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Abstract

We present a novel probabilistic approach of representing the connectivity of the brain white fiber
in diffusion tensor imaging via anisotropic Gaussian kernel smoothing. Our approach is simpler
than solving a diffusion equation, which has been used in probabilistic representation of white
matter connectivity by other researchers. Also the connectivity metric is deterministic in a sense
that it avoids using Monte-Carlo random walk simulation in constructing the transition probability
so the resulting connectivity maps do not change from one computational run to another. As a
further usefulness of this new method, the same computational framework can also be used in
smoothing functional and structural signals along the white fiber tracks.

1 Introduction

Diffusion tensor imaging (DTI) is a new technique that provides the directional information of
water diffusion in the white matter of the brain. The directional information is usually represented
as a symmetric positive definite3 × 3 matrix which is usually termed as thediffusion tensoror
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diffusion coefficients. The diffusion tensor can be used to estimate the patterns of white matter
connectivity. In white matter tractography, a continuous path of connection between two brain
regions is estimated mainly from the eigenvectors of the diffusion tensor. Most of current white
matter tractography is based on streamlines (Conturoet al., 1999; Moriet al., 1999; Basseret al.,
2000) or the variations on the streamlines such as tensor deflection method (Weinsteinet al., 1999;
Lazaret al., 2003). Also Tenchet al. (2002) introduced a hybrid streamline-based tractography
where the direction of principal eigenvector is modelled stochastically to overcome the shortcom-
ings of DTI. The white fiber tracking is prone to cumulative acquisition noise and partial volume
effect so the estimated white fiber tracks might possibly be erroneous in some cases (Alexanderet
al., 2001; Basseret al., 2000; Tenchet al., 2000). So it is crucial to develop a connectivity metric
that is robust under the effect of acquisition noise and partial voluming. Such a robust metric can
be possibly used in voxel-based morphometry (VBM) (Ashburneret al., 2000) in detecting the
region of the connectivity difference between two clinical groups of brain images. In the classical
VBM, the gray and white matter concentration probability metrics are computed and used for sta-
tistical inference on gray and white matter concentration at each voxel. In DTI, instead of white
and gray matter concentration probability, we can introduce the concept of connection probability
metric which measures the strength of how two regions of the brain are connected via the white
fiber tracks.

Before we go to the detailed discussion of our new method, let us review the relevant previous
works on probabilistic connectivity measures in DTI that have been used in brain imaging. The
probabilistic approach to the white fiber tracking is somewhat new. Kochet al. (2002) introduced
a Monte-Carlo random walk simulation that uses a different transition probability than our own.
Their algorithm has a certain restrictions built in the random walk so that it was only allowed to
jump in a direction within 90 degree from the previous jump direction, which restricts the jump to
a very small number of voxels in the neighborhood. Furthermore they only considered the voxels
with the fractional anisotropy (FA) index (Basser and Pierpaoli, 1996) and sum of the eigenvectors
bigger than certain thresholds. Then based on the Monte-Carlo simulation of 4000 random walks,
they computed the probabilistic connectivity measure. Our kernel-smoothing based result would
be somewhat compatible to the Monte-Carlo approach of Koshet al. (2002) with unrestricted
random walk and different local weights. However, our approach would be easier to implement
numerically compared to the Monte-Carlo simulation of Koshet al. (2002).

Hagmannet al. (2000) used a hybrid approach combining Monte-Carlo random walk simulation
with information about the white fiber track curvature function in the corpus callosum. Then
assuming bivariate normal distribution of the random walk hitting a vertical plane at some distance
apart, they estimated the covariance matrix and performed a statistical hypothesis testing of the
homogeneity of covariance matrix in the different regions of the corpus callosum.

Batcheloret al. (2002) solved an anisotropic heat equation where the diffusion coefficients of
the heat equation are the diffusion coefficients of DTI. To get the probabilistic measure of the
connectivity, the diffusion equation is solved with the initial condition where every vertex is zero
except a seed region where it is given the value one. Then the value 1 is diffused though the brain
and the numerical value that should be between 0 and 1 is taken as a probability of connection.
Mathematically it is equivalent as the Monte-Carlo random walk simulation (Koshet al., 2002)
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Figure 1: Left: the original diffusion coefficientsD0 for 2D slice, Right: normalized diffusion
coefficientsD = D0/trD0 for 2D slice. D gives a natural Riemannian metric tensorG = D to
DTI. For display purpose, 2 dimensional version of anisotropic Gaussian kernel smoothing are
presented.

with no restriction.

Our kernel smoothing approach presented here is different from Koshet al. (2002) and Batch-
elor et al. (2002) but it is compatible to these two methods. In our kernel-based approach, the
connectivity metric is taken as the transitional probability density of a continues diffusion process
and it is estimated via spatially adaptive anisotropic Gaussian kernel smoothing. This is simple to
implement numerically compared to solving an anisotropic diffusion equation numerically. Fur-
ther, unlike the Monte-Carlo random walk simulation approach, it always give the deterministic
metric that does not change from one run to another so it would be better suited in VBM-like mor-
phometry. As a further usefulness of this nobel technique, this smoothing technique can be used to
smooth out data to increase the signal-to-noise ratio (SNR) while preserving the directional infor-
mation of DTI. This kind of directional smoothing would be needed for DTI template construction
and DTI registration. In this context, G̈osslet al. (2002) applied an isotropic Gaussian kernel
smoothing with FWHM of 0.75 voxels to get a sufficiently smooth, continuous representation of
the DTI data in white fiber tracking using the linear state space model. However, the isotropic
smoothing tends to smooth out the directional characteristic of the DTI data. Even though Gössl
et al. (2002) reported that the use of isotropic kernel smoothing performs sufficiently well for
their computation, but they indicated that a more sophisticated smoothing algorithm should be
investigated. Our anisotropic kernel smoothing approach might shed a light on this respect.
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2 Anisotropic Gaussian kernel Smoothing

Let x = (x1, · · · , xn)′ ∈ Rn. Then-dimensional isotropic Gaussian kernel is given by

K(x) = exp(−x′x/2)/(2π)n/2,

which is the joint multivariate normal probability density function ofn independent standard nor-
mal random variables. Note that

∫
Rn K(x) dx = 1. The full width at half maximum(FWHM)

which is the usual unit for filter size among brain imaging researchers is given by

FWHM = 2(ln 4)1/2.

It is the length of the full width of the kernel at half maximum. Theanisotropic Gaussian kernelis
defined as the generalization of isotropic kernelKH(x) = K(H−1x)/ det(H), whereH is an×n
constantbandwidth matrix. Note thatKH(x) is a multivariate normal density with the mean zero
and the covariance matrixHH ′. Since levelset of the anisotropic Gaussian kernel is ellipsoidal, we
generalize FWHM of isotropic kernel. Supposeλi are eigenvalues ofHH ′, it can be shown that√

λi ln 4 are FWHM along the principal axis of ellipsoidx′(HH ′)−1x = ln 4. Taking the average
generalized-FWHM to be locally

FWHM =
2(ln 4)1/2

n

n∑
i=1

√
λi =

2(ln 4)1/2

n
tr (HH ′)1/2.

Anisotropic Gaussian kernel smoothingis defined as the convolution of signalf and kernelKH :

F (x) = KH ∗ f(x) =

∫

Rn

KH(x− y)f(y) dy. (1)

Note thatKH ∗f(x) = f ∗KH(x). Because of the computational difficulty of integrating from−∞
to∞ in (1), the integral is usually truncated within a close and bounded domain and corrected for
the truncation. The kernelKH(x) decreases exponentially as|x| increases so the most of weight
should be concentrated near the origin. For example, when we integrate the kernelK in the closed
cube[−2.58, 2.58]n, we get0.99n which is sufficiently close enough to the total probability 1. Let
us denote the truncated and normalized kernel as

K̃H(x) =
KH(x)1B(x)∫
B

KH(y) dy
,

where1B is an index function that gives zero everywhere exceptB where it gives the value one.
B can be taken as either a closed ball or cube centered around the origin. Then we approximate
the convolution (1) as

F (x) = K̃H ∗ f(x) =

∫
Bx

KH(x− y)f(y) dy∫
B

KH(y) dy
, (2)

whereBx is the translation ofB to x, i.e. Bx = x+ B. The two important properties of the kernel
smoothing are

|KH ∗ f(x)| ≤ |f(x)|, (3)

5



Figure 2: Left: the principal eigenvalues ofD. Middle: x-component of the principal eigenvectors.
Right: y-component of the principal eigenvectors. Note that thex coordinate direction is along the
vertical axis whiley direction is along the horizontal axis followingMATLABconvention.

∫

Rn

KH ∗ f(x) dx =

∫

Rn

f(x) dx. (4)

So if f is a probability density function, then integral (4) is one showing the conservation of the
total probability under kernel smoothing. This is also true forK̃H and this fact will be used in the
later section. For numerical implementation, we defineBx to be a collection of voxels that forms
a cube aroundx. The discrete version of the truncated kernel is then

K̃H(x) = KH(x)/
∑

xj∈Bx

KH(xj)

and the discrete version of the kernel smoothing

F (x) = K̃H ∗ f(x) =
∑

xj∈Bx

K̃H(x− xj)f(xj), (5)

Note that
∑

xj∈Bx
K̃∆t(x) = 1 for all x ∈ Rn. So we can view the discrete version of anisotropic

Gaussian kernel as a weighted local averaging.

3 Riemannian Metric Tensors

Let D0 be raw diffusion coefficients.D0 is represented asn× n matrix inRn. We normalize it by
D = D0/trD0. This normalization guarantees that the sum of eigenvalues ofD to be 1. Consider
a vector fieldV = (V1, · · · , Vn)′ which is the principal eigenvector ofD with ‖V‖ = 1 with the
corresponding principal eigenvalueλ. Now suppose that we would like to smooth signals along
the vector fieldsλV such that we smooth more along the larger vector fields. Suppose that the
stream line or flowx = ψ(t) corresponding to the vector field is given by

dψ

dt
= (λV) ◦ ψ(t).
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Figure 3: Left: normalized FA-map. Middle: isotropic Gaussian kernel smoothing with 12mm
FWHM. Right: anisotropic Gaussian kernel smoothing with generalized 12mm FWHM.

This ordinary differential equation gives a family of integral curves whose tangent vector isλV
(Betounes, 1998). The line element is

dψ2 = λ2(V 2
1 dx2

1 + · · ·+ V 2
n dx2

n).

So gij = λ2V 2
i δij. We want to smooth more along the larger metric distance so we letHH ′ =

2tG,G = (gij), i.e.

HH ′ = 2λ2t




V 2
1 0 · · · 0
0 V 2

2 · · · 0
· · · · · · · · · · · ·
0 0 · · · V 3

n


 .

By introducing the scaling parametert, we left a room for adjusting the amount of smoothing. For
the above choice of the covariance matrix, anisotropic kernel is given by

Kt(x) = (4πλ2t)−n/2

n∏
j=1

1

|Vj| exp
(
− x2

j

4λ2tV 2
j

)
. (6)

For this type of kernel, our generalized FWHM is locally

FWHM = 4λ
√

t
( |V1 · · ·Vn|

2

)1/2 1

n

n∑
i=1

Vi.

In the caseVj = 0 while |V| 6= 0 in (6), the kernel diverges. To avoid the divergence in numerical
implementation, we can introduce very smallε and useV+ ε instead ofV in computing kernel. In
the numerical computation, we usedε = 10−10. The advantage of using only the principal eigen-
vectors would be the simplicity of the implementation while the drawback is that the computation
of the principal eigenvectors takes a fair amount of time inMATLAB as well as the fact that the
method does not completely utilize other eigenvectors. Further the above kernel has a problem in
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the case of constant fieldV = (1, · · · , 1)/
√

n. In this particular case the kernel is isotropic. A way
to avoid this is to introduce the cross-product terms into the matric tensor. Metric likegij = ViVj

would give such structure. However such metric tensor is not positive definite.

To address this problem, we formulate the estimation ofHH ′ as the least-squares estimation
problem. We wish to find the covariance matrixHH ′ of the kernel that givesV as a eigenvector.
Without the full set of eigenvalues and eigenvectors, the exact determination of the covariance
matrix is not possible. So we estimate the components ofHH ′ by minimizing the sum of the errors,
i.e. the least-squares estimation. SolvingHH ′V = λV, we have an estimatêHH ′ = λVV−,
whereV− is the Moore-Penrose generalized inverse ofV. It is trivial to show that for unit column
vectorV− = V′. HoweverVV− singular. To get the positive definite symmetric estimatêHH ′,
we add small epsilon in the diagonal term:

(HH ′ − εI)V = (λ− ε)V

for some0 < ε < λ. Then taking the Moore-Penrose inverse, we get

ĤH ′ = εI + (λ− ε)VV−.

Whenε is relatively small compared toλ, i.e. λ− ε ≈ λ so

ĤH ′ = εI + λVV′. (7)

Note that this basically corresponds to matchingHH ′ to the Riemannian metric tensor of the form

dψ2 = (εδij + ViVj)dxidxj.

From Corollary 18.2.11 of Harville (1997), the inverse of̂HH ′ is given by

ĤH ′−1
=

1

ε
I +

ε− λ

λε
VV′ ≈ 1

ε
I − 1

ε
VV

′.

Also from Corollary 13.7.4 of Harville (1997), the determinant of̂HH ′ is approximated as

det(ĤH ′) = εn +
εn−1

λ− ε
≈ εn−1

λ

In this case the anisotropic kernel is given by

Kε(x) = α
(ελ)1/2

(2πε)n/2
exp

(x′(I − vv′)x
2ε

)
,

whereα is a normalizing constant to makeKε(x) a probability density. It can be computed numer-
ically at each voxel.ε can be used to control the amount of smoothing.

The above approach is based on constructing the Riemannian metric tensors based on the princi-
pal eigenvectors and eigenvalues of the diffusion tensorD. If one want to utilize the full diffusion
tensor information that is available in DTI, we note the fact that the inverse of the diffusion tensor
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D gives a natural Riemannian metric tensor along the white matter fibers in the brain, i.e.G = D.
For the rigorous mathematical justification, see De Lara (1995). A similar Riemannian metric ten-
sor approach in connection with DTI can be found in Chefd’hotelet al. (2002) and O’Donnellet
al. (2002). In particular O’Donnellet al. (2002) matched the diffusion tensorD to the inverse
of the metric tensorG and applied it in computing the tensor-warped distances in the white fibers.
We may simply letHH ′ = 2tD but any reasonable functional relationship betweenHH ′ andD
such asHH ′ = D2 or HH ′ = (I + D)2 can be used for the covariance matrix depending on how
one want to smooth data along the diffusion tensor fields. Based on the natural Riemannian metric
tensorD of the diffusion, our anisotropic kernel is given by

Kt(x) =
exp(−x′D−1x/4t)

(4πt)n/2(det D)1/2
.

AssumingD is constant everywhere, it can be shown thatKt∗f(x) is a solution to an anisotropic
diffusion equation

∂g

∂t
= ∇ · (D∇g) (8)

with the initial conditiong(x, 0) = f(x) after time t. If D is not constant,Kt ∗ f(x) is an
approximate solution to (8) in the small neighborhood ofx whereD can be considered as constant.
The exact solution to the equation(8) with the initial conditiong(x, 0) = δ(x) has been used as the
probabilistic representation of white fiber track connectivity by Batcheloret al. (2002). Note the
conservation of total probability

∫
Rn g(x, t) dx = 1 for all t. So in the diffusion equation approach,

at each iteration step, the connectivity probability will always sum up to one and this will be also
true for our kernel approach. WhenD is not constant, we have an adaptive filter where the filter
size is given by

FWHM =
2(ln 4)1/2

n
tr(2tD)1/2 =

(2 ln 4)1/2

√
tn

n∑
i=1

√
λi,

whereλi are the eigenvalues ofD.

4 Transition Probability

Let Pt(p,q) be thetransition probability densityof a particle going fromp to q under diffusion
process. This is the probability density of the particle hittingq at timet when the particle is atp
at time 0. Then thetransition probabilityof going from pointp to another regionQ is given by

Pt(p,Q) =

∫

Q

Pt(p,x) dx.

Note that
∫
Rn Pt(p,x) dx = 1. For brain imaging, regionQ would be a collection of voxels

and it might possibly consist of a single voxelp. So we will interchangeably usePt(p,q) as
either transition probability density or transition probability if there is no ambiguity. The transition
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Figure 4: Left: The principal eigenvalues and eigenvectors of the diffusion tensor. The arrows
are the principal eigenvectors. The anisotropic kernel technique smooths along the direction of
the principal eigenvectors and the amount of the smoothing is related to the principal eigenvalues.
Right: The connection probability computed via the kernel smoothing and displayed in logscale.
Comparing the left and right figures, we see the log transition probability has higher probability
along the white fiber path ways.

probability is the most natural probabilistic measure associated with diffusion process and we will
develop our connectivity measure based on the transition probability.

If the diffusion coefficientD is constant inRn, it can be shown thatPt(p,q) = Kt(q − p).
(Stevens, 1995). SinceD is varying over the brain regions, it will be only valid whenp andq are
short distance apart and we may takeD(x) to be constant in the neighborhood ofx.

The transition probability of a particle going fromp to any arbitraryq is the total sum of the
probabilities of going fromp to q through all possible intermediate pointx ∈ Rn. Therefore,

Pt(p,q) =

∫

Rn

Ps(p,x)Pt−s(x,q) dx (9)

for any 0 < s < t. It is traditionally called the Chapman-Kolmogorov equation (Paul and
Baschnagel, 1999). The equation still hold in the case whens is either 0 ort, since it that case
one of the probability in the integral will become the Dirac-delta function and in turn the integral
collapse to the probability on the left side.

Note that the probabilityP (p,x) will decrease exponentially as the distance betweenp and
x increase so following a similar argument as in the case of anisotropic kernel smoothing, we
approximate the above integral on a small regionBp centered aroundp. For any pointx ∈ Bp,
Ps(p,x)

.
= Ks(p− x). Then for any arbitary two pointsp andq,

Pt(p,q)
.
=

∫
Bp

Ks(p− x)Pt−s(x,q) dx∫
Bp

Ks(p− x) dx
.

10



Figure 5: Top: the original diffusion tensorsd11, d22 andd12. Bottom: the inverse of the diffusion
tensors,d11, d22 andd12, which are need for computing the anisotropic kernel. Note thatdij have
been smoothed via the Cholesky factorization and normalized by the trace of the inverse.

Whens → 0, the approximation becomes exact since all the weights of the kernel will be inBp.
Again the denominator is a correction term for compensating the underestimation of the numerator.
Note that this is the integral version of Gaussian kernel smoothing of dataPt−s(x,q) for givenq.
Comparing with the formulation of the Gaussian kernel smoothing, we immediately see that for
givenp,

Pt(p,q)
.
= K̃s ∗ Pt−s(p,q),

where the convolution is with respect to the first argumentp. Again note that whens → 0, the
equation becomes exact. This formulation is somewhat simpler to solve numerically by iteration
than solving the Chapman-Kolmogorov equation. Suppose thatt = N∆t ands = ∆t. Then we
have iteration

Fj(q) = K̃∆t ∗ Fj−1(q), (10)

whereFj(q) = Pj∆t(p,q) for a givenp and the initial conditionF0(q) = P0(p,q) = δ(p − q).
The reason we get the Dirac-delta function is that the transition probability of a particle atp hitting
any pointa instanenously is zero except whenq = p. The important properties of our iterative
procedure is the conservation of the total probability at each iteration. From (10),

∫

Rn

Fj+1(x) dx =

∫

Bx

K̃∆t(x− y) dy

∫

Rn

Fj(x) dx =

∫

Rn

Fj(x) dx.

SinceF1(q) = K̃∆t ∗ δ(q) = K̃∆t(q), F1 is a probability function and it will integrate to one so∫
Rn Fj(x) dx = 1. HenceFj is also a probability function at each iteration. As we run the iteration,
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Figure 6: Log-transition probability at 20, 40, 60, 100,180 and 200 iterations respectively showing
the anisotropic propagation of the total probability 1.t = 0.1 has been used for smoothing with
the kernel (6).

the total probability will be dispersed over all region of brain from the seed (Figure 6). If there are
one million voxels within the brain, in average, each voxel will have the connection probability of
one over a million, which is extremely small. So eventhough the connectivity measure based on
the transition probability is a mathematically sound one, it may not be a good one for visualization.
So what need is the log-scale of the transition probability, i.e.ρ = log Pt(p,q) and we propose
this as a probabilistic metric for measuring the strength of the anatomical connecitivy. We will
refer this metric as thelog-transition probability. For simplicity we may letp = 0 and letρ(q) =
log Pt(0,q) for fixed t. If the diffusion coefficient is constant, the log-transition probility can
be represented in a simple formulaρ(x) = −x′D−1x − ∑n

i=1 log λi − n
2

log(4πt), whereλi are
the eigenvalues ofD. WhenD = I, ρ(x) = −x′x − n

2
log(4πt). For a region of intestQ, the

log-transition probability of reachingQ would beρ(Q) = log
∫
Q

Pt(0,x) dx.

5 Results

DTI of normal subjects were obtained using 1.5 tesla SIGNA scanners. A conventional single-shot
spin echo EPI pulse sequence was modified to obtain diffusion-weighted (DW) images from any
arbitrary set of specified diffusion-weighting directions (Lazaret al., 2003).

Because of noise involved in DTI, smoothing DTI imagesD = (dij) are necessary but we can
not smooth each componentdij of the diffusion tensorD separately. Doing so will violate the
positive definiteness. So we perform the Cholesky factorization toD and smooth the elements of
the Cholesky factor (Figure 4, 6 and 7). LetR = (rij) be the upper triangular Cholesky factor such
thatD = R′R. Then we smooth eachrij with isotropic kernel with small filter size and reconstruct
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Figure 7: Top: Cholesky factorsr11, r22, r12 respectively. Bottom: smoothed cholesky factors with
8mm FWHM isotropic Gaussian kernel.

back.

In discretizing the integral version of kernel smoothing (2), we assume that the center of voxels
in DTI to be on the integer latticeZn. The affine transformation that maps DTI to the latticeZn

without changing the maximal connectivity measure is used to simplify the computation. Take
Bx to be the collection of voxels incident to voxelx andx itself. There are3n voxels inBx.
The smaller the bandwidth parameter∆t, the more concentrated the weighting is to these incident
voxels. The smaller supportBx is used to speed up the computational time. Let’s illustrate how
the method works in the case of isotropic kernel. Anisotropic kernel case is similar except that the
kernel changes from voxel to voxel. The 2D isotropic kernel whenH = I for ∆t = 0.1 is given
by 


0.0054 0.0653 0.0054
0.0653 0.7958 0.0653
0.0054 0.0653 0.0054


 .

Contributions outside 9 voxels are negligible (less than0.0001) so we use∆t ≤ 0.1 and9 voxel
neighborhood for our computation. If a more accurate connection probability is desired, one may
tempted to use more neighborhood; however, that is not necessary if∆t is very small. Note that∑

xj∈Bx
K∆t(xj) = 1.0785 while

∑
xj∈Z2 K∆t(xj) = 1.0787, about a0.0002% difference. So

even after 500 iterations using the above truncated kernel, there will be only0.1% difference to
true value in the discrete lattice. Since the dimension of DTI is less than5003, the probability of
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Figure 8: Top: normalized diffusion tensorsd11, d22, d12 respectively. Bottom: smoothed diffusion
tensors. Note that we are smoothing the Cholesky factorsrij and reconstructing back intodij via
D = R′R.

connection can be computed in less than 500 iterations. Normalizing the above kernel, we get

K̃∆t =




0.0050 0.0606 0.0050
0.0606 0.7378 0.0606
0.0050 0.0606 0.0050


 .

The discrete version of the Dirac-delta function is the Kronecker’s delta. So we letF0(q) = 0
everywhere exceptF0(p) = 1. Then using the discrete convolution, we computed

Fj+1(q) = K̃∆t ∗ Fj(q).

At each stage of iteration the total probability is conserved, i.e.
∑

q∈Zn Fj(q) = 1.

Discussions

We introduced a novel approach of spatially adaptive anisotropic Gaussian kernel smoothing in
representing the white fiber track connectivity via the concept of the transition probability of a
diffusion process. Compared to the previous approaches of Monte-Carlo simulation or diffusion
equation, our kernel method is simpler to implement. Further our anisotropic kernel method can be
used to smooth data along the white fiber tracks to get the continuous and smooth representation
of data while preserving the directional characteristic of DTI. So it is hoped that the anisotropic
kernel method can be further investigated in relation to the registration, segmentation and other
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Figure 9: The transition probabilities from the center voxel to neighboring voxels. Using these
probabilities as the weights, kernel smoothing is applied as the weighted averaging.

image processing in DTI. Our spatially adaptive anisotropic kernel smoothing is compatible to
solving an anisotropic diffusion equation in computational speed since both approaches can be
viewed as an iterative adaptive local weighted averaging. To speed up the kernel smoothing, we
may use decomposition scheme of Geusebroek in future (Geusebroeket al., 2002).

For simulating DTI for nonparametric inference, one may generate isotropic Gaussian random
field by convolving white noise with isotropic Gaussian kernel. Letw(x) be the white noise whose
covariance function is of the formσ2

wδ(x − y) for some constantσ2
w (Dougherty, 1999). Let

Kt(x) = exp(−x′x/4t)/(4πt)n/2 be the isotropic kernel. Then we generate a Gaussian field via
e(x) = Kt ∗ w(x). The covariance function ofe is

Re(x,y) =

∫

R2

Kt(x− x′)Kt(y − y′)Rw(x′,y′) dx′ dy′.

From the property of the Dirac-delta function, the variance ofe can be shown to be

σ2
e = σ2

w

∫

R
K2

t (x− x′) dx′.

SinceK2
t (x) = Kt/2(x)/(8πt)n/2, by integrating the above integral we haveσ2

e = σ2
w/(8πt)n/2.

Based on this relationship, we simulated an isotropic Gaussian field with the specific varianceσ2
e

from the discrete version of white noise with varianceσ2
w. σ2

e is estimated from DTI. In our data,
all voxels where the diffusion tensor is positive definite, the sample variance for eacheij ranged
from 0.006 to 0.009. For simulation we letσ2

e = 0.01 to give a little bit more noise than actual DTI
to show the robustness of our connectivity metric.
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Figure 10: Left: White matter tracking based on the tensor deflection algorithm (Lazaret al.,
2003) Middle: Arrows represent the principal eigenvectors. Right: The log transitional probability
of connectivity from the seed point taken at the splenium of the corpus callosum. The smoothing
was performed in the region FA≥ 0.2.

If one is interested in inference on the transition probability metric, one would test the hypothe-
sis:

H0 : ρ(x) = ρ0 vs. H1 : ρ(x) > ρ0

for fixedx. An appropriate test statistic would be

Z =
ρ̄(x)− ρ0

S(ρ(x))
,

whereρ̄ andS(ρ) are the sample mean and standard deviation of a sample log-transition probability
imageρ1, · · · , ρm respectively. Unfortunately, our statisticZ will not be theT random fields as
defined in Worsleyet al. (1996) due to the nonlinearity of the kernel smoothing used. For the
inference, we need to know the probability distribution ofρ from the distribution ofD; however,
it is hard to compute the exact distribution analytically. So we may estimate the distribution ofρ
andZ via bootstrapping the threshold would be based on computing the quantiles of the estimated
distribution.
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