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Abstract. Heat diffusion has been widely used in image processing
for surface fairing, mesh regularization and surface data smoothing. We
present a new fast and accurate numerical method to solve heat diffusion
on curved surfaces. This is achieved by approximating the heat kernel
using high degree orthogonal polynomials in the spectral domain. The
proposed polynomial expansion method avoids solving for the eigenfunc-
tions of the Laplace-Beltrami operator, which is computationally costly
for large-scale surface meshes, and the numerical instability associated
with the finite element method based diffusion solvers. We apply the
proposed method to localize the sex differences in cortical brain sulcal
and gyral curve patterns.
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1 Introduction

Heat diffusion has been widely used in image processing as a form of smooth-
ing and noise reduction starting with Perona and Malik’s groundbreaking study
[15]. Over the years, the diffusion equation has been solved by various numeri-
cal techniques [1–4,17]. In [1,2], the isotropic heat equation was solved by the
least squares estimation of the Laplace-Beltrami (LB) operator and the finite
difference method (FDM). In [3,4], the heat diffusion was solved iteratively by
the discrete estimate of the LB-operator using the finite element method (FEM)
and the FDM. However, the FDM is known to suffer numerical instability if
the sufficiently small step size is not chosen in the forward Euler scheme. In
[3,16], diffusion was solved by expanding the heat kernel as a series expansion
of the LB-eigenfunctions. Although the LB-eigenfunction approach avoids the
numerical instability associated with the FEM based diffusion solvers [3,4], the
computational complexity is very high for large-scale surface meshes.

Motivated by the diffusion wavelet transform [11,12,20] and convolutional
neural networks (CNN) [5] on graphs, we propose a new fast and accurate numer-
ical method to solve the heat diffusion on manifolds by expanding the heat ker-
nel using orthogonal polynomials. Taking advantage of recurrence relations of
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orthogonal polynomials [14], the computational run time of solving diffusion is
substantially reduced. We present three examples of the proposed methods based
on the Chebyshev, Hermite and Laguerre polynomials. The proposed method is
significantly faster than the LB-eigenfunction approach and FEM based diffusion
solvers [3]. As an application, the proposed method is applied to a large number
of magnetic resonance images (MRI) to localize the sex differences in the sulcal
and gyral patterns of the human brain.

The main contributions of the paper are (1) a novel polynomial scheme to
solve diffusion on manifolds, which is faster than the existing numerical schemes
while achieving high numerical accuracy, and (2) an innovative way to analyze
the sulcal and gyral patterns of the whole brain in a mass univariate fashion.

2 Methods

2.1 Heat Diffusion on Manifolds

Suppose functional data f ∈ L2(M), the space of square integrable functions
on manifold M with inner product 〈f, h〉 =

∫
M f(p)h(p)dμ(p), where μ(p) is

the Lebesgue measure such that μ(M) is the total area or volume of M. Let Δ
denote the LB-operator on M. The isotropic heat diffusion at diffusion time σ
on M with initial condition f is given by

∂g(p, σ)
∂σ

+ Δg = 0, g(p, σ = 0) = f(p). (1)

It has been shown that the convolution of f with heat kernel Kσ is the unique
solution of the heat diffusion equation [3]. Let ψj be the eigenfunctions of the LB-
operator with eigenvalues λj , i.e., Δψj = λjψj , with 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · .
The heat kernel can be expanded by the LB-eigenfunctions with exponential
weight e−λσ as Kσ(p, q) =

∑∞
j=0 e−λjσψj(p)ψj(q) [3]. Then, with Fourier coeffi-

cients fj = 〈f, ψj〉, the heat diffusion can be expressed as

g(p, σ) = Kσ ∗ f(p) =
∞∑

j=0

e−λjσfjψj(p). (2)

2.2 Heat Diffusion Using Polynomial Expansion

Consider an orthogonal polynomial basis Pn such as Chebyshev, Hermite and
Laguerre polynomials, which is often defined by the following second order recur-
rence [14],

Pn+1(λ) = (αnλ + βn)Pn(λ) + γnPn−1(λ), n ≥ 0, (3)

with initial conditions P−1(λ) = 0 and P0(λ) = 1 in some interval [a, b]. We
expand the exponential weight e−λσ of the heat kernel as

e−λσ =
∞∑

n=0

cσ,nPn(λ), cσ,n =
∫ b

a

e−λσPn(λ)dμ(λ). (4)
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Table 1. The orthogonal conditions, expansion coefficients and recurrence relations of
polynomials. In in Chebyshev are the modified Bessel functions of the first kind [14].

Method Orthogonal conditions Coefficients cσ,n Recurrence relations

αn, βn, γn

Chebyshev
1∫

−1

Tn(λ)Tk(λ)
√

1 − λ2
dλ =

(1 + δn0)π

2
δnk

e
− λmax

2 σ
(2 − δn0)

·(−1)nIn(λmaxσ/2)

2(2 − δn0)

λmax
, δn0 − 2, −1

Hermite
∞∫

−∞
Hn(λ)Hk(λ)e−λ2

dλ =
√

π2nn!δnk

1

n!

( −σ

2

)n

e
σ2
4 2, 0, −2n

Laguerre
∞∫

0
Ln(λ)Lk(λ)e−λdλ = δnk

σn

(σ + 1)n+1

−1

n + 1
,

2n + 1

n + 1
,

−n

n + 1

Using (4), the heat kernel convolution (2) becomes

Kσ ∗ f =
∞∑

n=0

cσ,n

∞∑

j=0

Pn(λj)fjψj . (5)

Since Pn(λ) is a polynomial of degree n, we have Pn(λj)ψj = Pn(Δ)ψj , and

Kσ ∗ f =
∞∑

n=0

cσ,nPn (Δ) f. (6)

The direct computation of Pn (Δ) f requires the computation of Δf, · · · ,Δnf ,
which is costly. Instead, we compute Pn (Δ) f by the recurrence

Pn+1 (Δ) f = (αnΔ + βn)Pn (Δ) f + γnPn−1 (Δ) f, n ≥ 0, (7)

with initial conditions P−1(Δ)f = 0 and P0(Δ)f = f . In the numerical imple-
mentation, we discretized the LB-operator using the cotan formulation [3,20].

Chebyshev, Hermite and Laguerre Polynomials. We present three exam-
ples based on the Chebyshev Tn, Hermite Hn and Laguerre Ln polynomials. The
Chebyshev polynomials were used in the diffusion wavelet transform [11,20] and
CNN on graphs [5]. Following [11], we shift and scale the Chebyshev polynomi-
als to Tn(λ) = Tn

(
2λ

λmax
− 1

)
over interval [0, λmax], where λmax is the max-

imum eigenvalue of LB-operator in the numerical implementation. We derived
the closed-form expressions of the expansion coefficients cσ,n for Tn, Hn and Ln

using the orthogonal conditions (Table 1) [10,14]. The parameters αn, βn, γn in
the recurrence relations (3) and (7) for Tn, Hn and Ln are also given in Table 1.

Figure 1 is an illustration of the heat diffusion of the left hippocampus surface
mesh coordinates (σ = 1.5, m = 100). The reconstruction error is measured by
the mean squared error (MSE) (measured in voxel width squared) between the
polynomial expansion method and the original surface mesh. Since the Cheby-
shev expansion method converges the fastest with the smallest error in various
surface meshes, it will be used through the paper but other polynomial methods
can be similarly applicable. The MATLAB code for generating Fig. 1 is given in
http://www.stat.wisc.edu/∼mchung/chebyshev.

http://www.stat.wisc.edu/~mchung/chebyshev


Fast Polynomial Approximation to Heat Diffusion in Manifolds 51

Fig. 1. Left: left hippocampus surface and heat diffusion with σ = 1.5 using the Cheby-
shev, Hermite and Laguerre polynomial expansion methods with degree m = 100.
Right: MSE between the original surface mesh and the polynomial expansion methods
for different m. The Chebyshev method converges the fastest in general.

Fig. 2. Sequential application of Cheby-
shev expansion method with σ = 0.25
four times.

Iterative Convolution. One can
obtain diffusion related multiscale fea-
tures at different time points by itera-
tively performing heat kernel smooth-
ing. Instead of applying the polynomial
expansion method separately for each
σ, the computation can also be done
quickly by the iterative heat kernel con-
volution [3]

Kσ1+σ2+···+σm
∗ f = Kσ1 ∗ Kσ2 · · · ∗ Kσm

∗ f.

For example, if we compute K0.25 ∗ f , then K0.5 ∗ f is simply computed as two
repeated kernel convolution K0.25 ∗ (K0.25 ∗ f), and diffusion with much larger
diffusion time can be done similarly. Figure 2 displays heat diffusion with σ =
0.25, 0.5, 0.75 and 1 realized by iteratively applying the Chebyshev expansion
method with σ = 0.25 sequentially four times.

2.3 Validation

We compared the Chebyshev expansion method against the FEM based diffusion
solver [4] and the LB-eigenfunction approach [3] on the unit spheres with 2562,
10242, 40962 and 163842 mesh vertices. On the unit spheres, the ground truth
of heat diffusion can be analytically constructed by the spherical harmonics
(SPHARM) [18]. Consider the surface signal consisting of values 1, −1 and 0
(Fig. 3). The signal is represented using the SPHARM with degree 100, which is
taken as the initial condition of heat diffusion. The SPHARM representation is
taken as the ground truth since its diffusion can be analytically given. Figure 3
shows the result with σ = 0.01 on the unit sphere with 163842 vertices.
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Fig. 3. Signal (initial condition) and ground truth of heat diffusion with σ = 0.01 are
constructed by the SPHARM representation with degree 100. The LB-eigenfunction
approach with 210 eigenfunctions, FEM based diffusion solver with 406 iterations, and
Chebyshev expansion method with degree 45 have similar accuracy (MSE about 10−5).
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Fig. 4. Left: MSE of the LB-eigenfunction approach, FEM based diffusion solver and
Chebyshev expansion method against the ground truth with different number of eigen-
functions, iterations and expansion degree respectively. Unit spheres with 2562, 10242,
40962 and 163842 mesh vertices and fixed σ = 0.01 were used. Right: computational
run time against mesh size at similar accuracy (MSE about 10−5).
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Fig. 5. Left: MSE of the LB-eigenfunction approach, FEM based diffusion solver and
Chebyshev expansion method against the ground truth with different number of eigen-
functions, iterations and expansion degree respectively. Diffusion times σ = 0.005, 0.01,
0.02 and 0.05 and 40962 mesh vertices were used. Right: computational run time versus
σ at similar accuracy (MSE about 10−7).
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Fig. 6. Left: sulcal (blue) and gyral (red) curves are extracted and displayed on the
white matter surface. Middle: heat diffusion using the Chebyshev expansion method
with degree 1000 and diffusion time 0.001. Right: diffusion map was flattened to show
the pattern of diffusion. (Color figure online)

Run Time over Mesh Sizes. For fixed σ, the FEM based diffusion solver and
Chebyshev expansion method need more iterations and higher degree for larger
meshes, while the LB-eigenfunction approach is nearly unaffected by the mesh
sizes (Fig. 4-left). Since there is a trade-off between the accuracy and computa-
tional run time, we fixed the numerical accuracy with MSE at around 10−5 and
compared the run time (Fig. 4-right).

Run Time over Diffusion Times. For fixed mesh resolution, the FEM based
diffusion solver and Chebyshev expansion method need more iterations and
higher degree for larger σ, while the LB-eigenfunction approach requires less
number of eigenfunctions (Fig. 5-left). Figure 5-right displays the computational
run time versus σ with similar MSE of about 10−7.

From Figs. 4 and 5, in terms of reconstruction error, the LB-eigenfunction
method is the slowest. The polynomial approximation method is up to twelve
times faster than the FEM method.

3 Application

Preprocessing. We used the T1-weighted MRI dataset consisting of 268
females and 176 males collected as the subset of the Human Connectome Project
[21]. The MRI data underwent image preprocessing including gradient distortion
correction, skull-stripping, bias field correction, nonlinear image registration and
white matter and pial surface mesh extractions in FreeSurfer [9]. The automatic
sulcal curve extraction method [13] was used to detect concave regions (sulcal
fundi) along which sulcal curves are traced. Sulcal points were determined by the
line simplification method [7] that denoises the sulcal regions without significant
loss of morphological details. A partially connected graph was constructed by
the sulcal points, where edge weights are assigned based on geodesic distances.
Finally, the sulcal curves were traced over the graph by the Dijkstra’s algorithm
[6]. Similarly, we extended the same method to the gyral curve extraction by
finding convex regions (Fig. 6).
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Fig. 7. Left and middle: average diffusion maps of 268 females and 176 males displayed
on the average surface template. Right: t-statistic map shows localized sulcal and gyral
pattern differences (female-male) thresholded at −4.96 and 4.96 (uncorrected p-value
of 10−6).

Diffusion Maps. The sulcal and gyral curves are represented as graphs embed-
ded on the brain surface meshes. It is difficult to establish the precise mapping
between curves across subjects. Thus, we applied the proposed method to smooth
out sulcal and gyral curves. The gyral curves are assigned value 1, and sulcal
curves are assigned value −1. All other parts of surface mesh vertices are assigned
value 0 (Fig. 6). The difference in the initial temperature produces heat gradient.
We used the Chebyshev expansion method with diffusion time σ = 0.001 and
expansion degree m = 1000. On average, the construction of the discrete LB-
operator took 5.8 s, and the Chebyshev expansion method took 3.2 s resulting
in a total run time of 9 s per subject in a computer. The diffusion maps were
subsequently used in localizing the regions of the brain that differentiates male
and female differences.

Statistical Analysis. The average diffusion maps of females and males in
Fig. 7 show major differences in the temporal lobe among other regions, which is
responsible for processing sensory input into derived meanings for the appropri-
ate retention of visual memory, language comprehension, and emotion associa-
tion [19]. The two-sample t-statistic map (female-male) was constructed on the
diffusion maps (max. t-stat. 7.02, min. t-stat. −6.5). The multiple comparisons
are corrected using the false discovery rate at 0.05 via the Benjamini-Hochberg
procedure [8]. t-statistic values larger than 2.75 and smaller than −2.75 are con-
sidered as significant (red and blue regions).

4 Conclusion

In this paper, we proposed a new fast and accurate numerical method to solve
heat diffusion on curved surfaces by expanding the heat kernel in the spectral
domain by orthogonal polynomials. The proposed polynomial expansion method
speeds up the computation significantly compared to existing numerical schemes.
The proposed method was applied in the sulcal and gyral curve pattern analysis.

The proposed polynomial method can be applied to multiscale shape analysis
via the iterative kernel convolution. The method can be further extended to any
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arbitrary domain without much computational bottlenecks. Thus, the method
can be easily applicable to large-scale images where the existing methods may not
be applicable without additional computational resources, such as 3D volumetric
meshes [22]. These are left as future studies.
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