative mandible surface is shown.

The x, y and z coordinates of a mandible surface are treated as
functional measurements on the original surface and smoothed
with both methods. For the comparison of performance between
the smoothing methods, we calculated the root mean squared
errors (RMSE) between them, where the mean of the squared
errors is taken over the surface. For the heat kernel regression,
we used the bandwidth r ¼ 0:5 and eigenfunctions up to k ¼ 132
degree. For iterated kernel smoothing, we varied the number of
iterations 1 6 m 6 200 with correspondingly smaller bandwidth
0:5=m, which results in an effective bandwidth of 0.5. For diffusion
smoothing, a sufficiently small step size Dr ¼ 0:0025 was taken for
200 iterations resulting in bandwidth r ¼ 0:5. The RMSE between
the kernel regression and the iterated kernel smoothing reached up
Fig. 7. (a) Plot of the RMSE of the heat kernel regression against iterated kernel smoothin
to 200. For the heat kernel regression, r ¼ 0:5 and k ¼ 132 are used. Iterated kernel smoo
the diffusion smoothing is smaller than 0.0046 so they are not displayed in the plot.
smoothing. The difference is mainly localized in high curvature areas, where the Gaussia
(c) The squared difference between the kernel regression and the diffusion smoothing.
to 0.5901 (y-coordinate) and did not decrease even when we
increased the number of iterations (Fig. 7). The RMSE between
the kernel regression and diffusion smoothing was smaller than
0.0046 (y-coordinates). Fig. 7(b) shows the squared differences
between the two methods. For the iterated kernel smoothing, the
difference is mainly localized in high curvature areas, where the
Gaussian kernel used in the iterated kernel smoothing fails to
approximate the heat kernel. This comparison clearly demon-
strates the limitation of iterated heat kernel smoothing, which
does not converge to heat diffusion. However, the heat kernel
regression and diffusion smoothing gave almost identical results
and there was no discernible difference (Fig. 7(c)).

We also compared the performance of the three smoothing
techniques at four different bandwidths r ¼ 0:5;20;50;100. For
the kernel regression, k ¼ 132 was used. For the iterated kernel
smoothing and the diffusion smoothing, a fixed step size of
Dr ¼ 0:025 was used with m ¼ 20, 800, 2000, 4000 iterations.
The diffusion smoothing and heat kernel smoothing gave visually
identical results for bandwidths r ¼ 20;50;100 due to a suffi-
ciently large number of iterations (Fig. 8). However, the iterated
kernel smoothing gave a different result. In this experiment, we
replaced the original surface coordinates with smoothed ones for
the final visualization. However, in the actual computation, we
did not replace the original surface coordinates for the three meth-
ods. Iterated kernel smoothing compounded the discretization
errors over iterations, so it did not converge to the kernel regres-
sion and diffusion smoothing. Diffusion smoothing and heat kernel
smoothing share the same FEM discretization and converge to each
other as the number of iterations increases.
3.3. Simulation studies

Since there is no known ground truth in the imaging data set we
are using, it is uncertain how the proposed method will perform
with real data. It is therefore necessary to perform simulation stud-
ies with ground truths. We performed two simulations with small
and large SNR settings on a T-junction shaped surface (Fig. 9),
which was chosen because it was a surface with three different
curvatures: convex, concave and almost flat regions. Note that
surface smoothing methods perform differently under different
curvatures. Three black signal regions of different sizes were taken
as the ground truth at these regions and 60 independent functional
measurements on the T-junction were simulated as jNð0; c2Þj, the
g for coordinates x (middle), y (top) and z (bottom) over the number of iterations up
thing does not converge to heat diffusion. RMSE between the kernel regression and

(b) The squared difference between the kernel regression and the iterated kernel
n kernel used in the iterated kernel smoothing fails to approximate the heat kernel.
There are almost no visible differences.



Fig. 8. Smoothed mandible surfaces using three different techniques. The x, y and z surface coordinates are treated as functional measurements on the original surface and
smoothed. The proposed heat kernel smoothing is done with bandwidths, r ¼ 0:5;20;50;100. Iterated kernel smoothing is done by iteratively approximating the heat kernel
linearly with the Gaussian kernel (Chung et al., 2005). Diffusion smoothing directly solves the diffusion equation using the same FEM discretization (Chung and Taylor, 2004).
Diffusion smoothing and heat kernel smoothing converge to each other as the bandwidth increases.

Fig. 9. Simulation study I on a T-junction shaped surface where three black signal regions of different sizes are taken as the ground truth. 60 independent functional
measurements on the T-junction were simulated as jNð0;22Þj at each mesh vertex. We are only simulating positive numbers to better reflect the positive measurements used
in the study. Value 1 was added to the black regions in 30 measurements, which served as group 2 while the other 30 measurements were taken as group 1. T-statistics are
shown for these simulations (original) and three techniques with bandwidth 0.5. Heat kernel smoothing performed the best in detecting the ground truth.
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absolute value of normal distribution with mean 0 and variance c2,
at each mesh vertex. Value 1 was then added to the black regions
in 30 of the measurements, which served as group 2, while the
other 30 measurements were taken as group 1. Group 1 had dis-
tribution jNð0; c2Þj while group 2 had distribution jNð1; c2Þj in the
signal regions. Larger variance c2 corresponds to smaller SNR.

In Study I, c2 ¼ 22 was used to simulate functional measure-
ments with substantially smaller SNR. Fig. 9 shows the simulation
results. For iterated kernel and diffusion smoothing, we used band-
width r ¼ 0:5 and 100 iterations. For smaller SNR, it is necessary to
smooth with a larger bandwidth, which is determined empirically.
For heat kernel smoothing, the same bandwidth and 1000 eigen-
functions were used. The same number of eigenfunctions was used
throughout the study. For all three smoothing techniques, the
bandwidth is the main parameter that determines performance.
We then performed a two sample T with the RFT-based threshold
of 4.90 to detect the group difference at 0.05 level.

Neither the raw data nor iterated smoothing were able to cor-
rectly identify any signal region. However, heat kernel and diffu-
sion smoothing correctly identified 94% and 91% of the signal
regions respectively. In addition, heat kernel and diffusion smooth-
ing incorrectly identified 0.26% and 0.26% of non-signal regions as
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signal. There are no visually discernible differences between the
two methods as shown in Fig. 10. The 3% difference in performance
is due to the discretization error associated with taking only 100
iterations, which disappears if we take smaller time steps.
Alternatively, we can use better time-discretization schemes such
as Padé–Chebyschev approximation (Patané, 2015), multi-step
methods (Gottlieb et al., 2001) or higher-order Runge–Kutta
schemes (Li and Alexiades, 2010).

In Study II, c2 ¼ 0:52 was used to simulate functional measure-
ments with substantially larger SNR. Due to the large SNR, the
group means showed visible group separations (Fig. 10). For iter-
ated kernel and diffusion smoothing, we used bandwidth r ¼ 0:1
and 100 iterations. For heat kernel smoothing, the same bandwidth
and 1000 eigenfunctions were used. All the methods detected the
signal regions; however, the heat kernel smoothing and diffusion
smoothing techniques were more sensitive at large SNR. All the
methods correctly identified the signal regions with 100% accu-
racy. There were no false discoveries in the raw data and iterated
kernel smoothing methods. However, due to blurring effects, heat
kernel and diffusion smoothing incorrectly identified 0.9% and 0.8%
of non-signal regions as signal, which is negligible. For the large
SNR setting, all the methods were reasonably able to detect the
correct signal regions with minimal error.

In summary, in larger SNR, all three methods performed well.
However, in substantially smaller SNR, the kernel regression per-
formed best, closely followed by diffusion smoothing. Neither the
raw data nor iterated kernel smoothing performed well in the
low SNR setting.
4. Application: mandible growth analysis

As an illustration of the proposed kernel regression technique,
we analyzed mandible growth on a CT imaging data set consisting
of 77 human subjects between the ages of 0 and 19 years. Subjects
were divided into three age categories: 0–6 years (group I, 26 sub-
jects), 7–12 years (group II, 20 subjects), and 13–19 years (group
III, 31 subjects). The main biological question of interest was
whether there were localized regions of growth between these dif-
ferent age groups. Mandible surface meshes for all subjects were
constructed through the image acquisition and processing steps
described in the previous section. For surface alignment, diffeo-
morphic surface registration was used to match mandible surfaces
Fig. 10. Simulation study II on a T-junction shaped surface with the same ground truth
junction were simulated as jNð0;0:52Þj at each mesh vertex. Value 1 was added to the bla
30 measurements are taken as group 1. Due to the large SNR, the group means show visib
kernel smoothing and diffusion smoothing techniques were more sensitive at the large
across subjects (Miller and Qiu, 2009; Vaillant et al., 2007; Qiu and
Miller, 2008; Yang et al., 2011).

4.1. Diffeomorphic surface registration

We chose the mandible of a 12-year-old subject identified as
F155–12-08, which served as the reference template in previous
studies (Seo et al., 2010, 2011), as initial templateMI and aligned
the remaining 76 mandibles to the initial template affinely to
remove the overall size variability. Some subjects may have larger
mandibles than others, so it is necessary to remove the global size
differences in localized shape modeling. From the affine trans-
formed individual mandible surfaces Mj, we performed an addi-
tional nonlinear surface registration to the template using the
large deformation diffeomorphic metric mapping (LDDMM) frame-
work (Miller and Qiu, 2009; Vaillant et al., 2007; Qiu and Miller,
2008; Yang et al., 2011).

In the LDDMM framework (Miller and Qiu, 2009; Vaillant et al.,
2007; Qiu and Miller, 2008; Yang et al., 2011), the metric space is
constructed as an orbit of surfaceM under the group of diffeomor-
phic transformations G, i.e., Mj ¼ G �M. The diffeomorphic
transformations (one-to-one, smooth forward and inverse trans-
formation) are introduced as transformations of the coordinates
on the background space X � R3. The diffeomorphisms /t 2 G are
constructed as a flow of ordinary differential equations (ODE),
where /t ; t 2 ½0;1� follows

_/t ¼ v tð/tÞ; /0 ¼ Id; t 2 ½0;1�; ð22Þ

where Id denotes the identity map and v t are the associated veloc-
ity vector fields. The vector fields v t are constrained to be suffi-
ciently smooth, so that (22) is integrable and generates
diffeomorphic transformations over finite time. The smoothness is
ensured by forcing v t to lie in a smooth vector field V, which is mod-
eled as a reproducing kernel Hilbert space with linear operator L

associated with norm kuk2
V ¼ hLu;ui2 (Dupuis et al., 1998). The

group of diffeomorphisms GðVÞ is then the solutions of (22) with

the vector fields satisfying
R 1

0 kv tkV dt <1.
Given the template surfaceM and an individual surfaceMj, the

geodesic /t ; t 2 ½0;1�, which lies in the manifold of diffeomor-
phisms and connects M and Mj, is defined as

/0 ¼ Id; /1 � M ¼Mj:
as simulation study I (Fig. 9). 60 independent functional measurements on the T-
ck regions in 30 of the measurements, which served as group 2, while the remaining
le group separations. All the methods detected the signal regions; however, the heat
SNR.
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For our application, we employed the LDDMM approach to esti-
mate the template among all subjects. The estimated template can
be simply computed through averaging the initial velocity across
all subjects (Zhong and Qiu, 2010), which is similar to the unbiased
template estimation approach in Joshi et al. (2004). We then
recomputed the displacement fields with respect to the initial tem-
plateMI . We averaged the deformation fields from the initial tem-
plate MI to individual subjects to obtain the final template MF .
Fig. 11 shows the initial and final templates. Fig. 12 shows the
mean displacement differences between groups I and II (top) and
II and III (bottom). Each row shows the group differences of the dis-
placement: group II–group I (first row) and group III–group II (sec-
ond row). The arrows are the growth direction with arrow length
being representative of mean displacement differences and colors
indicating growth length in mm.

4.2. Statistical analysis

We are interested in determining the significance of the mean
displacement differences in Fig. 12. Since the length measurement
provides a much easier biological interpretation, we used the
length of the displacement vector as a response variable. The RFT
assumes the measurements to be a smooth Gaussian random field.
Heat kernel smoothing on the length measurement will make the
measurement smoother, more Gaussian and increase the SNR
Fig. 11. Left: Mandible F155-12-08, which forms an initial template MI . All other man
registered mandibles showing local misalignment. Diffeomorphic registration was then
deformation with respect to F155-12-08 provides the final population average template

Fig. 12. Mandibles were grouped into three age cohorts: group I (ages 0–6 years), group II
differences of the displacement: group II–group I (first row) and group III–group II (secon
lengths in mm. Longer arrows imply more mean displacement. (For interpretation of the
this article.)
(Chung et al., 2005). Heat kernel smoothing is applied with band-
width r ¼ 20 using 1000 eigenfunctions on the final template
MF . The number of eigenfunctions used is more than sufficient
to guarantee a relative error less than 0.3%. The heat kernel
smoothing of the displacement length is taken as the response
variable. We constructed the F random field testing the length dif-
ference between the age groups I and II, and II and III showing the
regions of accelerated growth (Fig. 13).

The comparison of groups I and II is based on an F-field with 1
and 44 degrees of freedom. The comparison of groups II and III is
based on an F-field with 1 and 49 degrees of freedom. The multiple
comparison corrected F-statistics thresholds corresponding to
a ¼ 0:05 and 0.01 levels are respectively 8.00 and 10.52 (group
II–I) and 8.00 and 10.67 (group III–II). In the F-statistic map shown
in Fig. 13, black and red regions are considered as exhibiting
growth spurts at 0.01 and 0.05 levels respectively. Our findings
are consistent with previous findings of simultaneous forward
and downward growth (Scott, 1976; Smartt et al., 2005; Walker
and Kowalski, 1972; Lewis et al., 1982; Seo et al., 2011) and bilat-
eral growth (Enlow and Hans, 1996).

We also performed the same statistical analysis to the iterated
kernel smoothing and diffusion smoothing results. For the diffu-
sion smoothing, 200 step sizes are used with the fixed time step
0.01, which results in the overall bandwidth r ¼ 20. For the iter-
ated kernel smoothing, bandwidth r ¼ 20 is split into m ¼ 200
dibles were affine registered to F155-12-08. Middle: The superimposition of affine
performed to warp misaligned affine transformed mandibles. Right: The average of
MF where statistical parametric maps were constructed.

(ages 7–12 years) and group III (ages 13–19 years). Each row shows the mean group
d row). The arrows are the mean displacement differences and colors indicate their
references to color in this figure legend, the reader is referred to the web version of



Fig. 13. F-statistic map showing the regions of significant growth as measured by mean displacement differences between the groups displayed in Fig. 12. The kernel
regression was used to smooth out surface measurements. The top row shows significant growth between groups I and II; and bottom row between groups II and III. The
thresholds 10.52 and 10.67 are considered significant at 0.01 level (corrected) for the top and bottom rows.

Fig. 14. F-statistic map showing the regions of significant growth as measured by mean displacement differences between the groups displayed in Fig. 12. The iterated kernel
smoothing with parameters r ¼ 20 and m ¼ 200 were used. The top row shows significant growth between groups I and II; and bottom row between groups II and III. The
thresholds 10.52 and 10.67 are considered significant at 0.01 level (corrected) for the top and bottom rows.
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small bandwidths. The diffusion smoothing results are similar to
Fig. 13 so the only iterated kernel smoothing result is shown in
Fig. 14. Since this is a high SNR setting, all three methods are
expected to perform well and similarly. In the heat kernel regres-
sion, 25% of mesh vertices show F-statistic value above 8.00 for
the comparison of groups I and II (0.05 level). For the iterated ker-
nel smoothing and diffusion smoothing, 24% and 24% of vertices
are above 8.00. For the comparison of groups II and III, the numbers
are 38%, 36% and 36% respectively. The differences are not
significant.

5. Conclusions

This study presents a novel heat kernel regression framework,
where functional measurements are expanded analytically using
the weighted Laplace–Beltrami eigenfunctions. The weighted
eigenfunction expansion is related to isotropic heat diffusion and
the diffusion wavelet transform. The method was validated and
compared against exiting surface-based smoothing methods.
Although the proposed kernel regression and diffusion smoothing
share identical FEM discretization, the kernel regression is a para-
metric model, whereas diffusion smoothing is not. The flexibility of
the parametric model enabled us to establish the mathematical
equivalence of kernel regression, diffusion smoothing and diffusion
wavelets.

The method was subsequently applied to characterize mandible
growth. Based on the significant directions of growth identified in
Figs. 12 and 13, we quantified the regions, direction and extent of
growth during the first two decades of life that contribute to the
overall downward and forward growth of the mandible as
described in the literature. To quantify mandibular growth using
smaller age cohorts, we are currently securing additional CT
images.
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