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Abstract. Many existing brain network distances are based on matrix
norms. The element-wise differences may fail to capture underlying topo-
logical differences. Further, matrix norms are sensitive to outliers. A few
extreme edge weights may severely affect the distance. Thus it is neces-
sary to develop network distances that recognize topology. In this paper,
we introduce Gromov-Hausdorff (GH) and Kolmogorov-Smirnov (KS)
distances. GH-distance is often used in persistent homology based brain
network models. The superior performance of KS-distance is contrasted
against matrix norms and GH-distance in random network simulations
with the ground truths. The KS-distance is then applied in characterizing
the multimodal MRI and DTI study of maltreated children.

1 Introduction

There are many similarity measures and distances between networks in literature
[2,7,14]. Many of these approaches simply ignore the topology of the networks
and mainly use the sum of differences between either node or edge measurements.
These network distances are sensitive to the topology of networks. They may
lose sensitivity over topological structures such as the connected components,
modules and holes in networks.

In standard graph theoretic approaches, the similarity and distance of net-
works are measured by determining the difference in graph theory features such
as assortativity, betweenness centrality, small-worldness and network homogene-
ity [4,17]. Comparison of graph theory features appears to reveal changes of
structural or functional connectivity associated with different clinical popula-
tions [17]. Since weighted brain networks are difficult to interpret and visualize,
they are often turned into binary networks by thresholding edge weights [11,20].
However, the choice of thresholding the edge weights may alter the network
topology. To obtain the proper optimal threshold, the multiple comparison cor-
rection over every possible edge has been proposed [16,18,20]. However, depend-
ing on what p-value to threshold, the resulting binary graph also changes. Others
tried to control the sparsity of edges in the network in obtaining the binary net-
work [11,20]. However, one encounters the problem of thresholding sparse para-
meters. Thus existing methods for binarizing weighted networks cannot escape
the inherent problem of arbitrary thresholding.
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Until now, there is no widely accepted criteria for thresholding networks.
Instead of trying to come up with an optimal threshold for network construc-
tion that may not work for different clinical populations or cognitive condi-
tions [20], why not use all networks for every possible threshold? Motivated by
this question, new multiscale hierarchical network modeling framework based on
persistent homology has been developed recently [7,14]. In persistent homology
based brain network analysis as first formulated in [14], we build the collec-
tion of nested networks over every possible threshold using the graph filtration,
a persistent homological construct [14]. The graph filtration is a threshold-free
framework for analyzing a family of graphs but requires hierarchically build-
ing specific nested subgraph structures. The graph filtration shares similarities
to the existing multi-thresholding or multi-resolution network models that use
many different arbitrary thresholds or scales [11,14]. Such approaches are mainly
used to visually display the dynamic pattern of how graph theoretic features
change over different thresholds and the pattern of change is rarely quantified.
Persistent homology can be used to quantify such dynamic pattern in a more
coherent mathematical framework.

In persistent homology, there are various metrics that have been proposed
to measure network distance. Among them, Gromov-Hausdorff (GH) distance
is possibly the most popular distance that is originally used to measure dis-
tance between two metric spaces [19]. It was later adapted to measure distances
in persistent homology, dendrograms [5] and brain networks [14]. The proba-
bility distributions of GH-distance is unknown. Thus, the statistical inference
on GH-distance has been done through resampling techniques such as jack-
knife, bootstraps or permutations [7,14,15], which often cause computational
bottlenecks for large-scale networks. To bypass the computational bottleneck
associated with resampling large-scale networks, the Kolmogorov-Smirnov (KS)
distance was introduced in [6,8,15]. The advantage of using KS-distance is its
easiness to interpret compared to other less intuitive distances from persistent
homology. Due to its simplicity, it is possible to determine its probability distri-
bution exactly [8].

Many distance or similarity measures are not metrics but having metric dis-
tances makes the interpretation of brain networks easier due to the triangle
inequality. Further, existing network distance concepts are often borrowed from
the metric space theory. Let us start with formulating networks as metric spaces.

2 Matrix Norms

Consider a weighted graph or network with the node set V = {1, . . . , p} and
the edge weights w = (wij), where wij is the weight between nodes i and j. We
may assume that the edge weights satisfy the metric properties: nonnegativity,
identity, symmetry and the triangle inequality such that

wi,j ≥ 0, wii = 0, wij = wji, wij ≤ wik + wkj .
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With theses conditions, X = (V,w) forms a metric space. Although the metric
property is not necessary for building a network, it offers many nice mathematical
properties and easier interpretation on network connectivity.

Example 1. Given measurement vector xi = (x1i, · · · , xni)� ∈ R
n on the node i.

The weight w = (wij) between nodes is often given by some bivariate function f :
wij = f(xi,xj). The correlation between xi and xj , denoted as corr(xi,xj), is a
bivariate function. If the weights w = (wij) are given by wij =

√
1 − corr(xi,xj),

it can be shown that X = (V,w) forms a metric space.

Matrix norm of the difference between networks is often used as a measure
of similarity between networks [2,21]. Given two networks X 1 = (V,w1) and
X 2 = (V,w2), the Ll-norm of network difference is given by

Dl(X 1,X 2) =‖ w1 − w2 ‖l=
( ∑

i,j

∣∣w1
ij − w2

ij

∣∣l
)1/l

.

Note Ll is the element-wise Euclidean distance in l-dimension. When l = ∞,
L∞-distance is written as

D∞(X 1,X 2) =‖ w1 − w2 ‖∞= max
∀i,j

∣∣w1
ij − w2

ij

∣∣.

The element-wise differences may not capture additional higher order similarity.
For instance, there might be relations between a pair of columns or rows [21].
Also L1 and L2-distances usually surfer the problem of outliers. Few outlying
extreme edge weights may severely affect the distance. Further, these distances
ignore the underlying topological structures. Thus, there is a need to define
distances that are more topological.

3 Gromov-Hausdorff Distance

GH-distance for brain networks is first introduced in [14]. GH-distance measures
the difference between networks by embedding the network into the ultrametric
space that represents hierarchical clustering structure of network [5]. The dis-
tance sij between the closest nodes in the two disjoint connected components
R1 and R2 is called the single linkage distance (SLD), which is defined as

sij = min
l∈R1,k∈R2

wlk.

Every edge connecting a node in R1 to a node in R2 has the same SLD. SLD is
then used to construct the single linkage matrix (SLM) S = (sij) (Fig. 1). SLM
shows how connected components are merged locally and can be used in con-
structing a dendrogram. SLM is a ultrametric which is a metric space satisfying
the stronger triangle inequality sij ≤ max(sik, skj) [5]. Thus the dendrogram
can be represented as a ultrametric space D = (V, S), which is again a met-
ric space. GH-distance between networks is then defined through GH-distance
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Fig. 1. (a) Toy network, (b) its dendrogram, (c) the distance matrix w based on Euclid-
ean distance, (d) the single linkage matrix (SLM) S.

between corresponding dendrograms. Given two dendrograms D1 = (V, S1) and
D2 = (V, S2) with SLM S1 = (s1ij) and S2 = (s2ij),

DGH(D1,D2) =
1
2

max
∀i,j

|s1ij − s2ij |. (1)

For the statistical inference on GH-distance, resampling techniques such as jack-
knife or permutation tests are often used [14,15].

4 Kolmogorov-Smirnov Distance

Recently a new network distance based on the concept of graph filtration has
been proposed in [8]. Given weighted network X = (V,w), the binary network
Bε(X ) = (V,Bε(w)) is a graph consisting of the node set V and the edge weight
Bε(w) = (Bε(wij)) given by

Bε(wij) =

{
1 if wij ≤ ε;
0 otherwise.

(2)

Note Bε(w) is the adjacency matrix of Bε(X ). Then it can be shown that

Bε0(X ) ⊂ Bε1(X ) ⊂ Bε2(X ) ⊂ · · ·

for 0 = ε0 ≤ ε1 ≤ ε2 · · · . The sequence of such nested multiscale graph struc-
ture is called the graph filtration [7,14]. The sequence of thresholded values
ε0, ε1, ε2 · · · are called the filtration values.

The graph filtration can be quantified using monotonic function f satisfying

f ◦ Bεj (X ) ≥ f ◦ Bεj+1(X )

for εj ≤ εj+1. The number of connected components, the zeroth Betti number β0,
satisfies the monotonicity property (3). The size of the largest cluster, denoted
as γ, satisfies a similar but opposite relation of monotonic increase [7].
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Given two networks X 1 = (V,w1) and X 2 = (V,w2), Kolmogorov-Smirnov
(KS) distance between X 1 and X 2 is defined as [7,15]

DKS(X 1,X 2) = sup
ε≥0

∣∣f ◦ Bε(X 1) − f ◦ Bε(X 2)
∣∣.

The distance DKS is motivated by Kolmogorov-Smirnov (KS) test for determin-
ing the equivalence of two cumulative distribution functions [8,10].

Example 2. Consider network with edge weights rij = 1 − corr(xi,xj). Such
network is not a metric space. To make it a metric space, we need to scale the
edge weight to wij = √

rij (Example 1). However, KS-distance is invariant under
such monotonic scaling since the distance is taken over every possible filtration
value.

The distance DKS can be discretely approximated using the finite number
of filtrations:

Dq = sup
1≤j≤q

∣∣f ◦ Bεj (X 1) − f ◦ Bεj (X 2)
∣∣.

If we choose enough number of q such that εj are all the sorted edge weights,
then DKS(X 1,X 2) = Dq [8]. This is possible since there are only up to p(p−1)/2
number of unique edges in a graph with p nodes and f ◦ Bε increases discretely.
In practice, εj may be chosen uniformly.

The probability distribution of Dq under the null is asymptotically given by

lim
q→∞

(
Dq/

√
2q ≥ d

)
= 2

∞∑

i=1

(−1)i−1e−2i2d2
. (3)

The result is first given in [8]. p-value under the null is then computed as

p-value = 2e−d2
o − 2e−8d2

o + 2e−18d2
o · · · ,

where the observed value do is the least integer greater than Dq/
√

2q in the
data. For any large value d0 ≥ 2, the second term is in the order of 10−14

and insignificant. Even for small observed d0, the expansion converges quickly
and 5 terms are sufficient. KS-distance method does not assume any statistical
distribution on graph features other than that they has to be monotonic. The
technique is very general and applicable to other monotonic graph features such
as node degrees.

5 Comparisons

Five different network distances (L1, L2, L∞, GH and KS) were compared in
simulation studies with modular structures. The simulations below were inde-
pendently performed 100 times and the average results were reported.

There were four groups and the sample size was n = 5 in each group and
the number of nodes was p = 100 (Fig. 2). We follow notations in Example 1.
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Fig. 2. Randomly simulated correlation matrices. Group I and Group II were generated
independently and identically. Group III was generated from Group I but additional
dependency was added to introduce modular structures. Group IV was generated from
Group III (10 modules) by adding small noise.

In Group I, the measurement vector xi at node i was simulated as multivariate
normal, i.e., xi ∼ N(0, In) with n by n identity matrix In as the covariance
matrix. The edge weights for group I was w1

ij =
√

1 − corr(xi,xj). In Group II,
the measurement vector yi at node i was simulated as yi = xi +N(0, σ2In) with
noise level σ = 0.01. The edge weight for group II was w2

ij =
√

1 − corr(yi,yj).
Group III was generated by adding additional dependency to Group I:

yi = 0.5xci+1 + N(0, σIn).

This introduce modules in the network. We assumed there were total k = 4, 5, 10
modules and each module consists of c = p/k number of points. Group IV was
generated by adding noise to Group III: zi = yi + N(0, σ2In).

No network difference. It was expected there was no network difference
between Groups I and II. We applied the 5 different distances. For the first
four distances, permutation test was used. Since there were 5 samples in each
group, the total number of permutations was

(
10
5

)
= 272 making the permutation

test exact and the comparisons fair. All the distances performed well and did
not detect network differences (1st row in Table 1). It was also expected there
is no network difference between Groups III and IV. We compared 4 module
network to 4 module network. All the distances performed equally well and did
not detect differences (2nd row in Table 1).
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Table 1. Simulation results given in terms of p-values. In the case of no network differ-
ences (0 vs. 0 and 4 vs. 4), higher p-values are better. In the case of network differences
(4 vs. 5 and 5 vs. 10), smaller p-values are better. ∗ and ∗∗ indicates multiplying 10−3

and 10−4.

L1 L2 L∞ GH KS (β0) KS (γ)

0 vs. 0 0.93± 0.04 0.93± 0.04 0.93± 0.04 0.87± 0.14 1.00± 0.00 1.00± 0.00

4 vs. 4 0.89± 0.02 0.89± 0.02 0.90± 0.03 0.86± 0.17 0.87± 0.29 0.88± 0.28

4 vs. 5 0.14± 0.16 0.06± 0.10 0.03± 0.06 0.29± 0.30 (0.07± 0.67)∗∗ (0.07± 0.67)∗∗

5 vs. 10 0.47± 0.25 0.19± 0.18 0.10± 0.10 0.33± 0.30 0.01± 0.08 (0.06± 0.53)∗

Network difference. Networks with 4, 5 and 10 modules were generated using
Group III models. Since the number of modules were different, they were con-
sidered as different networks. We compared 4 and 5 module networks (3rd row
in Table 1), and 5 and 10 module networks (4th row in Table 1). L1, L2, L∞ dis-
tances did not performed well for 5 vs. 10 module comparisons. Surprisingly,
GH-distance performed worse than L∞ in all cases. On the other hand, KS-
distance performed extremely well.

The results of the above simulations did not change much even if we increased
the noise level to σ = 0.1. In terms of computation, distance methods based on
the permutation test took about 950 s (16 min) while the KS-like test procedure
only took about 20 s in a computer. The MATLAB code for performing these sim-
ulations is given in http://www.cs.wisc.edu/∼mchung/twins. The results given
in Table 1 may slightly change if different random networks are generated.

6 Application

The methods were applied to multimodal MRI and DTI of 31 normal controls
and 23 age-matched children who experienced maltreatment while living in post-
institutional settings before being adopted by families in US. The detailed decep-
tion of the subject and image acquisition parameters are given in [7]. Ages range
from 9 to 14 years. The average amount of time spend in institutional care was
2.5 ± 1.4 years. Children were on average 3.2 years when they were adapted.

For MRI, a study specific template was constructed using the diffeomorphic
shape and intensity averaging technique through Advanced Normalization Tools
(ANTS) [1]. White matter was also segmented into tissue probability maps using
template-based priors, and registered to the template [3]. The Jacobian deter-
minants of the inverse deformations from the template to individual subjects
were obtained. DTI were corrected for eddy current related distortion and head
motion via FSL (http://www.fmrib.ox.ac.uk/fsl) and distortions from field inho-
mogeneities were corrected [12] before performing a non-linear tensor estimation
using CAMINO [9]. Subsequently, iterative tensor image registration strategy
was used for spatial normalization [13]. Then fractional anisotropy (FA) were

http://www.cs.wisc.edu/~mchung/twins
http://www.fmrib.ox.ac.uk/fsl
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Fig. 3. The plots of β0 (left) and γ (right) over
√

1 − corr. showing structural network
differences between maltreated children (dotted red) and normal controls (solid black)
on 1856 nodes. (Color figure online)

calculated for diffusion tensor volumes diffeomorphically registered to the study
specific template. Jacobian determinants and FA-values are uniformly sampled
at 1856 nodes along the white mater template boundary.

Correlation within modality. The correlations of the Jacobian determinant
and FA-values were computed between nodes within each modality. This results
in 1856×1856 correlation matrix for each group and modality. Using KS-distance,
we determined the statistical significance of the correlation matrix differences
between the groups for each modality separately. The statistical results in terms
of p-values are all below 0.0001 indicating the very strong overall structural
network differences in both MRI and DTI.

Cross-correlation across modality. Following the hyper-network framework in
[8], we also computed the cross-correlation between the Jacobian determinants
and FA-values on 1856 nodes. This results in 1856×1856 cross-correlation matrix
for each group. The statistical significance of the cross-correlation matrix differ-
ences is then determined using KS-distance (p-value < 0.0001). The KS-distance
method is robust under the change of node size and we also obtained the similar
result when the node size changed to 548.

7 Discussion

The limitation of GH- and KS-distances. The limitation of the SLM is the inability
to discriminate a cycle in a graph. Consider two topologically different graphs with
three nodes (Fig. 4). However, the corresponding SLM are identically given by

⎛

⎝
0 0.2 0.5

0.2 0 0.5
0.5 0.5 0

⎞

⎠ and

⎛

⎝
0 0.2 0.5

0.2 0 0.5
0.5 0.5 0

⎞

⎠ .
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Fig. 4. Two topologically distinct graphs
may have identical dendrograms, which
results in zero GH-distance.

The lack of uniqueness of SLMs makes
GH-distance incapable of discriminat-
ing networks with cycles [6]. KS-
distance also treat the two networks in
Fig. 4 as identical if Betti number β0

is used as the monotonic feature func-
tion. Thus, KS-distance also fail to dis-
criminate cycles.

Computation. The total number of
permutations in permuting two groups
of size q each is [8]

(
2q
q

) ∼ 4q√
2πq

. Even
for small q = 10, more than tens of
thousands permutations are needed for
the accurate estimation the p-value.
On the other hand, only up to 10 terms
are needed in the KS-distance method.
The KS-distance method avoids the computational burden of permutation tests.
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