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Introduction

An online algorithm is one that processes its inputted data
in a sequential manner (Karp, 1992). Instead of processing
the entire set of imaging data from the start, an online al-
gorithm processes one image at a time. That way, we can
bypass the memory requirement, reduce numerical insta-
bility and increase computational efficiency. Since medical
image processing is often done semi-automatically, the re-
sulting images may be available at the same time. Further,
modern medical imaging datasets are too large to fit into a
computer’s memory. Thus, there is a need to develop an
iterative analysis framework where the final statistical maps
are updated sequentially each time a new image is added to
the analysis.

Online algorithm for t-test

Given images x1, · · · , xm, an online algorithm for computing
the sample mean image µm is given by

µm =
1

m

m∑
i=1

xi = µm−1 +
1

m
(xm − µm−1).

An online algorithm for computing the sample variance map
σ2

m is algebraically involved (Chan et al., 1983; Knuth, 1981).
It can be shown that

σ2
m =

1

m − 1

m∑
i=1

(xi − µm)2

=
m − 2
m − 1

σ2
m−1 +

1

m
(xm − µm−1)2

for m ≥ 2. The algorithm starts with the initial value σ2
1 = 0.

Given measurements x1, · · · , xm ∼ N (µ1, (σ1)2) in one group
and y1, · · · , yn ∼ N (µ1, (σ2)2) in the other group, the two-
sample t-statistic for testing µ1 = µ2 at each voxel is given
by

Tm,n =
µ1m − µ

2
n − (µ1 − µ2)√

(σ1)2m/m + (σ2)2n/n
,

where µ1m, µ
2
n, (σ1)2m, (σ

2)2m are sample means and variances
in each group estimated using the online algorithm. Tm,n is
then sequentially computed as

T1,0 → T2,0 → · · · → Tm,0 → Tm,1 → · · · → Tm,n

in m + n steps.

Online algorithm for regression

(m − 1)-th step. Given data vector ym−1 = (y1, · · · , ym−1)′ and
design matrix Zm−1, consider linear model

ym−1 = Zm−1λm−1

with unknown parameters λm−1 = (λ1, λ2, · · · , λk)′. The least
squares estimation (LSE) of λm−1 is then given as

λm−1 = W−1
m−1Z

′
mym−1,

where Wm−1 = Z′m−1Zm−1 is a k × k matrix.

m-th step. When new data ym is introduced to the model, it is
updated as (

ym−1

ym

)
=

(
Zm−1

zm

)
λm,

where zm is a row vector of size 1× k. Subsequently, we have

W ′
m−1λm−1 + z′mym = (Wm−1 + z′mzm)λm.

Using Woodbury formula (Deng, 2011), we can show that
the estimated parameters λm−1 are updated as

λm = (I −W−1
m−1z

′
mym − cmW−1

m−1z
′
mW ′

m−1)λm−1

−cmW−1
m−1z

′
mz′mym,

where cm = 1/(1 + zmWm−1z′m) is scalar and I is the identity
matrix of size k × k. The algorithm needs to start from

λk → λk+1 → · · · → λm.

Our algorithm does not require the factorization or direct
inversion of matrices and thus more efficient compared to
real-time fMRI analysis (Bagarinao et al., 2006), where the
Cholesky factorization was used to invert the covariance
matrix.

Online algorithm for F-test

Let yi be the i-th image, xi = (xi1, · · · , xip)′ to be the variables
of interest and zi = (zi1, · · · , zik)′ to be nuisance covariates.
We assume there are m − 1 images to start with. Consider a
general linear model

ym−1 = Zm−1λm−1 + Xm−1βm−1,

where Zm−1 = (zi j) is (m − 1) × k design matrix, Xm−1 = (xi j)
is (m − 1) × p design matrix. λm−1 = (λ1, · · · , λk)′ and
βm−1 = (β1, · · · , βp)′ are unknown parameter vectors to be

estimated.

Reduced model. The reduced model corresponding to null
hypothesis β = 0 is

ym−1 = Zm−1λ
0
m−1.

The goodness-of-fit of the null model is measured by the
sum of the squared errors (SSE):

SSE0
m−1 = (ym−1 − Zm−1λ

0
m−1)

′(ym−1 − Zm−1λ
0
m−1),

where λ0
m−1 is estimated sequentially using online algorithm

for regression:

SSE0
k → SSE0

k+1 → · · · → SSE0
m.

Full model. The fit of full model is similarly measured by

SSE1
m−1 = (ym−1 − Zm−1γ

1
m−1)

′(ym−1 − Zm−1γ
1
m−1),

where Zm−1 = [Zm−1Xm−1] and

γ1
m−1 =

(
λ1

m−1
β1

m−1

)
.

SSE for the full model is also estimated sequentially:

SSE1
k+p → SSE1

k+1 → · · · → SSE1
m.

Under null hypotheis β = 0, the test statistic at the m-th
iteration fm is given by

fm =
(SSE0 − SSE1)/p
SSE0/(m − p − k)

∼ Fp,m−p−k,

which is the F-statistic with p and m − p − k degrees of free-
dom.

Fig. 1. (a) A representative mandible binary segmentation
that are affine registered to the template. (b) Gaussian

kernel smoothing of segmentation with bandwidth σ = 20.
Smoothing can easily patch topological artifacts such as

cavities and handles. The sample mean (c) and variance (d)
of the smoothed maps computed using the online

algorithms.

Fig. 2. Top: t-stat. maps showing mandible growth. The
elongation of mandible is shown between Groups II and III,
and I and III. The condyle regions show prominent growth
in Group III- I comparison. At the same time, the elongation

is shown as negative growth (dark blue). Bottom: t-stat.
maps (male - female) showing sex differences in each age

group. There were no significant sex differences in groups I
and II. However, pubertal and post-pubertal sex differences

are evident in group III that starts at age 13.

Application

Subjects. The dataset consisted of 290 typically developing
individuals. The age distribution of the subjects is 9.66 ± 6.34

years. The minimum age was 0.17 years and maximum age
was 19.92 years. A total of 160 male and 130 female subjects
were divided into 3 groups. Group I (age below 7) contained
130 subjects. Group II (between 7 and 13) contained 48 sub-
jects. Group III (between 13 and 20) contained 112 subjects.

Image preprocessing. The mandibles in CT were semi-
automatically segmented using an in-house processing
pipeline that involves image intensity thresholding (Kelly
et al., 2017). The segmented binary images were then affine
registered to the mandible labeled as F226-15-04-002-M,
which served as the template (Fig. 1). We smoothed the
binary images with Gaussian kernel with bandwidth σ = 20
voxels (Fig. 1). Since the CT image resolution is 0.35mm,
20 voxel wide bandwidth is equivalent to 7mm. The band-
width was chosen to reflect the size of missing teeth and
cavities. Any smaller filter size will not mask large missing
teeth and cavites. The average of all 290 smoothed binary
images was used as the final template and distributed as
a potential prior map for more advanced shape modeling:
http://www.stat.wisc.edu/˜mchung/VBM.

Since the statistic maps are correlated over voxels, we cor-
rected multiple comparisons using the random field theory
(Worsley et al., 1998). Using the proposed online algorithm,
statistics are computed sequentially by adding one image at
a time and tested for age and sex effects.

Age effects. We performed the t-test to assess age effects
between the groups (Fig. 2-top). Voxels above or below
±4.41, 4.37 and 4.43 were considered significant in the t-
statistics between age groups I and II, II and III, and I and
III respectively at the 0.05 level. The dark red regions show
positive growth (bone deposition) and dark blue regions
show negative growth (bone resorption). The findings are
consistent with previous studies based on 2D surface de-
formation (Chung et al., 2015) and landmarks (Kelly et al.,
2017).

Sex effects. Within each group, we tested the significance
of sexual dimorphism by performing the two-sample t-test
between males and females (Fig. 2-bottom). Any region
above or below ± 4.37, 4.89 and 4.50 (for group I, II and III
respectively) were considered significant at 0.05 level. In
group I and II, there is no gender differences. In group III,
the statistical significance is localized in the regions between
Condyle and Gonion in the both sides. Such findings are
consistent with general findings on sexual dimorphism that
become evident during puberty.
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