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Sparse Brain Network Recovery
under Compressed Sensing

Hyekyoung Lee, Dong Soo Lee, Hyejin Kang, Boong-Nyun Kim, and Moo K. Chung

Abstract—Partial correlation is a useful connectivity measure
for brain networks, especially, when it is needed to remove
the confounding effects in highly correlated networks. Since it
is difficult to estimate the exact partial correlation under the
small-n large-p situation, a sparseness constraint is generally
introduced. In this paper, we consider the sparse linear regression
model with a l1-norm penalty, also known as the least absolute
shrinkage and selection operator (LASSO), for estimating sparse
brain connectivity. LASSO is a well-known decoding algorithm in
the compressed sensing (CS). The CS theory states that LASSO
can reconstruct the exact sparse signal even from a small setof
noisy measurements. We briefly show that the penalized linear
regression for partial correlation estimation is related to CS. It
opens a new possibility that the proposed framework can be
used for a sparse brain network recovery. As an illustration, we
construct sparse brain networks of 97 regions of interest (ROIs)
obtained from FDG-PET imaging data for the autism spectrum
disorder (ASD) children and the pediatric control (PedCon)
subjects. As validation, we check the network reproducibilities
by leave-one-out cross validation and compare the clustered
structures derived from the brain networks of ASD and PedCon.

Index Terms—Brain Connectivity, Compressed Sensing, Partial
Correlation, LASSO

I. I NTRODUCTION

The functional and anatomical connectivity of human brain
has known to exhibit large and complex network structures
with nontrivial topological characteristics [1], [2], [3], [4], [5],
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[6], [7], [8], [9], [10], [11], [12]. By incorporating the graph
theoretical approaches into connectivity analysis, we cangain
a new understanding of the characteristics of human brain,
from a microscale connectivity between single neurons to a
macroscale connectivity between regions of interest (ROIs)
in brain images. The brain connectivity has been usually
categorized into well-known complex networks such as small-
world [1], [3], [4], [5], [7], [11], scale-free [2], [5] or modular
networks [8], [9], [10]. The human brain networks is formed
from connectivity matrices defined between neuronal elements
(single neurons for microscale and ROIs for macroscale net-
work modeling). They are also known as ‘human connectome’
[13].

The majority of previous brain network studies have been
based on thresholding correlation in localizing the focal re-
gions of high connectivity [14], [15], [2]. The correlation is
used as a similarity measure of network connectivity between
two regions. However, the main limitation of correlation-
based connectivity analyses is that they fail to explicitlyfactor
out the confounding effect of other regions. To remedy this
shortcoming, partial correlation has been naturally introduced
in factoring out the dependency of other regions [16], [7], [6]
or eliminating the effect of experimental designs [17]. Unfor-
tunately, this type of problem usually belongs to the small-n
large-p setting, where the number of regionsp are substantially
larger than the number of samplesn, so it is not feasible to
estimate the partial correlation accurately [18], [19]. So far
the majority of literature have used the penalized likelihood
method in imposing the sparseness on the partial correlation
estimation [20], [21], [22], [23], [24], [25]. Moreover, since
the brain networks are known to be sparse and highly clustered
[26], [7], it is reasonable to incorporate the sparsity of network
in estimating partial correlation. In this paper, we introduce a
different approach based on the penalized linear regression for
estimating sparse partial correlation [27], [28]. The penalized
linear regression withl1-norm, which is also known as the
basis pursuit denoising in signal processing and least absolute
shrinkage and selection operator (LASSO) in statistics, is
usually formulated as the convex optimization to find the
sparsest solution of the under-determined linear regression
problem [29], [30].

LASSO is one of preferred decoding algorithms in the
compressed sensing (CS) theory [31], [32], [33], [34]. The CS-
theory states that if LASSO satisfies sparsity and incoherence,
the exact recovery is guaranteed with the overwhelmingly
high probability, even though the measurement data is not
sufficient and contaminated with noise [35], [36]. Note that,
incoherence is a stronger condition than a uniform uncertainty
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principle (UUP) [37]. If our penalized linear regression for the
partial correlation estimation satisfies sparseness and UUP, CS
may provide a natural framework for modeling sparse brain
networks, which has not been attempted before. We show that
the proposed framework satisfies UUP based on the fact that
the brain imaging data satisfies UUP for Gaussian ensemble.

In this paper, we focus on sparse model building of the
macro-scale connectivity of human brain under CS. The pro-
posed model is applied to the 97 ROIs extracted from FDG-
PET data for autistim spectrum disorder (ASD) children and
pediatric control (PedCon) subjects. It is generally known
that ASD has the global underconnectivity and the local
overconnectivity in the key brain regions [38], [39]. The
differences between ASD and PedCon are mostly found in
connectivities between lobes, especially, connection between
secondary association cortices such as frontal and parietal
regions [40], [41], [5]. Dense internal and sparse external
linkages are properties of a module. In particular, some studies
suggest that the small-world network, which is one of famous
characteristics of brain connectivity, induces a modular archi-
tecture [8], [9], [10]. Therefore, in this study, after estimating
the partial correlation by the penalized linear regression, we
seek the possible modular structures of ASD and PedCon
brain network and observe their differences based on the lobe
structures.

The main contributions of this paper are:

• to formulate the sparse brain connectivity based on cor-
relation and partial correlation in the penalized linear
regression framework,

• to show that the penalized linear regression for partial cor-
relation estimation can near-optimally recover the sparse
brain connectivity by showing our study satisfies UUP of
the Gaussian ensemble,

• to show the reproducibilities of the estimated networks
using the leave-one-out cross-validation,

• to show that controlling sparsity is related with determin-
ing the threshold of partial correlation matrix,

• and to suggest a new graph metric, the number of
connected components, for thresholding. The proposed
metric reflects the modular structures of brain network.

The organization of the paper is as follows. In SectionII ,
we provide notations that will be used through the paper and
present the standard methods for calculating correlation and
partial correlation. We formulate the problem of estimating
correlation and the partial correlation under a sparsity con-
straint as the sparse linear regression in SectionIII . Section
IV deal with the implementation for estimating the sparse
partial correlation. In SectionV, after briefly introducing
CS and prove that our LASSO-based connectivity method
satisfies UUP. Numerical experiments are given in SectionVI,
where we use the 97 ROIs extracted from FDG-PET data for
26 autistic and 11 pediatric control subjects. We show that
the proposed method consistently finds the brain networks
which characterize the two groups and have significant group
differences in network connectivity.

II. N ETWORK CONSTRUCTION

A. Connectivity Matrix

Suppose that
{
f1, . . . ,fp

}
is then-dimensional data vector

measured at thep selected ROIs on the FDG-PET images of
n subjects. The observed data vectorf i is the realization of
random variablefi at thei-th ROI. The collection of measure-
mentsfi are assumed to be normally distributed with mean
0 ∈ R

p and covarianceΣ = [σij ] ∈ R
p×p. We will further

assume thatf i is centered and normalized, i.e.f⊤
i f i = 1. The

covarianceσij is then estimated asσij = f⊤
i f j . If there is no

ambiguity, we will interchangeably useσij and its estimation
σ̂ij . Given the inverse covariance matrixΣ−1 = (πij), which
is also known as the precision matrix or concentration matrix,
the correlation coefficientρij and the partial correlationθij
are given by

ρij =
σij√
σiiσjj

andθij = −
πij√
πiiπjj

.

The connectivity matrix of network is usually constructed as
a function of correlation or partial correlation. The partial
correlation is better in finding the true relationship between
two nodes than correlation coefficient due to the ability of
factoring out the influence of other regions [42].

B. Small-n large-p problem

Under high-dimension-small-sample-size setting, the covari-
ance matrix is singular and it cannot be inverted to the
precision matrix directly. The pseudo-inverse of covariance
matrix can be used (denoted as PINV hereafter), but it has
low statistical power and lack of consistency [19]. Imposing
the sparseness to the precision matrix is the most natural way
to find the precision matrix under small-n large-p situations.
It reduces the number of significant elements by forcing
all other elements to be zero. There are two most widely
used methods for estimating sparse partial correlation: (1) the
penalized maximum likelihood (referred as PML hereafter)
[22], [23], [43] and (2) the penalized linear regression (referred
as PLR hereafter) [27]. The penalized linear regression using
l1-norm penalty (LASSO) is known to have better performance
for the model selection and hub identification at the lower
computational cost. Peng, et al. proved the consistency of
identifying the true network neighborhood forn, p→∞ [27].

III. SPARSECONNECTIVITY ESTIMATION

In this section, we present the penalized linear regression
framework for estimating sparse correlation and partial corre-
lation.

A. Linear Regression for Correlations

Both correlation and partial correlation can be obtained by
the linear regression.

• Correlation:

f i = αijf j + ǫi (i = 1, · · · , p). (1)
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Fig. 1. Linear regression model for the partial correlationestimation. Linear regression model in (2) is represented as (a)X = XB, whereX =
[f1, · · · ,fp] ∈ R

n×p andB = [βij ] ∈ R
p×p. B is a symmetric matrix with zero diagonal terms. It can be written as (b)x = Ab, wherex = vec(X),

A = I ⊗X ∈ R
np×p2 andb = vec(B) ∈ R

p2×1. I ∈ R
p×p is a identity matrix. Ifb is s-sparse, i.e. it has at mosts number of nonzero elements.

The parametersαij are estimated by minimizing the sum
of squares

‖ f i − αijf j ‖2

= (f⊤
j f j)α

2
ij − 2(f⊤

i f j)αij + (f⊤
i f i).

The minimum is obtained when

αij =
f⊤
i f j

f⊤
j f j

=

√√√√ f⊤
i f i

f⊤
j f j

ρij .

For the normalization of the measurementf⊤
i f i = 1, we

haveρij = αij .
• Partial Correlation:

f i =
∑

j 6=i

βijf j + ǫi (i = 1, · · · , p), (2)

whereβij is the measure of relationship betweenf i and
f j given all other data vectors. When var(ǫi) = (1/πii)
and cov(ǫi, ǫj) = πij/(πiiπjj), the partial correlationθij
is given by [27]

θij = βij

√
πii

πjj
. (3)

Now, we write the linear regression model in (2) to a matrix
form (Fig. 1) in order to explicitly show the relationship
between partial correlation, linear regression and CS. If we
denoteX = [f1, · · · ,fp] ∈ R

n×p andB = [βij ] ∈ R
p×p. B

is assumed to be symmetric with zero diagonal entries. Then
(2) can be rewritten as

X = XB. (4)

Vectorize the both sides in (4) as

vec(X) = vec(XB), (5)

where vec(X) = [f⊤
1 · · ·f⊤

p ]
⊤ is the vectorization operator.

Since vec(XY Z) = (Z⊤ ⊗X)vec(Y ) with the Kronecker
product⊗ [44], we have

vec(XB) = (I ⊗X)vec(B),

whereI ∈ R
p×p is a identity matrix. Then, (5) can be written

in a matrix form

x = Ab, (6)

where x = vec(X), A = (I ⊗ X) ∈ R
np×p2

and b =
vec(B) ∈ R

p2×1. A is a block diagonal matrix, but not a
square matrix, of which main diagonal blocks consist ofXs
as shown in Fig.1(b).

Let N = np and P = p2. For n ≪ p, we have
N ≪ P . Subsequently, the problem of estimating the partial
correlation in the linear model (6) fall under a high-dimension-
small-sample-size situation. Thus, we need to incorporatethe
shrinkage method in regularizing the model parameters by
adding thel1-norm penalty to the model parameters.

B. Adding Sparseness Constraint

The solution of linear data model in (6) is usually obtained
by the least squares minimization:

b̂ = argmin
b

‖ x−Ab ‖22, (7)

where‖ · ‖2 is al2-norm. When the linear regression is under a
small-n large-p problem, there exist infinitely many solutions.
To obtain a unique solution, we need to add the sparseness
constraint. The sparsest solution is obtained by thel0-norm
penalty, which measures the number of non-zero elements, as

min
b
‖ b ‖0 subject tox = Ab. (8)

Since it is a combinatorial problem with NP-hard complexity,
instead of using thel0-norm, we employ thel1-norm penalty
(sum of absolute values of elements):

min
b
‖ b ‖1 subject tox = Ab, (9)

which is related with the linear programming and the basis
pursuit denoising problem [29]. The discussion about thel0
andl1 equivalence can be found in [45]. For a noisy case, we
can transform (9) to the quadratic programming with a linear
constraint

min
b
‖ x−Ab ‖22 subject to ‖ b ‖1< ǫ. (10)
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The formulation (10) is known as LASSO [30], [46]. By in-
troducing the sparseness control parameterλ, the formulation
(10) is rewritten by

b̂ = argmin
b

‖ x−Ab ‖22 +λ ‖ b ‖1 . (11)

The optimization for solving the sparse partial correlation is
done by the coordinate descent learning and the active-set
algorithm [27], [47]. We can also apply the LASSO framework
to (1) in estimating sparse correlation. The algorithms for the
sparse correlation and partial correlation are outlined inthe
next section.

IV. ESTIMATING SPARSE(PARTIAL ) CORRELATIONS

In this section, we derive an algorithm for estimating the
sparse (partial) correlations using the coordinate descent learn-
ing and the active-set algorithm [27], [47]. We also propose
the method tuning the amount of sparsityλ in (11) based on
the topological structure of the networks.

A. Algorithm for Sparse (Partial) Correlations

It requires huge computer memory to directly solve the
optimization problem for large number of nodes (11). So
we consider the LASSO frameworks of the element-wise
formulas (1) and (2) in estimating sparse correlation and partial
correlation [27]. The sparse correlation is obtained by

α̂ij = argmin
αij

p∑

i=1

∑

j 6=i

‖ f i − αijf j ‖22 +λ
∑

i,j

|αij | (12)

while the sparse partial correlation is estimated by

β̂ij = argmin
βij

p∑

i=1

‖ f i −
∑

j 6=i

βijf j ‖22 +λ
∑

i,j

|βij |. (13)

The coordinate descent learning and the active-set algorithm
are used to solve the optimization problems (12) and (13) [27],
[47].

The objective function for estimating correlation withoutl1-
norm-penality is given by

F =

p∑

i=1

∑

j 6=i

‖ f i − αijf j ‖22 .

SinceF is a convex function, the minimum is achieved atα̂ij

when

∂F
∂αij

= −f⊤
i f j + αij = 0 ⇒ α̂ij = f⊤

i f j .

If we add the l1-norm penalty, we have a new objective
function

F1 =

p∑

i=1

∑

j 6=i

‖ f i − αijf j ‖22 +λ
∑

i,j

|αij |.

The derivatives are given by

∂F1

∂αij
=

{
−f⊤

i f j + αij + λ, for αij > 0

−f⊤
i f j + αij − λ, for αij < 0

.

Hence, the minimum is obtained when

α̂ij =
[
f⊤
i f j , λ

]
+
, (14)

where

[a, b]+ =





a− b if a > 0 and |a| > b
a+ b if a < 0 and |a| > b
0 if |a| ≤ b

.

The partial correlation is also estimated in the same way.
The objective function for sparse partial correlation is given
by

G1 =

p∑

i=1

‖ f i −
∑

j 6=i

θij

√
πjj

πii
f j ‖22 +λ

∑

i,j

|θij |
√

πjj

πii
.

Note that πii can be estimated directly from the sample
variance the measurements. So assumingπii is given, the
minimum is obtained when

∂G1
∂θij

=

{
Aθij − B(θik,k 6=i,j) + λ, for θij > 0
Aθij − B(θik,k 6=i,j)− λ, for θij < 0

where

A =
πjj

nπii
f⊤
j f j

B(θik,k 6=i,j) =
1

n

(
f⊤
i f j −

∑

k 6=i,j

θik

√
πkkπjj

πii
f⊤
k f j

)
.

B is a function ofθik for all k = {1, . . . , p} \ {i, j}. Hence
the partial correlation is estimated as

θ̂ij =
[B(θik,k 6=i,j), λ]+

A
. (15)

While the correlation estimation (14) is in a closed-form,
the partial correlation estimation (15) is a function of all
other partial correlation coefficients. In the coordinate descent
optimization [48], we can obtain the global minimum by
sequentially minimizing with respect toθij while fixing all
other partial correlations. The algorithm for the coordinate
descent optimization is given below:

Input : X =
[
f1, · · · ,fp

]
∈ R

n×p, λ, δ
Output : θ ∈ R

p×p, π ∈ R
p

1 Normalize X such that f⊤
i 1 = 0 and

f⊤
i f i = 1 for all i (1 = [1, · · · , 1]⊤ ∈ R

n).
2 Initialize [θij ]i,j=1,...,p(i<j) and [πii]i=1,...,p.
3 While l
4 While m
5 For i = 1, ..., p andj = i+ 1, ..., p,

θ
(m)
ij ←

[

B(θ
(m−1)
ik,k 6=i,j

),λ
]

+

A .

6 Repeat 4 until|θ(m)
ij − θ

(m−1)
ij | < δ.

7 β
(l)
ij ← θ

(l)
ij

√
π
(l−1)
jj

π
(l−1)
ii

for all i, j.

8 For i = 1, ..., p,

π
(l)
ii ← 1/var(f i −

∑
j 6=i β

(l)
ij f j).

9 Repeat 3 until|π(l)
ii − π

(l−1)
ii | < δ.

For the convergence of the algorithm, we usedδ = 10−3 and
initialized [θij ]i,j=1,...,p(i<j) and [πii]i=1,...,p using uniformly
generated values.
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Since we assume that most of the partial correlationsθij
are zero, if we update only nonzero partial correlation, we
can reduce the computational complexity. Using this idea,
Friedman and Peng exploited the active set algorithm [27],
[47] which defines the nonzero partial correlation as the active
set and updates onlyθij belonging to the active set. In the
active set algorithm, the steps from 4 to 6 are then changed
as follows:

4* While m
Construct the current active set

Λ =
{
(i, j)| currentθ(m−1)

ij 6= 0
}

.

5* While m′

For all elements on the active set,

Updateθ(m
′)

ij (i, j) ∈ Λ in (15).
Repeat 5* until convergence on the active set.

5** For i = 1, ..., p andj = i+ 1, ..., p,

Updateθ(m)
ij (i, j) ∈ Λ in (15).

6* Repeat Step 4* until convergence.

B. Controlling Sparsity

For practical purposes, it is necessary to determine the
amount of sparsityλ.

1) Thresholding and Sparseness:Estimating the partial
correlation by fixingλ is equivalent to thresholding the partial
correlations. This is evident from (15), where the partial
correlation is given as a function ofλ. Thus, we can apply
the traditional thresholding methods for finding the suitable
sparse network instead of controlling the sparsity. However,
if the sparsity is too small in the small-n large-p situation, it
is impossible to estimate the exact partial correlations. In that
case, we cannot directly compare the sparse partial correlations
obtained from CS and the partial correlations obtained from
the usual thresholding.

For selecting the sparsity parameterλ, we investigate the
topological structures of the networks and check its stability
during the cross validation asλ increases. We estimate the
stability of the topological structures in two different ways.
First, the sample variance of the total number of edges in a
network is considered during the cross validation. The sparsity
which have the small sample variance is chosen. Second,
we estimate the number of edges which are included in the
previous network with smaller sparsity among all edges in the
network, i.e.,|Eλt

∩ Eλt−1 | for λt−1 < λt, where|Eλ| is the
number of elements in a set of edgesEλ in the partial corre-
lation network with the sparsityλ. If |Eλt

∩ Eλt−1 | = |Eλt
|,

i.e., Eλt
⊂ Eλt−1 , then, the sparsityλt is chosen. Because the

thresholded network has the property that a set of edges in
the network is a subset of a set of that with smaller threshold.
If the obtained sparse network satisfies the same property of
thresholded network, we can consider that it is the optimal
solution of partial correlation.

2) Clustered Structure via Thresholding:The network ob-
tained from the partial correlation with the chosenλ in the
previous section still have many edges. Thus, we threshold it
once again to find more suitable sparse network reflecting the
characteristics of our dataset, ASD and PedCon.

Fig. 2. The plots of the number of clusters for changing threshold on
correlations. The cluster is defined as the connected components with more
than two nodes.

The well-known characteristics of ASD is local overcon-
nectivity and global underconnectivity. The overconnectivity
is characterized by more number of edges within the lobes
while the underconnectivity is characterized by less number
of edges between the lobes. The local overconnectivity and
global underconnectivity are related to the modular network
which has many number of edges within a module and small
number of edges between modules. In addition, the autistic and
normal control subjects show significant group differencesin
connectivity between lobes and within lobes [40], [38], [39],
[49]. Hence, we hypothesized that (1) finding the modular
structure in the brain network can be used in differentiating
ASD and PedCon and (2) the modular structure of ASD
network shows the abnormal connectivity patterns within and
between lobes.

A cluster is defined to be a connected component that has
more than two nodes connected with edges. We consider that
the number of clusters is a graph metric reflecting the modular
structure of brain network. The modular structure generally
allows the edges between disjoint modules, while the clustered
structure does not allow such edges. In this sense, modular
and clustered structures are different. However, in this paper,
we will simply treat them equivalent to simply the problem
and consider that a cluster reflects the modular structure of
brain network. When the threshold is sufficiently small, all
nodes are connected and the number of clusters becomes one.
The number of clusters increases when the threshold increases
but at a certain threshold, it obtains the maximum (Fig.2).
When the threshold is large, all nodes are disconnected and
the number of connected components becomes the number of
nodes, but the number of clusters becomes zero. We choose the
threshold corresponding to the maximum as the representation
of the network in subsequent analysis.

V. RELATIONSHIP TO COMPRESSEDSENSING

In this section, we show that the sparse linear model for
estimating partial correlation is related to UUP. It opens a
possibility that the the near-optimal recovery of sparse brain
network can be done by the proposed method.

A. Uniform Uncertainty Principle

The coherence ofA, µ(A), is defined as the maximum
correlation coefficient among all correlations between twodif-
ferent column vectors in (6). If all basis vectors are orthogonal,
the coherence is minimized. A signal iss-sparse if there



6

exists at mosts number of nonzero elements in the signal.
The exact sparse signal recovery is guaranteed fors-sparse
signal, if the coherence is bounded byµ(A) ≤ O(1/s) [50].
However, sinceN ≪ P , this condition is difficult to satisfy.
A looser condition, which guarantees the near-optimal sparse
data recovery is a UUP [35], [51].

Definition 1: A measurement matrixA satisfies theuniform
uncertainty principle(UUP) with the oversampling factorλ if,
for every sufficiently smallγ > 0 and anys-sparse vectorb
such that

s ≤ γ ·N/λ,

A holds inequalities

1

2
· N
P
· ‖ b ‖22 ≤ ‖ Ab ‖22 ≤

3

2
· N
P
· ‖ b ‖22, (16)

with probability at least1−O(p−ρ/γ) for some fixed constant
ρ > 0.
Let S be the index set consisting ofs numbers from between
1 and P . Let AS ∈ R

N×s be a submatrix consisting ofs
column vectors ofA (Fig. 1(c)). The columns are obtained
from the index setS. Then, it can be shown that the condition
(16) is equivalent to

1

2
· N
P
≤ λmin(A

⊤
SAS) ≤ λmax(A

⊤
SAS) ≤

3

2
· N
P
, (17)

for all subsetsS. λmax(·) andλmin(·) denote the largest and
smallest eigenvalues.

Lemma 1:The Gaussian ensembleX ∈ R
n×p, which are

i.i.d. N (0, 1/p), holds the UUP with the oversampling factor
λ = log p.

Lemma 1 implies that, if we pickA in the sparse linear
modelx = Ab as a Gaussian ensembleX with n ≥ γ ·s log p,
sparse recovery ofb can be done with overwhelmingly large
probability [35].

Now, we will show that the brain connectivity obtained
by the penalized linear regression in (6) can be recovered
under UUP for the first time. It is sufficient to show that the
Gaussianess of data matrixX in (6).

B. Gaussianess of Data Matrix

After centering and normalizing the column vectors, we
check the Gaussianess of the data matrixX = [f1, · · · ,fp] ∈
R

n×p using both the Lilliefors test and quantile-quantile plots
(QQ-plots) [52]. Because it is not possible to visualize the
QQ-plots for all ROIs here, we measured the correlation
coefficientsr of scatter points in the QQ-plots for quantifica-
tion. If the empirical distribution follows Gaussian,r should
asymptotically converge to 1. For the random numbers from
N (0, 1/p) whose dimension is identical to the data matrix of
ASD and PedCon,r = 0.98 ± 0.01 and r = 0.97 ± 0.03,
respectively. For the actual measurements from ASD and
PedCon,r = 0.97 ± 0.02 and r = 0.96 ± 0.03 (Fig. 3).
The high correlation in the QQ-plot guarantees that our data
matrix follows a normal distribution. Using Lilliefors statistic,
we also tested Gaussianness. Since the Lilliefors statistics
of data matrix are mostly smaller than the cutoff values of
0.19 (ASD) and 0.29 (PedCon) at 1% level, there is no

Fig. 3. Checking Gaussianness of data matrix for (a) ASD and (b) PedCon.
In the QQ-plots, the horizontal axises are the quantiles of anormal distribution
while the vertical axises are the quantiles of data. If the data are Gaussian,
the QQ-plot should be close to the straight red line. In the right panels, the
horizontal axises display the index of ROIs while the vertical axes displays
Lilliefors statistic which measures the maximum difference between empirical
and theoretical Gaussian distributions. Most ROIs (blue solid lines) are below
the cutoff values 0.19 for ASD (a) and 0.29 for PedCon (b) at the α level of
1%. The two test procedures confirm the Gaussianess of our data.

reason not to assume normality for the given data matrix, i.e.,
Xij ∼ N (0, 1/p) (Fig. 3). Since FDG-PET measurements are
obtained in 97 nodes that are not close to each other, the the
elements ofX are likely to be i.i.d. so we did not check the
i.i.d. assumption here.

C. Sparse Brain Connectivity Recovery under CS

If the measurement matrixX follows i.i.d. Gaussian, from
Lemma1, X satisfies UUP. In other words, for any submatrix
XK′ of X with K ′ ⊂ K, it satisfies the condition (17) like

1

2
· n
p
≤ λmin(X

⊤
KXK) ≤ λmin(X

⊤
K′XK′)

≤ λmin(X
⊤
K′XK′) ≤ λmax(X

⊤
KXK) ≤ 3

2
· n
p
.

Let AS ∈ R
N×s be a submatrix consisting ofs column

vectors ofA (Fig. 1(c)). To check if a measurement matrix
A in (11) holds UUP, we should show that all submatrices
AS′ (S′ ⊂ S) satisfy (17). BecauseAS is a block diagonal
matrix (not a square matrix) of which block matrices are
XK1 , . . . ,XKp

with the number of column vectorsk1, . . . kp
(Fig. 1(c)), the smallest and largest eigenvalues ofA⊤

SAS are

λmin(A
⊤
SAS)=min

{
λmin(X

⊤
K1

XK1), . . . , λmin(X
⊤
Kp

XKp
)
}
,

λmax(A
⊤
SAS)=max

{
λmax(X

⊤
K1

XK1), . . . , λmax(X
⊤
Kp

XKp
)
}
.

If we write the index setK = K1 ∪ · · · ∪Kp, then,

λmin(X
⊤
KXK) ≤ λmin(A

⊤
SAS)

≤ λmax(A
⊤
SAS) ≤ λmax(X

⊤
KXK).
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For all subsetsS′ ⊂ S, the block matrices ofAS′ come from
XK′ (K ′ ⊂ K). Therefore,

1

2
· n
p
≤ λmin(A

⊤
SAS) ≤ λmin(A

⊤
S′AS′)

≤ λmin(A
⊤
S′AS′) ≤ λmax(A

⊤
SAS) ≤

3

2
· n
p
.

The larger measurement matrixA will satisfy the condition
(17), showing thatA also satisfies UUP with the same
probability asX. For this reason, the sparse partial correlation
obtained by LASSO is a near-optimal under CS and the
brain network recovery based on the partial correlation can
be theoretically guaranteed.

VI. N UMERICAL EXPERIMENTS

A. Imaging Data

1) Subjects:There are twenty six children with ASD (24
boys, mean age: 6.0± 1.8 years) and eleven children with
PedCon (8 boys, mean age: 9.73± 2.55 years). The ASD
group, who was diagnosed by the Korean version of Autism
Diagnostic Interview-Revised (K-ADI-R) [53], was recruited
from Child and Adolescent Psychiatric Outpatient Clinic of
Seoul National University Hospital, South Korea. The pediatric
controls comprised as children who failed to meet the criteria
of any psychiatric disorder and visited the clinic for IQ
evaluation.

2) Image Acquisition:All PET scans were obtained from
ECAT EXACT 47 (Siemens-CTI, Knoxville, USA) PET scan-
ner with an intrinsic resolution of 5.2 mm FWHM. PET
images were 47 contiguous planes with a thickness of 3.4
mm. After transmission scan measured by 68Ge rod sources
for attenuation correction, emission scan was administered.
All participants were scanned under the normal environmental
noise of the scanner room. Image reconstruction was per-
formed using a filtered back-projection algorithm (Shepp-
Logan filter at a cutoff frequency of 0.3 cycles/pixel as 128
× 128× 47 matrices of size 2.1× 2.1× 3.4 mm).

3) Preprocessing:All PET data were preprocessed using
Statistical Parametric Mapping (SPM 2, University College
of London, UK), implemented in the Matlab 6.5 (Mathworks
Inc., USA) environment. The PET data is spatially normalized
to Korean standard template space developed by 78 Korean
normal right-handed volunteers (Male/Female=49/29) based
on MR and PET images. The mean FDG uptake within ROIs
was extracted using Statistical Probabilistic AnatomicalMap-
Korean version (SPAM-K) [54]. The values of FDG uptake
were globally normalized to the individual’s total gray matter
mean count.

B. Controlling the sparsity

We selected the optimal sparsityλ using the leave-one-out
cross-validation in SectionIV-B. Since the number of ASD
and PedCon data was 26 and 11 respectively, the leave-one-out
scheme produced 26 and 11 partial correlation maps of ASD
and PedCon forλ = 0.01, 0.1, 0.2, . . . , 2. The blue plots in
Fig. 4 (f) and (g) show the number of edges in the network as
we increasesλ values. If the sample variance of the number

Fig. 4. (a)-(e) show the partial correlation maps for different λ =
0.01, 0.2, 0.8, 1.4 and 1.7. The number of edges in the network changes
asλ value changes for ASD (f) and PedCon (g). The blue plots are the total
numbers of edges in the network. The red plots are the numbersof edges
which are included in the previous network with smallerλ among all edges
in a graph.

of edges is large during the cross validation, it implies that
the obtained partial correlation is not stable. The variance is
relatively large between0 ≤ λ ≤ 0.3. But for λ ≥ 0.4, the
variance gets relatively smaller.

For the sparse network withλ ≥ 0.4, most of edges in
a network start to belong to previous networks which have
smaller sparsity (red line in Fig.4). If the sparseness is not too
small in the small-n large-p situation, finding the sparseness
parameter is related to fixing the threshold. Thus, we chose
the sparseness parameterλ = 0.4 for estimating the optimal
partial correlation.

C. Reproducibility of Brain Network

To validate our method, we checked the reproducibil-
ity (consistency or stability) of networks using the cross-
validation. We computed the mean and standard deviation of
partial correlations. If the standard deviation is less than 0.1,
we consider the network to be reproducible [55]. If the mean
is less than 0.1, we categorized it into zero. In this way, we
categorized the partial correlation into 4 classes: stablezero,
stable nonzero, unstable zero and unstable nonzero.

In Table I, we compared the reproducibility of 3 different
methods, the pseudo-inverse (PINV), the penalized maximum
likelihood (PML) and the penalized linear regression (PLR),
by measuring the ratio of partial correlations belonging to4
classes. The methods were briefly explained in SectionII-B.
The percentages of stable elements obtained by PINV, PML
and PLR are 61.90 %, 96.39 % and 100 % for ASD and
11.69 %, 89.54 % and 96.91 % for PedCon. Among nonzero
elements, PML has the stable and unstable elements in the
ratios (1.74:0.92) and (1.29:2.60) for ASD and PedCon. On
the other hand, PLR has the ratios (2.68:0) and (1.83:1.48) for
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ASD and PedCon. Since the number of PedCon data is smaller
than ASD, PedCon is less stable than ASD. For PedCon, PLR
finds more stable elements than PML. This empirical evidence
for the consistency and near-optimal-recovery of PLR-based
partial correlation is also discussed in Peng, et al. [27].

D. Visualization of Modular Structure

After obtaining the optimal partial correlation withλ = 0.4,
we thresholded the brain network when the number of clusters
are maximized in SectionIV-B. For simplicity, we visualized
the estimated 3D brain networks in a 2D space using ISOMAP
(Fig. 6). ISOMAP is an embedding technique that preserves
the relative distance between neighboring nodes [56]. Fig.
6 (c) and (d) show the ASD and PedCon brain networks
thresholded. The color of nodes corresponds to a lobe the
nodes belong. The nodes and edges of the networks in (c)
and (d) have different colors for different clusters. The color
representing the cluster in (c) and (d) is selected by blending
node colors in the cluster. If the cluster consists of nodes in
the same lobe, the color of cluster is identical to the lobe
color. We observe that the ASD network is more similar to
the lobe coloring scheme compared to the PedCon network.
Based on the Bonferroni correction, the corrected p-value
of each thresholds obtained by the maximum number of
clusters arep = 0.0189 ± 0.0095 for 26 ASD networks and
p = 0.0253± 0.0164 for 11 PedCon networks [19].

E. Significance of Network Differences

We constructed 26 ASD and 11 PedCon networks by
thresholding the partial correlation based on four different
methods: PINV, PML and PLR and the correlation (CORR).
The CORR method was introduced in SectionIV-A . We also
generated 100 weighted random networks using Erdős-Rényi
(ER) model [57]. In the ER random network, the weight of
edges is chosen randomly and uniformly in the interval[0, 1].
The generated random networks are thresholded in the same
way .

1) Global Inference:From each network, we extracted 4
global features: the number of (1) edges, (2) clusters, (3) edges
connected between two ROIs in different lobes and (4) edges
connected between two ROIs within the same lobe. To quantify
the network differences among ASD, PedCon and random
networks (Rand), the two-sample Wilcoxon rank sum test was
applied in a pairwise fashion. In Fig.5, each panel shows the
box plots of 4 global features for ASD (red), PedCon (blue)
and Rand (green) using 4 different methods. The significant
group difference at0.01 level is marked with the asterisk (*).
All global features obtained by PLR are significantly different
from random networks. Although the number of edges and
clusters of ASD and PedCon were not different in PLR, the
number of edges connected between lobes and the number
of edges connected within a lobe were significantly different
(p < 0.001). The results show that the autistic brain network
has local overconnectivity and long-range underconnectivity
[58]. The network obtained by CORR also shows similar
results.

2) Local Inference: We also extracted 28 local features
from ASD, PedCon and random networks (RAND). We con-
sidered ROIs belong to 7 lobes, frontal (F), subcortical (S),
limbic (L), temporal (T), parietal (P), occipital (O) and limbic
(L) lobes and Cerebellum (C). 7 features are the number of
edges connected within each lobe and 21 features are the
number of edges connected between two lobes. We performed
the Wilcoxon rank sum test on three pairs (ASD,RAND),
(PedCon,RAND) and (ASD,PedCon) and used the Bonferroni
procedure for the multiple comparison correction.

Fig. 7 shows the brain networks and the connectivity
matrices of 7 lobes on two groups (column) and three methods
(row). The ROI locations of the brain networks are shown in
Fig. 6. We obtained the thresholded brain networks based on
the number of connected components and counted the number
of connection of each edge during the cross validation. Thicker
edges represent more reproducible connections. The matrix
entries are the mean and standard deviation of number of edges
between the corresponding lobes during the cross validation.
The gray colored entries are the connections that are statisti-
cally different from the random networks at0.05 level. The
red box indicates the significantly different connections in all
pairwise comparisons. PML, PLR and CORR found 18, 26
and 27 gray colored entries in ASD connectivity matrices and
14, 18 and 26 one in PedCon. The number of red boxes for
PML, PLR and CORR is 4, 9 and 5, respectively. The results
show that PLR finds more significant network than PML and
CORR.

From Fig.7 (b), the local overconnectivity was found in the
ASD network in the frontal, parietal, limbic and subcortical
lobes (p < 0.001, corrected for comparisonp < 0.01). The
long-range underconnectivity patterns between lobes wereob-
served in the ASD network: frontal-parietal, frontal-temporal,
frontal-limbic, parietal-temporal and occipital-temporal (p <
0.001, corrected for comparisonp < 0.01). Functional un-
derconnectivity between frontal and parietal regions in ASD
was quite consistent with other studies, because it is associated
with deficits of planning and problem solving in ASD [41].
Frontal mirror neuron system was suggested to mediate un-
derstanding of other’s emotional states in concert with limbic
center, such as amygdala. This emotional dysfunction in ASD
children might be explained through the abnormal connectivity
between frontal and limbic system [59]. The occipital regions
showed reduced functional connectivity with the temporal
regions, which was associated with mentalizing impairment
in ASD [60]. Abnormal behavioral phenotypes in ASD could
be involved in these long-range dysconnectivities. Thus, we
can say that PLR finds more representative and discriminative
networks which fit the previous studies better.

VII. C ONCLUSIONS

In this paper, we showed that the problem of estimating
correlation and partial correlation can be formulated in the
sparse linear regression framework. The partial correlation is
widely used in modeling highly correlated networks since it
shows the actual dependency between two nodes by factoring
out the redundant dependences of other nodes. However, the
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TABLE I
AFTER LEAVE-ONE-OUT CROSS VALIDATION, THE ENTRIES OF THE PARTIAL CORRELATION MAP ARE CATEGORIZED INTO 4 CLASSES: STABLE ZERO,

STABLE NONZERO, UNSTABLE ZERO AND UNSTABLE NONZERO. THE STABLE AND UNSTABLE CLASSES ARE DETERMINED BY WHETHER THESTANDARD
DEVIATION IS LESS THAN 0.1 OR NOT. THE ZERO AND NONZERO CLASSES ARE DETERMINED BY WHETHER THE MEAN IS LESS THAN0.1 OR NOT. WE

COMPAREDPINV, PML AND PLR METHODS ONASD, PEDCON AND TWO RANDOM NETWORKS OBTAINED BY PERMUTING AND SELECTING THE GIVEN

DATA RANDOMLY . THE RESULTS ARE GIVEN IN TERMS OF THE PERCENTAGE OF EDGES BELONGING TO EACH CLASS AMONG TOTAL4656EDGES.

Group Class
PINV PML PLR

TRUE Random TRUE Random TRUE Random

ASD

stable 61.90 0.02 96.39 82.26 100 96.56

zero nonzero 39.78 22.12 0 0.02 94.65 1.74 82.24 0.02 97.32 2.68 95.98 0.58

unstable 38.10 99.98 3.60 17.74 0 3.44

zero nonzero 25.73 12.37 70.79 29.19 2.68 0.92 12.93 4.81 0 0 1.31 2.13

PedCon

stable 11.69 0.04 89.54 66.32 96.91 92.33

zero nonzero 6.64 5.05 0 0.04 88.25 1.29 66.32 0 95.08 1.83 92.33 0

unstable 88.32 99.96 10.46 33.68 3.09 7.67

zero nonzero 54.23 34.09 73.41 26.55 7.86 2.60 26.01 7.67 1.61 1.48 4.96 2.71

estimation of the partial correlation using the traditional least
squares method is unreliable when the number of observations
is smaller (small-n) than the large number of nodes (large-p) in
complex networks. To remedy the small-n large-p problem, the
l1-penalty for the sparseness constraint is usually introduced
to the regression. The penalized linear regression, as known
as LASSO, naturally leads to sparse brain network modeling.
Under the i.i.d. Gaussian assumption, the proposed brain
network model can recover sparse underling signal even from
small number of noisy measurements.

The numerical experiments show that the sparse brain
network can be estimated consistently. The proposed method
was applied in characterizing the local overconnectivity and
long-range underconnectivity in the autistic brain. Our result
is consistent with previous autism-related clinical studies [38],
[39], [49].
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[19] J. Schäfer and K. Strimmer, “An empirical bayes approach to inferring
large-scale gene association networks,”Bioinformatics, vol. 21, pp. 754–
764, 2005.

[20] O. Banerjee, L. El Ghaoui, and A. d’Aspremont, “Model selection
through sparse maximum likelihood estimation for multivariate gaussian
or binary data,”Journal of Machine Learning Research, vol. 9, pp. 485–
516, 2008.

[21] P. Bickel and E. Levina, “Regularized estimation of large covariance
matrices,”Annals of Statistics, vol. 36, pp. 199–227, 2008.

[22] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical lasso,”Biostatistics, vol. 9, pp. 432–441,
2008.

[23] L. Sun, R. Patel, J. Liu, K. Chen, T. Wu, J. Li, E. Reiman, and
Y. Ye, “Mining brain region connectivity for alzheimer’s disease study
via sparse inverse covariance estimation,” inProceedings of the ACM



10

Fig. 5. The statistical significance of the pairwise group difference among ASD, PedCon and random networks on (a) the number of edges, (b) the number
of clusters, (c) the number of edges connected between lobesand (d) the number of edges connected in a lobe using the four different methods (PINV, PML,
PLR and CORR). The asterisk (*) representsp < 0.01 based on the Wilcoxon rank sum test. In PLR, all features are significantly different withp = 0.7898,
p = 0.0776, p < 0.001 andp < 0.001 respectively.

SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), 2009.

[24] G. Cecchi, I. Rish, B. Thyreau, B. Thirion, M. Plaze, M. Paillere-
Martinot, C. Martelli, J. Martinot, and J. Poline, “Discriminative network
models of schizophrenia,” inAdvances in Neural Information Processing
Systems (NIPS), 2009.

[25] S. Huang, J. Li, L. Sun, J. Liu, T. Wu, K. Chen, A. Fleisher, E. Reiman,
and J. Ye, “Learning brain connectivity of alzheimer’s disease from
neuroimaging data,” inAdvances in Neural Information Processing
Systems (NIPS), 2009.

[26] S. Achard and E. Bullmore, “Efficiency and cost of economical brain
functional networks,”PLoS Computational Biology, vol. 3, 2007.

[27] J. Peng, P. Wang, N. Zhou, and J. Zhu, “Partial correlation estimation
by joint sparse regression models,”Journal of the American Statistical
Association, vol. 104, pp. 735–746, 2009.

[28] O. Banerjee, L. Ghaoui, A. d’Aspremont, and G. Natsoulis, “Convex
optimization techniques for fitting sparse gaussian graphical models,”
in Proceedings of the International Conference on Machine Learning

(ICML), 2006.
[29] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis

pursuit,” SIAM Journal on Scientific Computing, vol. 20, pp. 33–61,
1999.

[30] R. Tibshirani, “Regression shrinkage and selection via the LASSO,”
Journal of the Royal Statistical Society B, vol. 58, pp. 267–288, 1996.

[31] E. Candès and M. Wakin, “An introduction to compressive sampling,”
IEEE Signal Processing Magazine, pp. 21–30, 2008.

[32] D. Donoho, “Compressed sensing,”IEEE Trans. Information Theory,
2006.

[33] E. Candès, J. Romberg, and T. Tao, “Robust uncertaintyprinciples: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Information Theory, pp. 489–509, 2006.

[34] M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse
problems,”IEEE Journal of Selected Topics in Signal Processing, 2007.

[35] E. Candès and T. Tao, “Near optimal signal recovery from random



11

Fig. 6. Visualization of ROIs in (a) 3D and (b) 2D spaces. 3D ROIs are embedded into the 2D space by ISOMAP, which preserves the relative distance
between nodes. Each lobe is represented by different color as shown in the colorbar (a). The clustered brain networks aregiven for (c) ASD and (d) PedCon.
In (c) and (d), the color represents cluster.

Fig. 7. The Brain networks and the connectivity matrices of 7lobes for PML, PLR and CORR methods. The lobes are frontal (F), subcortical (S), limbic
(L), temporal (T), parietal (P) and occipital (O) lobes and cerebellum (C). The nodes represent ROIs which are embedded into the 2D space by ISOMAP.
The width of edge represents the number of connections during the cross validation. If the edge is connected more frequently, it is thicker. The elements of
the connectivity matrices are the mean and standard deviation of the number of edges between 7 lobes during the cross validation. The gray colored entries
are significant connection difference from the random networks at 0.05 level. Thep-value is determined using the Wilcoxon rank sum test and theBonferroni
correction. The red boxes are the significant connection differences between ASD and PedCon at 0.05 level.



12

projections: Universal encoding strategies?”IEEE Trans. Information
Theory, pp. 5406–5425, 2006.

[36] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,”Communications on Pure and
Applied Mathematics, pp. 1207–1223, 2006.

[37] N. Meinshausen and B. Yu, “Lasso-type recovery of sparse representa-
tions for high-dimensional data,” Department of Statistics, UC Berkeley,
Tech. Rep. 720, 2006.

[38] M. Murias, S. Webb, J. Greenson, and D. G., “Resting state cortical
connectivity reflected in EEG coherence in individuals withautism,”
Biological Psychiatry, vol. 62, pp. 270–273, 2007.

[39] D. Williams, G. Goldstein, and N. Minshew, “Neuropsychologic func-
tioning in children with autism: Further evidence for disordered complex
information-processing,”Child Neuropsychol., pp. 279–298, 2006.

[40] E. Courchesne, K. Pierce, C. Schumann, E. Redcay, J. Buckwalter,
D. Kennedy, and J. Morgan, “Mapping early brain developmentin
autism,” Neuron, vol. 56, pp. 399–413, 2007.

[41] M. Just, V. Cherkassky, T. Keller, and N. Minshew, “Cortical activation
and synchronization during sentence comprehension in high-functioning
autism: Evidence of underconnectivity,”Brain, vol. 127, pp. 1811–1821,
2004.

[42] D. Bassett and E. Bullmore, “Human brain networks in health and
disease,”Current Opinion in Neurology, vol. 22, pp. 340–347, 2009.

[43] S. Huang, J. Li, L. Sun, J. Ye, A. Fleisher, T. Wu, K. Chen,and
E. Reiman, “Learning brain connectivity of alzheimers disease by sparse
inverse covariance estimation,”NeuroImage, vol. 50, pp. 935–949, 2010.

[44] A. Laub, Matrix Analysis for Scientists and Engineers. SIAM, 2004.
[45] Y. Sharon, J. Wright, and Y. Ma, “Computation and relaxation of

conditions for equivalence betweenl1 and l0 minimization,” UIUC,
Tech. Rep. UILU-ENG-07-2008, 2007.

[46] E. Candès, M. Rudelson, T. Tao, and R. Vershynin, “Error correction
via linear programming,” 2005, pp. 295–308.

[47] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for
generalized linear models via coordinate descent,” Stanford University,
Tech. Rep., 2008.

[48] D. G. Luenberger,Linear and Nonlinear Programming. Addison-
Wesley, 1984.

[49] N. Minshew and D. Williams, “The new neurobiology of autism: Cortex,
connectivity, and neuronal organization,”Arch Neurol., pp. 945–950,
2007.

[50] D. Hsu, S. Kakade, J. Langford, and T. Zhang, “Multi-label prediction
via compressed sensing,” inAdvances in Neural Information Processing
Systems (NIPS), 2009.

[51] E. Candès, “The restricted isometry property and its implications for
compressed sensing,”Comptes Rendus Mathematique, pp. 589–592,
2008.

[52] M. Chung, K. Worsley, S. Robbins, T. Paus, J. Taylor, J. Giedd,
J. Rapoport, and A. Evans, “Deformation-based surface morphometry
applied to gray matter deformation,”NeuroImage, vol. 18, pp. 198–213,
2003.

[53] H. Yoo, Korean version of Autism Diagnostic Interview-Revised. Seoul:
Hakjisa, 2007.

[54] J. Lee, D. Lee, Y. Kim, J. Kim, J. Lee, B. Koo, J. Kim, J. Kwon,
T. Yoo, K. Chang, S. Kim, H. Kang, E. Kang, J. Chung, and M. Lee,
“Quantification of brain images using korean standard templates and
structural and cytoarchitectonic probabilistic maps,”Korean Journal of
Nuclear Medicine, vol. 38, pp. 241–252, 2004.

[55] “IUPAC compendium of chemical terminology – the gold book,” 2009.
[Online]. Available: http://www.iupac.org/goldbook

[56] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” pp. 2319–2323,
2000. [Online]. Available:http://isomap.stanford.edu/
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