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We first propose a large deformation diffeomorphic metric mapping algorithm to align multiple b-value
diffusion weighted imaging (mDWI) data, specifically acquired via hybrid diffusion imaging (HYDI). We
denote this algorithm as LDDMM-HYDI. We then propose a Bayesian probabilistic model for estimating
the white matter atlas from HYDIs. We adopt the work given in Hosseinbor et al. (2013) and represent the
q-space diffusion signal with the Bessel Fourier orientation reconstruction (BFOR) signal basis. The BFOR
framework provides the representation of mDWI in the q-space and the analytic form of the emsemble
average propagator (EAP) reconstruction, as well as reduces memory requirement. In addition, since
the BFOR signal basis is orthonormal, the L2 norm that quantifies the differences in the q-space signals
of any two mDWI datasets can be easily computed as the sum of the squared differences in the BFOR
expansion coefficients. In this work, we show that the reorientation of the q-space signal due to spatial
transformation can be easily defined on the BFOR signal basis. We incorporate the BFOR signal basis into
the LDDMM framework and derive the gradient descent algorithm for LDDMM-HYDI with explicit orien-
tation optimization. Additionally, we extend the previous Bayesian atlas estimation framework for scalar-
valued images to HYDIs and derive the expectation–maximization algorithm for solving the HYDI atlas
estimation problem. Using real HYDI datasets, we show that the Bayesian model generates the white mat-
ter atlas with anatomical details. Moreover, we show that it is important to consider the variation of mDWI
reorientation due to a small change in diffeomorphic transformation in the LDDMM-HYDI optimization
and to incorporate the full information of HYDI for aligning mDWI. Finally, we show that the LDDMM-
HYDI outperforms the LDDMM algorithm with diffusion tensors generated from each shell of HYDI.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Diffusion-weighted MRI methods are promising tools for char-
acterizing tissue microstructure. While diffusion tensor imaging
(DTI) and high angular resolution diffusion imaging (HARDI)
methods are widely used methods, they do not provide a complete
description of the diffusion distribution. In order to more
accurately reconstruct the ensemble average propagator (EAP), a
thorough the sampling of the q-space is needed, which requires
multiple b-value diffusion weighted imaging (mDWI). The EAP
estimation using mDWI better characterizes more complex neural
fiber geometries and non-Gaussian diffusion behavior when com-
pared to single b-value techniques (Wu and Alexander, 2007).
Recently, new q-space imaging techniques, diffusion spectrum
imaging (DSI) (Wedeen et al., 2005) and hybrid diffusion imaging
(HYDI) (Wu and Alexander, 2007) have been developed for esti-
mating the EAP. HYDI is a mDWI technique that samples the diffu-
sion signal along concentric spherical shells in the q-space. The
number of encoding directions increases with each shell to
increase the angular resolution with the level of diffusion weight-
ing. Originally, HYDI employed the fast Fourier transform (FFT) to
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reconstruct the EAP. However, the recent advent of analytical EAP
reconstruction schemes, which obtain closed-form expressions of
the EAP, obviate the use of the FFT in HYDI. Such reconstruction
schemes include diffusion propagator imaging (DPI) (Descoteaux
et al., 2011), simple harmonic oscillator based reconstruction and
estimation (SHORE) (Ozarslan et al., 2008), spherical polar Fourier
imaging (SPFI) (Cheng et al., 2010; Assemlal et al., 2009). One
recent technique successfully validated on HYDI datasets is Bessel
Fourier orientation reconstruction (BFOR) (Hosseinbor et al., 2013).
While mDWI techniques like HYDI have not been widely used, the
new human connectome project (Essen et al., 2013) and spin-off
projects will likely significantly increase the application. However,
there is a lack of fundamental image analysis tools for mDWI and
EAP maps, such as registration and atlas generation, that can fully
utilize their information.

In the last decades, researchers have spent great efforts on
developing registration algorithms to align diffusion tensors
derived from DTI and orientation distribution functions (ODFs)
derived from HARDI (e.g., Alexander et al. (2001), Raffelt et al.
(2011), Du et al. (2012)). However, registration algorithms directly
based on DWIs are few. The direct alignment of DWIs in the
q-space utilizes the full diffusion information, is independent of
the choice of diffusion models and their reconstruction algorithms
(e.g., tensor), and unifies the transformation to align the local dif-
fusion profiles defined at each voxel of two brains (Dhollander
et al., 2010; Yap and Shen, 2012; Zhang et al., 2012). Dhollander
et al. (2010) developed an algorithm that transforms the diffusion
signals on a single shell of the q-space and preserves anisotropic as
well as isotropic volume fractions. Yap and Shen (2012) proposed
to decompose the diffusion signals on a single shell of the q-space
into a series of weighted diffusion basis functions, reorient these
functions independently based on a local affine transformation,
and then recompose the reoriented functions to obtain the final
transformed diffusion signals. This approach provides the repre-
sentation of the diffusion signals and also explicitly models the
isotropic component of the diffusion signals to avoid undesirable
artifacts during the local affine transformation. Zhang et al.
(2012) developed a diffeomorphic registration algorithm for align-
ing diffusion signals on a single shell of the q-space.

Only recently, Dhollander et al. (2011) aligned DWIs on multi-
ple shells of the q-space by first estimating transformation using
a multi-channel diffeomorphic mapping algorithm, in which gen-
eralized fractional anisotrophy (GFA) images computed from each
shell were used as mapping objects, and then applying the trans-
formation to DWIs on each shell using the DWI reorientation
method given in Dhollander et al. (2010). This approach neglected
possible influences of the DWI reorientation on the optimization of
the spatial transformation. Hsu et al. (2012) generalized the large
deformation diffeomorphic metric image mapping algorithm (Beg
et al., 2005) to DWIs on multiple shells of the q-space and consid-
ered the image domain and the q-space as the domain where the
diffeomorphic transformation is applied to. The authors claimed
that the reorientation of DWIs is no longer needed because the
transformation also incorporates the deformation due to the shape
differences in the diffusion profiles in the q-space. It is a robust reg-
istration approach with the explicit consideration of the large
deformation in both the image domain and q-space. However, its
computational complexity and memory requirement are high.

While limited research has been done for aligning the HYDI
images, efforts on the white matter atlas from HYDI is even less.
Only recently, Dhollander et al. (2011) employed their multi-
channel diffeomorphic matching algorithm to generate the atlas
from multiple HYDI datasets. To our best knowledge, there is no
probabilistic atlas generation approach for HYDI.

In this paper, we propose a large deformation diffeomorphic
metric mapping (LDDMM) algorithm to align HYDI datasets,
denoted as LDDMM-HYDI, and then develop a Bayesian probabilis-
tic estimation framework for generating the HYDI atlas. In particu-
lar, we adopt the Bessel Fourier orientation reconstruction (BFOR)
framework in representing the q-space signal (Hosseinbor et al.,
2013). Unlike the diffeomorphic mapping of mDWIs in Hsu et al.
(2012), the BFOR signal basis provides the representation of the
q-space signal and the analytic form of the EAP reconstruction, as
well as reduces memory requirement. In addition, since the BFOR
signal basis is orthonormal, the L2 norm that quantifies the differ-
ences in the q-space signals can be easily computed as the sum of
the squared differences in the BFOR expansion coefficients. In this
work, we will show that the reorientation of the q-space signal due
to spatial transformation can be easily defined on the BFOR signal
basis. Unlike the work in Dhollander et al. (2011), we will incorpo-
rate the BFOR signal basis into the LDDMM framework and derive
the gradient descent algorithm for solving the LDDMM-HYDI vari-
ational problem with explicit orientation optimization. Even
though the LDDMM-HYDI algorithm is largely based on our previ-
ous work (Du et al., 2013), in this paper we further develop a
Bayesian probabilistic model to estimate the brain white matter
atlas from the q-space. This probabilistic model is the extension
of the previous Bayesian atlas estimation for scalar-based intensity
images (Ma et al., 2008). With the aids of the BFOR representation
and reorientation of mDWIs introduced in this work, we show that
it is feasible to adopt the previous Bayesian atlas estimation model
for scalar-valued images (Ma et al., 2008) to HYDI. Nevertheless,
the HYDI data has much higher dimensionality than the scalar
image used in Ma et al. (2008). Moreover, the HYDI alignment
requires the reorientation of the diffusion signals, while the scalar
image alignment does not. Hence, we show that the extension of
the Bayesian scalar image atlas generation in (Ma et al., 2008) to
the HYDI data is not straightforward. In this paper, we thus refor-
mulate the Bayesian atlas generation model for HYDI under the
LDDMM framework and derive the expectation–maximization
algorithm to optimize the HYDI atlas based on a set of HYDI data.
As shown below, the main contributions of this paper are:

1. to seek large deformation for aligning HYDI datasets based on
the BFOR representation of mDWI.

2. to derive the rotation-based reorientation of the q-space signal
via the BFOR signal basis. This is equivalent to applying Wigner
matrix to the BFOR expansion coefficients, where Wigner
matrix can be easily constructed by the rotation matrix (see
Section 3.1).

3. to derive the gradient descent algorithm for the LDDMM-HYDI
variational problem with the explicit orientation optimization.
In particular, we provide a computationally efficient method
for calculating the variation of Wigner matrix due to the small
variation of the diffeomorphic transformation (see Section 3.4).

4. to show that the LDDMM-HYDI gradient descent algorithm
does not involve the calculation of the BFOR signal bases and
hence avoids the discretization in the q-space.

5. to propose a Bayesian estimation model for the q-space signals
represented via the BFOR signal basis and derive an expecta-
tion–maximization algorithm for solving it (see Section 4).

6. to validate the mapping accuracy of the LDDMM-HYDI algo-
rithm and compare our approach with the LDDMM algorithm
incorporating multiple diffusion tensors derived from each shell
of the q-space. This has not been shown in our previous work
(Du et al., 2013).

2. Review: BFOR signal basis

In this paper, we employ the BFOR signal basis to represent the
q-space diffusion signal according to the work in Hosseinbor et al.
(2013). The diffusion signal is assumed to satisfy Laplace’s equa-
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tion. The BFOR basis is derived based on the heat equation, a gen-
eralization of Laplace’s equation and hence naturally incorporates
water diffusion processes. In addition, the BFOR signal basis is
orthonormal, which leads to the simple computation on the norm
of the diffusion signals as shown below. Furthermore, the BFOR
signal basis gives the analytic solution for the EAP as shown in
Hosseinbor et al. (2013), which facilitates the registration of the
EAP data via aligning the BFOR coefficients defined in the q-space.
In the BFOR framework, the q-space diffusion signal, Sðx;qÞ, can be
represented as

Sðx;qÞ ¼
XNb

n¼1

XNY

j¼1

cnjðxÞWnjðqÞ; ð1Þ

where x and q respectively denote the image domain and q-space.
WnjðqÞ is the nj-th BFOR signal basis with its corresponding coeffi-
cient, cnjðxÞ, at x. WnjðqÞ is given as

WnjðqÞ ¼
2
ffiffiffiffiffiffiffiffiffiffianlðjÞ
pffiffiffiffiffiffiffiffi

ps3
p

JlðjÞþ3=2ðanlðjÞÞ
jlðjÞ

anlðjÞjqj
s

� �
Yj

q
jqj

� �
: ð2Þ

Here, anl is the nth root of the lth order spherical Bessel (SB) func-
tion of the first kind jl, then the eigenvalues are found to be
�knl ¼ �

a2
nl

s2 . s is the radial distance in q-space at which the Bessel
function goes to zero. Note that for l ¼ 0, the roots are simply
an0 ¼ np. Yj are the modified real and symmetric spherical harmon-
ics (SH) bases as given in Descoteaux et al. (2006). JlðjÞþ3=2ð�Þ is the
Bessel function of the first kind. NY ¼ ðLþ1ÞðLþ2Þ

2 is the number of
terms in the modified SH bases of truncation order L, while Nb is
the truncation order of radial basis.

Using the fact that the BFOR signal basis is orthonormal, the
L2-norm of Sðx;qÞ can be easily written as

kSðx;qÞk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

x2R3

Z
q2R3

S2ðx;qÞdqdx

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
x2R3

XNb

n¼1

XNY

j¼1

cnjðxÞ2dx

vuut : ð3Þ
3. Large deformation diffeomorphic metric mapping for HYDI

3.1. Rotation-based reorientation of Sðx;qÞ

We now discuss the reorientation of Sðx;qÞ when a rotation
transformation, R, is applied. We assume that the diffusion profile
in each shell of the q-space remains in the same shell after the
reorientation. However, its angular profile in each shell of the
q-space is transformed according to the rotation transformation.
Hence, we define

RSðx;qÞ ¼ Sðx;R�1qÞ:

In order to characterize RSðx;qÞ based on the BFOR signal basis
given in Eq. (1), we separate the angular and radial coordinates such
that

RSðx;qÞ ¼ S x; jqjR�1 q
jqj

� �
:

Hence, we have

RSðx;qÞ ¼
XNb

n¼1

XNY

j¼1

cnjðxÞ
2 ffiffiffiffiffiffiffiffiffiffianlðjÞ
pffiffiffiffiffiffiffiffi

ps3
p

JlðjÞþ3=2ðanlðjÞÞ
jlðjÞ

anlðjÞjqj
s

� �
Yj R�1 q

jqj

� �
:

This indicates that the rotation reorientation of mDWI is equivalent
to applying the rotation transformation to the real spherical
harmonics, Yj. According to the work in Geng et al. (2011) and
Edmonds (1996), the rotation of Yj can be achieved by the rotation
of their corresponding coefficients, yielding

RSðx;qÞ ¼
XNb

n¼1

XNY

j¼1

XNY

j0¼1

Mjj0cnj0 ðxÞ

0@ 1A0@ 1A 2 ffiffiffiffiffiffiffiffiffiffianlðjÞ
pffiffiffiffiffiffiffiffi

ps3
p

JlðjÞþ3=2ðanlðjÞÞ
jlðjÞ

anlðjÞjqj
s

� �
Yj

q
jqj

� �
; ð4Þ

where Mjj0 is the jj0th element of Wigner matrix MðRÞ constructed
based on R (see details in Geng et al. (2011) and Edmonds
(1996)). We can see that the same Wigner matrix is applied to cnj

at a fixed n. For the sake of simplicity, we rewrite Eq. (4) in the
matrix form, i.e.,

RSðx;qÞ ¼ ðMðRÞ cðxÞÞ>WðqÞ; ð5Þ

where M is a sparse matrix with Nb diagonal blocks of MðRÞ. c is a
vector that concatenates coefficients cnj0 in the order such that cnj0

corresponds to MðRÞ at a fixed n. WðqÞ concatenates the BFOR signal
basis.

3.2. Diffeomorphic group action on Sðx;qÞ

We define an action of diffeomorphisms / : X! X on Sðx;qÞ,
which takes into consideration of the reorientation in the q-space
as well as the transformation of the spatial volume in X. Based
on the rotation reorientation of Sðx;qÞ in Eq. (5), for a given spatial
location x, the action of / on Sðx;qÞ can be defined as

/ � Sðx;qÞ ¼ S /�1ðxÞ;R�1
/�1ðxÞq

� �
¼ M R/�1ðxÞ

� �
c /�1ðxÞ
� �� �>

WðqÞ;

where Rx can be defined in a way similar to the finite strain scheme
used in DTI registration (Alexander et al., 2001). That is,
Rx ¼ Dx/D>x /

� ��1
2Dx/, where Dx/ is the Jacobian matrix of / at x.

For the remainder of this paper, we denote this as

/ � Sðx;qÞ ¼ MðRxÞ cð Þ> � /�1ðxÞ WðqÞ; ð6Þ

where � indicates as the composition of diffeomorphisms.

3.3. Large deformation diffeomorphic metric mapping for HYDIs

Based on the BFOR representation of Sðx;qÞ and the diffeomor-
phic group action on Sðx;qÞ, we now state a variational problem
for mapping HYDIs from one subject to another. We define this
problem in the ‘‘large deformation’’ setting of Grenander’s group
action approach for modeling the white matter anatomy, that is,
the HYDI data are modeled by assuming that they can be generated
from one to another via flows of diffeomorphisms, /t , which are the
solutions of ordinary differential equations, _/t ¼ v tð/tÞ; t 2 ½0;1�,
starting from the identity map /0 ¼ Id. They are therefore charac-
terized by time-dependent velocity vector fields v t ; t 2 ½0;1�. We
define a metric distance between a HYDI volume of a subject, SðsÞ,
and an atlas HYDI volume, Satlas, as the minimal length of
curves /t � Satlas; t 2 ½0;1�, in a shape space such that, at time
t ¼ 1;/1 � S

atlas ¼ SðsÞ. Lengths of such curves are computed as the
integrated norm kv tkV of the vector field generating the transfor-
mation, where v t 2 V and V is a reproducing kernel Hilbert space
with kernel kV and norm k � kV . To ensure solutions are diffeomor-
phic, V must be a space of smooth vector fields. Using the duality
isometry in Hilbert spaces, one can equivalently express the lengths
in terms of mt , interpreted as momentum, such that for each u 2 V ,

hmt ;u � /ti2 ¼ hk
�1
V v t ;ui2;

where we let hm;ui2 denote the L2 inner product between m and u,
but also, with a slight abuse, the result of the natural pairing
between m and v in cases where m is singular (e.g., a measure). This
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identity is classically written as /�t mt ¼ k�1
V v t , where /�t is referred

to as the pullback operation on a vector measure, mt . Using the
identity kv tk2

V ¼ hk
�1
V v t;v ti2 ¼ hmt ; kV mti2 and the standard fact that

energy-minimizing curves coincide with constant-speed length-
minimizing curves, one can obtain the metric distance between
the atlas and target volumes by minimizing

R 1
0 hmt; kV mti2dt such

that /1 � Satlas � SðsÞ at t ¼ 1. We associate this with a variational
problem in the form of

JðmtÞ ¼ infmt : _/t¼kV mtð/tÞ;/0¼Id

Z 1

0
hmt; kV mti2dt þ kEð/1 � S

atlas; SðsÞÞ;

ð7Þ

where k is a positive scalar. E quantifies the difference between the
deformed atlas /1 � Satlas and the subject SðsÞ. Based on Eqs. (3) and
(6), E is expressed in the form of

E ¼
Z

x2X
MðRxÞ catlas� �

� /�1ðxÞ � cðsÞðxÞ
		 		2

2dx: ð8Þ

3.4. Gradient of J with respect to mt

We now solve the optimization problem in Eq. (7) via a gradient
descent method. The gradient of J with respect to mt can be com-
puted via studying a variation m�

t ¼ mt þ � emt on J such that the
derivative of J with respect to � is expressed in function of emt .
According to the general LDDMM framework derived in Du et al.
(2011), we directly give the expression of the gradient of J with
respect to mt as

rJðmtÞ ¼ 2mt þ kgt ; ð9Þ

where

gt ¼ r/1 Eþ
Z 1

t
½@/s
ðkV msÞ�>ðgs þmsÞds: ð10Þ

Eq. (10) can be solved backward given g1 ¼ r/1 E. @/s ðkV msÞ is the
partial derivative of kV ms with respect to /s.

In the following, we discuss the computation of r/1 E. We con-
sider a variation of /1 as /�1 ¼ /1 þ �h and denote the correspond-
ing variation in MðRxÞ as MðR�xÞ. Denote ĉðxÞ ¼MðRxÞcatlasðxÞ for the
simplicity of notation. We have

@E
@�






�¼0
¼
Z

x2X

@ ðMðR�xÞcatlasÞ � ð/�1Þ
�1ðxÞ � cðsÞðxÞ

			 			2

2

@�









�¼0

dx

¼ 2
Z

x2X
ĉ � /�1

1 ðxÞ � cðsÞðxÞ;r>x ĉ � /�1
1 ðxÞ

@ð/�1Þ
�1

@�







�¼0

* +
dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

termðAÞ

þ 2
Z

x2X
ĉ � /�1

1 ðxÞ � cðsÞðxÞ; @MðR�xÞcatlas

@�






�¼0

� �
� /�1

1 ðxÞ
� 


dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
termðBÞ

:

ð11Þ

The calculation of Term (A) is straightforward. We have
@ /�1ð Þ

�1

@�






�¼0
¼ � ðDx/1Þ

�1h
h i

� /�1
1 derived from the fact of

/�1 � ð/
�
1Þ
�1 ¼ Id. Applying the strategy of the change of variable,

y ¼ /�1
1 ðxÞ, we have

TermðAÞ¼�2
Z

y2X
ĉðyÞ�cðsÞ �/1ðyÞ;r>y ĉðyÞ ðDy/1Þ

�1h
h i

det Dy/1

� �D E
dy

Hence,

TermðAÞ¼�2
Z

x2X
Dx/1ð Þ�>rxĉðxÞ ĉðxÞ�cðsÞ �/1ðxÞ

� �
det Dx/1ð Þ;h

� �
dx:

ð12Þ
This is similar to that in the scalar image mapping case. It seeks the
optimal spatial transformation /t in the gradient direction of image
ĉðxÞ weighted by the difference between the atlas and subject’s
images.

The computation of Term (B) involves the derivative of MðRxÞ
with respect to a rotation matrix, Rx, and the variation of R�x with
respect to the small variation of /�1. Let’s first compute the deriva-
tive of MðRxÞ with respect to Rx. According to the work in Cetingul
et al. (2012), the analytical form of this derivative can be solved
using the Euler angle representation of Rx but is relatively complex.
Here, we consider Wigner matrix MðRxÞ and the coefficients of the
BFOR signal basis catlasðxÞ together, which leads to a simple numeric
approach for computing the derivative of ĉðxÞ ¼ MðRxÞcatlasðxÞ
with respect to Rx, i.e., rRx ĉðxÞ. Assume eRx ¼ edUR,

where dU ¼
0 �dl3 dl2

dl3 0 �dl1
�dl2 dl1 0

24 35 is a skew-symmetric matrix

parameterized by dl ¼ dl1 dl2 dl3½ �>. From this construction,
dU is the tangent vector at Rx on the manifold of rotation matrices

and eRx is also a rotation matrix. Based on the Taylor expansion,

we have the first order approximation of MðeRxÞcatlasðxÞ as

MðeRxÞcatlasðxÞ � ĉðxÞ þ r>Rx
ĉðxÞdl:

We can compute rRx ĉðxÞ as follows. Assume dU1; dU2; dU3 to be
skew-symmetric matrices respectively constructed from
½dl1;0;0�

>
; ½0; dl2; 0�

>
; ½0;0; dl3�

>. We have

rRx ĉðxÞ �
MðedU1 RxÞcatlasðxÞ � ĉðxÞ
� �>

=dl1

MðedU2 RxÞcatlasðxÞ � ĉðxÞ
� �>

=dl2

MðedU3 RxÞcatlasðxÞ � ĉðxÞ
� �>

=dl3

2664
3775: ð13Þ

We now compute the variation of R�x with respect to the small var-
iation of /�1. This has been referred as exact finite-strain differential
that was solved in Dorst (2005) and applied to the DTI tensor-based
registration in Yeo et al. (2009). Here, we directly adopt the result
from Yeo et al. (2009) and obtain

@R�x
@�






�¼0
¼ �Fx

X3

i¼1

ri � ðDxh>Þi
h i

; ð14Þ

where Fx ¼ �R>x trace ðDx/1D>x /1Þ
1=2

� �
Id� ðDx/1D>x /1Þ

1=2
� ��1

Rx. �
denotes as the cross product of two vectors. ðAÞi denotes the ith
column of matrix A. ri ¼ ðR>x Þi.

Given Eqs. (13) and (14), we thus have

TermðBÞ¼�2
Z

x2X
ĉ�/�1

1 ðxÞ�cðsÞðxÞ; rRx ĉ>Fx

X3

i¼1

ri�ðDxh>Þi
h i !

�/�1
1

* +
dx

¼�2
Z

x2X
x>x
X3

i¼1

ri�ðDxh>Þi
h i

dx¼�2
Z

x2X

X3

i¼1

xx� ri;rxhih idx;

ð15Þ

where

x>x ¼ rRx ĉðxÞ ĉ xð Þ � cðsÞ � /1ðxÞ
� �� �>

Fx det Dx/1ð Þ; ð16Þ

and h ¼ h1 h2 h3½ �>. Dxh is approximated as

Dxh¼
rxh>1
rxh>2
rxh>3

264
375� 1

2Dd

h1;xXþ �h1;xX� h1;xYþ �h1;xY� h1;xZþ �h1;xZ�

h2;xXþ �h1;xX� h2;xYþ �h2;xY� h2;xZþ �h2;xZ�

h3;xXþ �h3;xX� h3;xYþ �h3;xY� h3;xZþ �h3;xZ�

264
375;

where fxXþ; xX�;xYþ;xYþ;xZþ;xZ�g are the neighbors of x in x; y; z
directions, respectively. Dd is the distance of these neighbors to x.
Here, term (B) seeks the spatial transformation /t such that the
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local diffusion profiles of the atlas and subject’s HYDIs have to be
aligned.

In summary, we have

@E
@�






�¼0
��2

Z
x2X

Dx/1ð Þ�>rxĉðxÞ ĉðxÞ�cðsÞ �/1ðxÞ
� �

det Dx/1ð Þ;h
� �

dx

� 1
Dd

Z
x2X

X3

k¼1

xx�rk;

hk;xXþ

hk;xYþ

hk;xZþ

264
375* +
� xx�rk;

hk;xX�

hk;xY�

hk;xZ�

264
375* +8><>:
9>=>;dx:

ð17Þ

Therefore, r/1 E can be obtained from Eq. (17).

3.5. Numerical implementation

We so far derive J and its gradient rJðmtÞ in the continuous
setting. In this section, we elaborate the numerical implementation
of our algorithm under the discrete setting. Since HYDI DW signals
were represented using the orthonormal BFOR signal bases, both
the computation of J in Eq. (7) and the gradient computation in
Eq. (17) do not explicitly involve the calculation WðqÞ. Hence, we
do not need to discretize the q-space. In the discretization of the
image domain, we first represent the ambient space, X, using a
finite number of points on the image grid, X ffi fðxiÞNi¼1g. In this
setting, we can assume mt to be the sum of Dirac measures, where
aiðtÞ is the momentum vector at xi and time t. We use a conjugate
gradient routine to perform the minimization of J with respect to
aiðtÞ. We summarize steps required in each iteration during the
minimization process below:

1. Use the forward Euler method to compute the diffeomorphic
trajectory based on the flow equation:
d/tðxiÞ
dt

¼
XN

j¼1

kV ð/tðxiÞ;/tðxjÞÞajðtÞ: ð18Þ
That is,
/tþ1ðxiÞ ¼ /tðxiÞ þ dt
XN

j¼1

kV ð/tðxiÞ;/tðxjÞÞajðtÞ;
where dt is the step size.
2. Compute r/1ðxiÞE based on Eq. (17).
3. Solve gt ¼ ½giðtÞ�

N
i¼1 in Eq. (10) using the backward Euler integra-

tion, where i indices xi, with the initial condition
gið1Þ ¼ r/1ðxiÞE. Hence, numerically,
gt ¼ gtþ1 þ @/tþ1 ðkV mtþ1Þ
� �>ðgtþ1 þmtþ1Þdt;
where dt is the step size.
4. Compute gradient rJðaiðtÞÞ ¼ 2aiðtÞ þ giðtÞ.
5. Evaluate J when aiðtÞ ¼ aold

i ðtÞ � �rJðaiðtÞÞ, where � is the
adaptive step size determined by a golden section search.

4. Bayesian HYDI atlas estimation

In the above LDDMM-HYDI algorithm, we assume that the atlas,
Satlas, is known. In this section, we introduce a HYDI atlas estima-
tion approach based on Bayesian decision theory. Given n observed
HYDI datasets, SðiÞ for i ¼ 1; . . . ;n, we assume that each of them can
be estimated through an unknown atlas Satlas and a diffeomorphic
transformation /ðiÞ such that

SðiÞ � ŜðiÞ ¼ /ðiÞ � Satlas: ð19Þ

The variation of SðiÞ relative to ŜðiÞ is then denoted by r2. The goal
here is to estimate the unknown atlas, Satlas, and the variation, r2.
To solve this problem, we first introduce an ancillary ‘‘hyperatlas’’
S0, and assume that our atlas is generated from it via a diffeomor-
phic transformation of / such that Satlas ¼ / � S0. The use of the
hyperatlas guarantees the estimated atlas in the orbit of the hyper-
atlas. We use the Bayesian strategy to estimate / and r2 from the
set of observations SðiÞ; i ¼ 1; . . . ; n by computing the maximum a
posteriori (MAP) of frð/jSð1Þ; Sð2Þ; . . . ; SðnÞ; S0Þ. This can be achieved
using the Expectation–Maximization algorithm by first computing
the log-likelihood of the complete data (/;/ðiÞ; SðiÞ; i ¼ 1;2; . . . ; n)
when /ð1Þ; � � � ;/ðnÞ are introduced as hidden variables. We denote
this likelihood as frð/;/ð1Þ; . . . ;/ðnÞ; Sð1Þ; . . . SðnÞjS0Þ. We consider that
the paired information of individual observations, ðSðiÞ;/ðiÞÞ for
i ¼ 1; . . . ;n, as independent and identically distributed. As a result,
this log-likelihood can be written as

log f rð/;/ð1Þ; . . . ;/ðnÞ; Sð1Þ; . . . SðnÞjS0Þ ¼ log f ð/jS0Þ

þ
Xn

i¼1

log f ð/ðiÞj/; S0Þ þ log frðSðiÞj/ðiÞ;/; S0Þ
n o

; ð20Þ

where f ð/jS0Þ is the shape prior (probability distribution) of the
atlas given the hyperatlas, S0. f ð/ðiÞj/; S0Þ is the distribution of ran-
dom diffeomorphisms given the estimated atlas (/ � S0).
frðSðiÞj/ðiÞ;/; S0Þ is the conditional likelihood of the HYDI data given
its corresponding hidden variable /ðiÞ and the estimated atlas
(/ � S0). In the remainder of this section, we first adopt f ð/jS0Þ and
f ð/ðiÞj/; S0Þ introduced in Ma et al. (2008) and Qiu et al. (2010)
under the framework of LDDMM and then describe how to calculate
frðSðiÞj/ðiÞ;/; S0Þ in Section 4.2 based on the BFOR representation of
HYDI.

4.1. The shape prior of the atlas and the distribution of random
diffeomorphisms

We adopt the previous work in Ma et al. (2008) and Qiu et al.
(2010) and briefly describe the construction of the shape prior
(probability distribution) of the atlas, f ð/jS0Þ. Under the LDDMM
framework, we can compute the prior f ð/jS0Þ via m0, i.e.,

f ð/jS0Þ ¼ f ðm0jS0Þ; ð21Þ

where m0 is initial momentum defined in the coordinates of S0 such
that it uniquely determines diffeomorphic geodesic flows from S0 to
the estimated atlas. When S0 remains fixed, the space of the initial
momentum m0 provides a linear representation of the nonlinear
diffeomorphic shape space in which linear statistical analysis can
be applied. Hence, assuming m0 is random, we immediately obtain
a stochastic model for diffeomorphic transformations of S0. More pre-
cisely, we follow the work in Ma et al. (2008) and Qiu et al. (2010)
and assume m0 to be a centered Gaussian random field (GRF) model.
The distribution of m0 is characterized by its covariance bilinear
form, defined by

Cm0 ðv ;wÞ ¼ E½m0ðvÞm0ðwÞ�;

where v;w are vector fields in the Hilbert space of V with reproduc-
ing kernel kV .

We associate Cm0 with k�1
V . The ‘‘prior’’ of m0 in this case is then

1
Z exp �1

2
hm0; kV m0i2

� �
;

where Z is the normalizing Gaussian constant. This leads to for-
mally define the ‘‘log-prior’’ of m0 to be

log f ðm0jS0Þ � �
1
2
hm0; kV m0i2; ð22Þ

where we ignore the normalizing constant term logZ.
We can construct the distribution of random diffeomorphisms,

f ð/ðiÞj/; S0Þ, in the similar manner. We define f ð/ðiÞj/; S0Þ via the
corresponding initial momentum mðiÞ0 defined in the coordinates
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of / � S0. We also assume that mðiÞ0 is random, and therefore, we
again obtain a stochastic model for diffeomorphic transformations
of Satlas ffi / � S0. mðiÞ0 is assumed to be a centered GRF model with
its covariance as kp

V , where kp
V is the reproducing kernel of the

smooth vector field in a Hilbert space V. Hence, we can define
the log distribution of random diffeomorphisms as

log f ð/ðiÞj/; S0Þ � �
1
2
hmðiÞ0 ; k

p
V mðiÞ0 i2: ð23Þ

where as before, we ignore the normalizing constant term logZ.

4.2. The conditional likelihood of the HYDI data

Given the representation of the diffusion signals in the q-space
using the BFOR signal bases, we construct the conditional likeli-
hood of the HYDI data, frðSðiÞj/ðiÞ;/; S0Þ, via the BFOR coefficients.
We assume that cnjðxÞ has a multivariate Gaussian distribution
with mean of catlasðxÞ and covariance r2Id, where catlasðxÞ are the
BFOR coefficients associated with Satlas and Id is the identity
matrix.

From the Gaussian assumption, we can thus write the condi-
tional ‘‘log-likelihood’’ of SðiÞ given Satlas and /ðiÞ1 as

log f rðS
ðiÞ j/ðiÞ1 ;/1;S0Þ�

Z
x2X

� 1
2r2 MðRxÞ catlas� �

�ð/ðiÞ1 Þ
�1
ðxÞ�cðiÞðxÞ

			 			2
� logr2

2

� �
dx;

ð24Þ

where as before, we ignore the normalizing Gaussian term.

4.3. Expectation–maximization algorithm

In this section, we employ the Expectation–Maximization algo-
rithm to estimate r2 and the atlas, Satlasðx;qÞ, for q 2 R3;x 2 X.
From the above discussion, we first rewrite the log-likelihood func-
tion of the complete data in Eq. (20) as

log f rðm0;m
ð1Þ
0 ; . . . ;mðnÞ0 ;Sð1Þ; . . .SðnÞjS0Þ

��1
2
hm0;kV m0i2�

Xn

i¼1

1
2
hmðiÞ0 ;k

p
V mðiÞ0 i2

�
þ
Z

x2X

1
2r2 MðRxÞ catlas

� �
�ð/ðiÞ1 Þ

�1
ðxÞ�cðiÞðxÞ

			 			2
þ logr2

2

� �
dx
�
;

ð25Þ

where catlasðxÞ ¼ MðRxÞ c0ð Þ � /�1
1 ðxÞ computed based on Eq. (6).

c0 is the BFOR coefficients of the hyperatlas and /1 is the diffeomor-
phic transformation from the hyperatlas to the estimated atlas.

The E-Step. The E-step computes the expectation of the com-
plete data log-likelihood given the previous atlas mold

0 and variance
r2old. We denote this expectation as Qðm0;r2jmold

0 ;r2oldÞ given in
the equation below,

Q m0 ;r2 jmold
0 ;r2 old

� �
¼ E log f rðm0;m

ð1Þ
0 ; . . . ;mðnÞ0 ;Sð1Þ; . . .SðnÞjS0Þjmold

0 ;r2old
;Sð1Þ ; � � � ;SðnÞ;S0

n o
��1

2
hm0;kV m0i2�

Xn

i¼1

E
1
2
hmðiÞ0 ;k

p
V mðiÞ0 i2þ

Z
x2X

1
2r2 MðRxÞ catlas� �

� ð/ðiÞ1 Þ
�1
ðxÞ�cðiÞðxÞ

			 			2
��

þ logr2

2

�
dx
�
: ð26Þ

The M-Step. The M-step generates the new atlas by maximizing the
Q-function with respect to m0 and r2. The update equation is given
as

mnew
0 ;r2new¼argmax

m0 ;r2
Q m0;r2jmold

0 ;r2old
� �

¼argmin
m0 ;r2

hm0;kV m0i2
�

þ
Xn

i¼1

E
Z

x2X

1
r2 MðRxÞ catlas

� �
�ð/ðiÞ1 Þ

�1
ðxÞ�cðiÞðxÞ

			 			2
þ logr2

� �
dx

� �)
;

ð27Þ
where we use the fact that the conditional expectation of

hmðiÞ0 ; k
p
V mðiÞ0 i2 is constant. We solve r2 and m0 by separating the

procedure for updating r2 using the current value of m0, and then
optimizing m0 using the updated value of r2.

We now derive how to update values of r2 and m0 from the
Q-function in Eq. (27). It is straightforward to obtain r2 by taking

the derivative of Q m0;r2jmold
0 ;r2old

� �
with respect to r2 and

setting it to zero (see Appendix A). Hence, we have

r2new ¼ 1
n

1
nv

Xn

i¼1

Z
x2X

MðRxÞ catlas
� �

� ð/ðiÞ1 Þ
�1
ðxÞ � cðiÞðxÞ

			 			2
dx;

ð28Þ

where nv is the number of voxels in X.
For updating m0, let y ¼ /ðiÞ1

� ��1
ðxÞ and jD/ðiÞ1 j be the Jacobian

determinant of /ðiÞ1 . Using the change of variables strategy, we haveXn

i¼1

E
Z

x2X

1
2r2 MðRxÞ catlas� �

� ð/ðiÞ1 Þ
�1
ðxÞ � cðiÞðxÞ

			 			2
dx

� �

¼
Xn

i¼1

E
Z

y2X

1
2r2 catlasðyÞ � MðRyÞ cðiÞ

� �
� /ðiÞ1 ðyÞ

			 			2
jD/ðiÞ1 ðyÞjdy

� �
ð29Þ

We now introduce c0ðyÞ and assume

c0ðyÞ ¼
1Pn

j¼1jD/ðjÞ1 ðyÞj

Xn

i¼1

jD/ðiÞ1 ðyÞj MðRyÞ cðiÞ
� �

� /ðiÞ1 ðyÞ; ð30Þ

Hence, Eq. (29) can be computed asZ
y2X

1
2r2

Xn

i¼1

E catlasðyÞ�c0ðyÞþc0ðyÞ� MðRyÞcðiÞ
� �

�/ðiÞ1 ðyÞ
			 			2
� �

dy

¼
Z

y2X

1
2r2

Xn

i¼1

E catlasðyÞ�c0ðyÞ
		 		2þ c0ðyÞ� MðRyÞcðiÞ

� �
�/ðiÞ1 ðyÞ

			 			2
��

þ2 catlasðyÞ�c0ðyÞ;c0ðyÞ� MðRyÞcðiÞ
� �

�/ðiÞ1 ðyÞ
D Eo

jD/ðiÞ1 ðyÞj
i
dy:

Since c0ðyÞ and MðRyÞ cðiÞ
� �

� /ðiÞ1 ðyÞ are only dependent on /ðiÞ1 andPn
i¼1jD/ðiÞ1 ðyÞj c0ðyÞ � MðRyÞ cðiÞ

� �
� /ðiÞ1 ðyÞ

� �
¼ 0, we have

mnew
0 ¼ arg min

m0

1
2
hm0; kV m0i2

þ 1
2r2new

Z
y2X

aðyÞkcatlasðyÞ � c0ðyÞk2 þ
Xn

i¼1

kc0ðyÞ
"

� MðRyÞ cðiÞ
� �

� /ðiÞ1 ðyÞk
2jD/ðiÞ1 ðyÞj

i
dy; ð31Þ

where aðyÞ ¼
Pn

i¼1jD/ðiÞ1 ðyÞj. Since the last term in Eq. (31) is not
related to m0, we have

mnew
0 ¼ arg min

m0

1
2
hm0; kV m0i2 þ

1
2r2new

Z
y2X

aðyÞkcatlasðyÞ

� c0ðyÞk2dy:

Here catlasðyÞ ¼ ðMðRyÞc0Þ � /�1
1 ðyÞ, where c0 corresponds to the

BFOR coefficients of the hyperatlas. We finally have

mnew
0 ¼ arg min

m0

1
2
hm0; kV m0i2 þ

1
2r2new

Z
y2X

aðyÞkðMðRyÞc0Þ

� /�1
1 ðyÞ � c0ðyÞk2dy: ð32Þ

The variational problem listed in Eq. (32) is referred as ‘‘modified
LDDMM-HYDI mapping’’, where weight a is introduced. It can be
easily solved by adopting the LDDMM-HYDI algorithm in
Section 3. We present the steps involved in the EM optimization
in Algorithm 1.

ysis 18 (2014) 1002–1014 1007



Table 1
HYDI encoding scheme for human datasets.

Shell Ne q (mm�1) Dq (mm�1) b (s/mm2)

7 0 0
1st 6 15.79 15.79 300
2nd 21 31.58 15.79 1200
3rd 24 47.37 15.79 2700
4th 24 63.16 15.79 4800
5th 50 78.95 15.79 7500

Total = 132 qmax=78.95 Mean = 15.79 bmax=7500

Fig. 1. The mean and standard deviation (SD) of the diffeomorphic metric between
individual subjects and the estimated atlas at each iteration of the atlas generation
optimization.

Fig. 2. Illustration of the estimated HYDI atlas in the q-space. The first panel shows the
anatomical illustration. The rest panels show the diffusion profiles in the region of interes
the q-space. Note that the profile of the diffusion weighted signals is orthogonal to the fib
reader is referred to the web version of this article.)
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Algorithm 1. (The EM Algorithm for the HYDI Atlas Generation)

We initialize m0 ¼ 0. Thus, the hyperatlas S0 is considered as
the initial atlas. In our case, we randomly select a subject’s
HYDI dataset as S0.
1. Apply the LDDMM-HYDI mapping algorithm in Section 3
to register the current atlas to individual HYDI datasets,

which yield mðiÞ0 and /ðiÞt .
2. Compute c0 according to Eq. (30).
3. Update r2 according to Eq. (28).

4. Estimate Satlas ¼ /1 � S0, where /t is found by applying the
modified LDDMM-HYDI mapping algorithm as given in Eq.
(32).

The above computation is repeated until the atlas converges.
5. Experiments

In this section, we show the atlas generated using Algorithm 1,
evaluate the LDDMM-HYDI mapping accuracy, and compare it with
that of the diffeomorphic mapping for multiple diffusion tensors
where the tensors are generated from each shell of the q-space.
This diffeomorphic mapping algorithm for multiple diffusion
tensors were adopted from the one in Cao et al. (2005). The
experiments were performed on 36 human brain datasets (age:
61:8
 6:47 years) acquired using a 3.0T GE-SIGNA scanner with
an 8-channel head coil and ASSET parallel imaging (TE = 122 ms,
TR = 12 s, FOV = 256� 256, matrix = 128� 128). The datasets were
atlas of the zero displacement probability (Po) image in the axial view as the brain
t (red frame) at individual shells with b = 300, 1200, 2700, 4800, and 7500 s/mm2 in
er orientation. (For interpretation of the references to color in this figure legend, the
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acquired using a hybrid, non-Cartesian sampling scheme (Wu and
Alexander, 2007). The HYDI encoding scheme is described in
Table 1. Since the EAP reconstruction is sensitive to the angular
resolution, the number of directions in the outer shells was
increased to better characterize complex tissue organization (see
Table 1). In the experiments of the atlas generation and LDDMM-
HYDI evaluation, we represented HYDI DW signals using the BFOR
signal basis with up to the fourth order modified SH bases and up
to the sixth order spherical Bessel functions. The corresponding
BFOR expansion coefficients were used in the atlas generation
and LDDMM-HYDI optimization.

5.1. HYDI atlas

In the experiment of the atlas generation, we first chose one
HYDI dataset as hyperatlas and assumed m0 ¼ 0 such that the
hyperatlas was used as the initial atlas. We then followed
Algorithm 1 and repeated it for ten iterations. Notice that kV asso-
ciated with the covariance of m0 and kp

V associated with the covari-
ance of mðiÞ0 were known and predetermined. Since we were dealing
with vector fields in R3, the kernel of V is a matrix kernel operator
in order to get a proper definition. Making an abuse of notation, we
defined kV and kp

V respectively as kVId3�3 and kp
VId3�3, where Id3�3

is a 3� 3 identity matrix and kV and kp
V are scalars. In particular, we
Fig. 3. The estimated HYDI atlas in the ensemble average propagator (EAP) space. The fi
second to forth columns respectively illustrate the fiber orientation profiles of the atlas a
of EAP. (For interpretation of the references to color in this figure legend, the reader is r
assumed that kV and kp
V are Gaussian with kernel sizes of rV and

rVp . Since rV determines the smoothness level of the mapping
from the hyperatlas to the averaged atlas in Eq. (32), whereas
rVp determines that from the atlas to individual HYDI datasets in
Eq. (7). Hence, rV should be greater than rVp . Upto now, there is
no procedure to automatically optimize rV and rVp . We thus
empirically determined rVp ¼ 10 and rV ¼ 12.

First, we experimentally demonstrate the convergence of the
diffeomorphic metric between individual subjects and the esti-
mated atlas. This is measured using the square root of the inner
product of the initial momentum. Fig. 1 shows the mean diffeo-
morphic metric of individual subjects referenced to the estimated
atlas as well as its standard deviation across the subjects. From
Fig. 1, we observe that the average diffeomorphic metric changed
less than 5% after two iterations.

Next, we illustrate the atlas estimated from the 36 adults’ HYDI
datasets after ten iterations. Fig. 2 illustrates the estimated atlas of
the diffusion signals at shells of b ¼ 300;1200;2700;4800;
7500 s=mm2. Fig. 3 shows the reconstructed EAP based on the coef-
ficients of the estimated HYDI atlas. Each row respectively shows
the estimated atlas in the axial, coronal, and sagittal views, while
each column shows the zero displacement probability (Po) image
derived from EAP and the diffusion profiles of this atlas at three
layers of the EAP space, p ¼ 5;10;15 lm. Fig. 4 demostrates the
rst column shows the atlas in terms of the zero displacement probability (Po). The
t three given radii (p ¼ 5;10;15 lm) in the EAP space. The color indicates the values
eferred to the web version of this article.)
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atlas zero-displacement probability (Po) (Assaf et al., 2000), mean
squared displacement (MSD) (Wu and Alexander, 2007), and gen-
eralized fractional anisotropy (GFA) under three different radii
Fig. 4. Illustration of the estimated altas on the zero-displacement probability (Po), mea
given radii (p ¼ 5;10;15 lm) of the ensemble average propagator (EAP) space.

Fig. 5. Influences of the hyperatlas on the estimated atlas. Panels (a, b) show the zero-d
Bayesian atlas estimation. Panels (d, e) show the atlases generated respectively based on h
divergence between the diffusion probability density functions of the two hyperatlases
(Tuch, 2004). These figures visually illustrate that the estimated
atlas has the anatomical details of the brain white matter, particu-
larly in the region near the cortex.
n squared displacement (MSD), and generalized fractional anisotropy (GFA) at three

isplacement probability images of two HYDI subjects used as the hyperatlas in the
yperatlases in panels (a, b). Panel (c) shows the symmetrized Kullback–Leibler (sKL)

on (a, b), while panel (f) shows that between the estimated atlases on panels (d, e).



Fig. 6. The cumulative distributions of the sKL divergence between the two
hyperatlases (Fig. 5(a and b)) and between the two estimated atlases (Fig. 5(d and
e)) are respectively shown in the dashed and solid lines.

Fig. 7. Illustration of the LDDMM-HYDI mapping results. The first row of panels (A-C) illu
b = 300, 1200, 2700, 4800, and 7500 s/mm2 in the q-space, respectively. The second row
LDDMM-HYDI mapping, the diffusion profiles at individual shells with b = 300, 1200, 270
in the last five columns respectively illustrate the diffusion profiles of the atlas, subject, a
the better the alignment. Note that the profile of diffusion weighted signals is shown in th
to color in this figure legend, the reader is referred to the web version of this article.)

J. Du et al. / Medical Image Analysis 18 (2014) 1002–1014 1011
Finally, we study the effects of the hyperatlas choice on the esti-
mated atlas. In the Bayesian modeling for the HYDI atlas genera-
tion presented here, the hyperatlas is assumed to be known and
fixed. In addition, the hyperatlas is used as the initialization for
the atlas in the EM algorithm. Therefore, there is possibility that
the anatomy of the estimated atlas could be influenced by the
choice of the hyperatlas. We now demonstrate this influence on
the estimated atlas due to the hyperatlas.

We repeated the atlas estimation procedure when two different
HYDI subjects, shown in Fig. 5(a and b), were respectively selected
as the hyperatlas. Fig. 5(d and e) shows the estimated HYDI atlases
obtained from the hyperatlases shown in Fig. 5(a and b), respec-
tively. To evaluate the similarity between the two hyperatlases
and estimated atlases, we first computed the diffusion probability
density functions (PDFs) of water molecules, i.e., the ensemble
average propagator (EAP), using Fourier transform (Hosseinbor
strates the atlas image, subject image, the diffusion profiles at individual shells with
of panels (A–C) illustrates the deformed subject image in the atlas space after the

0, 4800, and 7500 s/mm2 in the q-space, respectively. Red, blue, and green contours
nd deformed subject in atlas space. The closer the green contour to the red contour,
is figure. It is orthogonal to the fiber orientation. (For interpretation of the references



Table 2
Table lists the mean and standard deviation values of the symmetrized Kullback–
Leibler (sKL) divergence of the diffusion probability density functions (PDFs) between
the deformed subject and atlas HYDIs in each major white matter tract. The second
and third columns show the results obtained from the LDDMM-HYDI without and
with the Term (B) computation. Abbreviations: CC-corpus callosum; CST-corticospinal
tract; IC- internal capsule; CR-corona radiata; EC-external capsule, CG-cingulum, SLF-
superior longitudinal fasciculus, and IFO-inferior fronto-occipital fasciculus.

LDDMM-HYDI without Term (B) LDDMM-HYDI with Term (B)

CST 0.477(0.084) 0.434(0.066)
CC 0.369(0.046) 0.346(0.046)
IC 0.387(0.045) 0.377(0.044)
CR 0.289(0.038) 0.282(0.038)
EC 0.327(0.032) 0.322(0.032)
CG 0.417(0.048) 0.406(0.048)
SLF 0.341(0.059) 0.327(0.060)
IFO 0.374(0.037) 0.366(0.037)

Table 3
Comparison of the mapping accuracy between LDDMM-HYDI and LDDMM multi-
tensor. The first column lists the b-value (s/mm2) of each shell. The second and third
columns list the squared difference in the diffusion signals of the deformed subjects
and the atlas after the LDDMM multi-tensor and LDDMM-HYDI mapping, respec-
tively. Mean and standard deviation are given.

LDDMM multi-tensor (�104) LDDMM-HYDI (�104)

b = 300 3.958(0.405) 3.236(0.394)
b = 1200 2.106(0.162) 1.928(0.183)
b = 2700 1.084(0.075) 0.827(0.061)
b = 4800 0.680(0.047) 0.462(0.035)
b = 7500 0.375(0.030) 0.248(0.024)

Table 4
Table lists the mean and standard deviation values of the symmetrized Kullback–
Leibler (sKL) divergence of the diffusion probability density functions (PDFs) between
the deformed subject and atlas HYDIs in each major white matter tract. The second
and third columns show the results obtained from the LDDMM multi-tensor and
LDDMM-HYDI mapping. Abbreviations: CC-corpus callosum; CST-corticospinal tract;
IC- internal capsule; CR-corona radiata; EC-external capsule, CG-cingulum, SLF-
superior longitudinal fasciculus, and IFO-inferior fronto-occipital fasciculus.

LDDMM multi-tensor LDDMM-HYDI

CST 0.983(0.234) 0.434(0.066)
CC 0.657(0.062) 0.346(0.046)
IC 0.642(0.066) 0.377(0.044)
CR 0.478(0.052) 0.282(0.038)
EC 0.411(0.048) 0.322(0.032)
CG 0.654(0.055) 0.406(0.048)
SLF 0.617(0.075) 0.327(0.060)
IFO 0.422(0.044) 0.366(0.037)
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et al., 2013) and then calculated the symmetrized Kullback–Leibler
(sKL) divergence between the PDFs (Chiang et al., 2008) at individ-
ual voxels. As seen in Fig. 5(c), the sKL divergence is large between
the PDFs of the two hyperatlases even in the corpus callusom and
external capsule. Nevertheless, Fig. 5(f) shows the sKL divergence
between the PDFs of the two estimated atlases and illustrates a
reduction in the sKL divergence compared to that in Fig. 5(c). A
two-sample Kolmogorov–Smirnov test reveals that the cumulative
distribution of the sKL divergence as shown in Fig. 6 between the
two estimated atlases (Fig. 5(d and e)) is significantly greater than
that between the two hyperatlases (Fig. 5(a and b)) (p < 0:001),
which indicates that more voxels with small sKL divergence
between the two estimated atlases when compared to those
between the two hyperatlases. This result suggests the improved
similarity between the two estimated atlases when compared to
that between the two hyperatlases.

5.2. HYDI mapping

Given the altas generated in Section 5.1, we mapped the 36 sub-
jects into the atlas space using LDDMM-HYDI with rV ¼ 10. To
evaluate the mapping results, we first illustrate the mapping
results of HYDI datasets using LDDMM-HYDI and then evaluate
the influence of the reorientation on the optimization of the diffe-
omorphic transformation. Finally, we compare the mapping accu-
racy of LDDMM-HYDI with that of an existing diffeomorphic
registration method for DTI (Cao et al., 2005) that was adapted to
multiple tensors generated from each shell of the q-space.

Fig. 7 shows the LDDMM-HYDI mapping results of three sub-
jects. The last five columns respectively illustrate the geometric
shapes of the diffusion signals at five shells of the q-space in the
brain regions with crossing fibers. Red, blue, and green contours
respectively represent the shape of the diffusion signals from the
atlas, subject, and deformed subjects. Visually, the diffusion pro-
files at each shell can be matched well after the mapping.

We next evaluated the mapping accuracy of the LDDMM-HYDI
algorithms with and without the computation of Term (B) in Eq.
(11) during the optimization, where Term (B) seeks the diffeomor-
phic transformation such that the local diffusion profiles of the
atlas and subject’s HYDIs can be aligned. We demonstrate the
importance of Term (B) in the optimization of the HYDI registration
even though it is often neglected in existing DWI-based registra-
tion algorithms (e.g., Dhollander et al., 2010, 2011). For this, we
first computed the diffusion probability density functions (PDFs)
of water molecules, i.e., the ensemble average propagator (EAP),
using Fourier transform Hosseinbor et al. (2013). Then, we calcu-
lated the symmetrized Kullback–Leibler (sKL) divergence between
the deformed subject and atlas PDFs Chiang et al. (2008) in major
white matter tracts. The smaller sKL metric indicates the better
alignment between the deformed subject and atlas HYDIs. The
major white matter tracts evaluated in this study include corpus
callosum (CC), corticospinal tract (CST), internal capsule (IC), cor-
ona radiata (CR), external capsule (EC), cingulum (CG), superior
longitudinal fasciculus (SLF), and inferior fronto-occipital fascicu-
lus (IFO). Table 2 lists the values of the mean and standard devia-
tion of the sKL metric for each major white matter tract among 36
subjects when the LDDMM-HYDI algorithms with and without the
Term (B) computation were respectively employed. Pairwise Stu-
dent t-tests suggest that the LDDMM-HYDI algorithm with the
explicit orientation optimization (Term (B) computation) signifi-
cantly improves the alignment in the major white matter tracts
when compared to that without the explicit orientation optimiza-
tion (Studnet’s t-tests: p < 0:05 for all tracts).

Last, we compared the mapping accuracy of LDDMM-HYDI with
that of an existing diffeomorphic registration method for DTI (Cao
et al., 2005) that was adapted to multiple tensors generated from
each shell of the q-space. The LDDMM multi-tensor mapping is
superior to the existing approach that aligns DWIs on multiple
shells of the q-space based on the generalized fractional anisotro-
phy (GFA) images computed from each shell (Dhollander et al.,
2011). In this experiment, we first computed three diffusion
tensors derived from the diffusion weighted images at b = 1200,
2700, and 4800 s/mm2. We then employed the LDDMM multi-ten-
sor mapping algorithm to simultaneously align the three tensor
images of a subject to those of the atlas. This multi-tensor mapping
algorithm (LDDMM multi-tensor) was implemented under the
same LDDMM framework as one for the LDDMM-HYDI mapping
algorithm presented in this paper. Hence, we chose the same
parameter, rV ¼ 5, to control the smoothness of the deformation.
The transformation obtained from this multi-tensor diffeomorphic
mapping was finally applied to the DWI signals based on reorien-
tation scheme given in Eq. (6). Table 3 lists the squared difference
in the diffusion signals between the atlas and deformed subjects



J. Du et al. / Medical Image Analysis 18 (2014) 1002–1014 1013
after the LDDMM multi-tensor and LDDMM-HYDI mapping. Pair-
wise Student t-tests suggested the significant improvement in
the alignment of DWIs using LDDMM-HYDI against LDDMM
multi-tensor (p < 0:05) at every shell of the q-space. Furthermore,
we computed the sKL divergence between the PDFs of the atlas and
the subjects deformed using the LDDMM multi-tensor and
LDDMM-HYDI mapping for major white matter tracts. Table 4 lists
the values of the mean and standard deviation of the sKL metric for
each major white matter tract among 36 subjects when the
LDDMM multi-tensor and LDDMM-HYDI algorithms were respec-
tively employed. Pairwise Student t-tests suggest that the
LDDMM-HYDI algorithm significantly improves the alignment in
the major white matter tracts when compared to that obtained
using LDDMM multi-tensor mapping (Studnet’s t-tests: p < 0:05
for all tracts).
6. Conclusion

In conclusion, we proposed the LDDMM-HYDI variational
problem and the Bayesian atlas estimation model based on the
BFOR signal basis representation of DWIs. We derived the gradient
of this variational problem with the explicit computation of the
mDWI reorientation and provided a numeric algorithm without a
need of the discretization in the q-space. Comparing with our exist-
ing work (Du et al., 2013), we further derived the EM algorithm for
the estimation of the atlas in the Bayesian framework. Moreover,
we provided the extensive evaluation on the mapping accuracy
based on a new dataset of 36 healthy adults and compared
LDDMM-HYDI with that of the diffeomorphic mapping based on
diffusion tensors. Our results showed that (1) the atlas generated
contains anatomical details of the white matter anatomy; (2) the
explicit orientation optimization is necessary as it improves the
alignment of the diffusion profiles of HYDI datasets; and (3) the
comparison with the multi-tensor based diffeomorphic metric
mapping suggests the importance for incorporating the full infor-
mation of HYDI for the mDWI registration.

In this paper, our study was not able to examine the mapping
accuracy using HARDI mapping approaches (e.g., Du et al. (2012),
Raffelt et al. (2012)) as the imaging acquisition in each shell in
our study is not sufficient to reconstruct the HARDI model. More-
over, we did not compare the performance of the LDDMM-HYDI
mapping with that of the existing HYDI mapping approach
(Dhollander et al., 2011). First of all, the influence of the reorienta-
tion on the optimization of the diffeomorphic transformation is
shown to be crucial. The mapping algorithm in Dhollander et al.
(2011) takes GFA images obtained from each shell of the q-space
and estimates the deformation using a multi-channel diffeomor-
phic image mapping algorithm without the explicit computation
of the reorientation during the optimization of the mapping algo-
rithm. Second, we examined the mapping using multiple tensors
generated from each shell in the q-space, which is superior than
that using GFA images obtained from each shell in the q-space as
given in Dhollander et al. (2011). Hence, we expect that the conclu-
sion that LDDMM-HYDI outperforms LDDMM multi-tensor can be
generalized to the existing HYDI mapping approach (Dhollander
et al., 2011).
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Appendix A. Derive r2new from the Q-function

We update r2 when m0 is fixed and /ðiÞ1 ; i ¼ 1;2; � � � ;n are
known. Hence,

Q m0;r2jmold
0 ;r2old

� �
¼ hm0;kV m0i2 þ

Xn
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o
dx:

We now take the derivative of Q with respect to r2.

dQ
dr2 ¼

Xn
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				 MðRxÞ catlas
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� ð/ðiÞ1 Þ
�1
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� �
dx:

We set dQ
dr2 ¼ 0 and thus have

r2new ¼ 1
n

1
nv

Xn

i¼1

Z
x2X

MðRxÞ catlas
� �

� ð/ðiÞ1 Þ
�1
ðxÞ � cðiÞðxÞ

			 			2
dx;

where nv is the number of voxels in X.
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