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Abstract—Partial correlation is a useful connectivity measure [6], [7], [8], [9], [10], [11], [12]. By incorporating the graph
for brain networks, especially, when it is needed to remove theoretical approaches into connectivity analysis, wegszin
the confounding effects in highly correlated networks. Sie it 5 new understanding of the characteristics of human brain,
is difficult to estimate the exact partial correlation under the . .. .
small-n large-p situation, a sparseness constraint is generally from a microscale c_opnecﬂwty betwe_en smgle_) neurons to a
introduced. In this paper, we consider the sparse linear regession  macroscale connectivity between regions of interest (ROIls
model with a I;-norm penalty, also known as the least absolute in brain images. The brain connectivity has been usually

shrinkage and selection operator (LASSO), for estimatingsarse  categorized into well-known complex networks such as small

brain connectivity. LASSO is a well-known decoding algorihm in

the compressed sensing (CS). The CS theory states that LASSO

can reconstruct the exact sparse signal even from a small sef
noisy measurements. We briefly show that the penalized linea
regression for partial correlation estimation is related o CS. It

world [1], [3], [4], [5], [7], [11], scale-free 2], [5] or modular
networks BJ, [9], [10]. The human brain networks is formed
from connectivity matrices defined between neuronal elésnen
(single neurons for microscale and ROIs for macroscale net-

opens a new possibility that the proposed framework can be work modeling). They are also known as ‘human connectome’

used for a sparse brain network recovery. As an illustration we
construct sparse brain networks of 97 regions of interest (RIs)
obtained from FDG-PET imaging data for the autism spectrum
disorder (ASD) children and the pediatric control (PedCon)
subjects. As validation, we check the network reproducibities
by leave-one-out cross validation and compare the clustede
structures derived from the brain networks of ASD and PedCon

Index Terms—Brain Connectivity, Compressed Sensing, Partial
Correlation, LASSO

|I. INTRODUCTION

[13].

The majority of previous brain network studies have been
based on thresholding correlation in localizing the foal r
gions of high connectivity 14], [15], [2]. The correlation is
used as a similarity measure of network connectivity betwee
two regions. However, the main limitation of correlation-
based connectivity analyses is that they fail to explidiigtor
out the confounding effect of other regions. To remedy this
shortcoming, partial correlation has been naturally ihaced
in factoring out the dependency of other regioh§|[[7], [6]
or eliminating the effect of experimental desigig|[ Unfor-
tunately, this type of problem usually belongs to the small-

The functional and anatomical connectivity of human braigge4 setting, where the number of regiomare substantially
has known to exhibit large and complex network structurqe&rger than the number of samples so it is not feasible to

with nontrivial topological characteristicd]f [2], [3], [4], [5],
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estimate the partial correlation accurateyg][ [19]. So far
the majority of literature have used the penalized likeditio
method in imposing the sparseness on the partial correlatio
estimation 0], [21], [22], [23], [24], [25]. Moreover, since
the brain networks are known to be sparse and highly clu$tere
[2€], [7], it is reasonable to incorporate the sparsity of network
in estimating partial correlation. In this paper, we intiod a
different approach based on the penalized linear regme$sio
estimating sparse partial correlatia2i/], [28]. The penalized
linear regression with;-norm, which is also known as the
basis pursuit denoising in signal processing and leastiateso
shrinkage and selection operator (LASSO) in statistics, is
usually formulated as the convex optimization to find the
sparsest solution of the under-determined linear regressi
problem p9, [30].

LASSO is one of preferred decoding algorithms in the
compressed sensing (CS) theady]f [32], [33], [34]. The CS-
theory states that if LASSO satisfies sparsity and incoloeren
the exact recovery is guaranteed with the overwhelmingly
high probability, even though the measurement data is not
sufficient and contaminated with nois89], [36]. Note that,
incoherence is a stronger condition than a uniform unagstai



principle (UUP) B7]. If our penalized linear regression for the Il. NETWORK CONSTRUCTION
partial cor_relatlon estimation satisfies sparseness arig dg A. Connectivity Matrix

may provide a natural framework for modeling sparse brain
networks, which has not been attempted before. We show thaBuppose thaf f+, . .., f,, } is then-dimensional data vector
the proposed framework satisfies UUP based on the fact thagasured at the selected ROIs on the FDG-PET images of

the brain imaging data satisfies UUP for Gaussian ensembtesubjects. The observed data vecfyris the realization of
. . random variablgf; at thei-th ROI. The collection of measure-
In this paper, we focus on sparse model building of the o .

L . ments f; are assumed to be normally distributed with mean
macro-scale connectivity of human brain under CS. The p

rQ- . .
p — .. pXp
posed model is applied to the 97 ROIs extracted from FD(§-6 R? and cpvanancé] o351 € R ' .W$ will further
r . . assume thaf, is centered and normalized, i, f, = 1. The
PET data for autistim spectrum disorder (ASD) children an . v : T ‘ .
covariances;; is then estimated as;; = f; I If there is no

pediatric control (PedCon) subjects. It is generally known biquity. we will interchanaeably use: and its estimation
that ASD has the global underconnectivity and the loca" 19U, 9 Y U3g;

overconnectivity in the key brain region8g), [39. The f;zjélgvlfnnowr?;;\ﬁrze r?:c;/igircl)inrzzmit?concgztjr?a{ti\é)vgIlc):ogtri
differences between ASD and PedCon are mostly found NIy P

S ; : e correlation coefficienp,; and the partial correlatiof;;
connectivities between lobes, especially, connectiomw®en bij P Y

secondary association cortices such as frontal and plarié'j}[';le given by

regions f0], [41], [5]. Dense internal and sparse external pi; = 9% and@.; — — i

. . . . 1] — 1] — .
linkages are properties of a module. In particular, someistu N FsT ! N

suggest that the small-world network, which is one of famo . . .
99 L : S . ”1e connectivity matrix of network is usually constructed a
characteristics of brain connectivity, induces a modutahia : ; : d .
a function of correlation or partial correlation. The palti

tecture B, [9, [10]. Therefore, in this study, after G)Stirna‘tingcorrelation is better in finding the true relationship betwe

the partial correlation by the penalized linear regressios . - .
seek the possible modular structures of ASD and Pedctwo nodes than correlation coefficient due to the ability of

. L Pr(]:toring out the influence of other region&?].
brain network and observe their differences based on the IoB1
structures.

The main contributions of this paper are: B. Smalln largep problem
Under high-dimension-small-sample-size setting, thedev
« to formulate the sparse brain connectivity based on catace matrix is singular and it cannot be inverted to the
relation and partial correlation in the penalized linegsrecision matrix directly. The pseudo-inverse of covas&n
regression framework, matrix can be used (denoted as PINV hereafter), but it has
« to show that the penalized linear regression for partial cdow statistical power and lack of consistencyg]. Imposing
relation estimation can near-optimally recover the spargite sparseness to the precision matrix is the most natusal wa
brain connectivity by showing our study satisfies UUP ab find the precision matrix under smaildargey situations.
the Gaussian ensemble, It reduces the number of significant elements by forcing
« to show the reproducibilities of the estimated networksll other elements to be zero. There are two most widely
using the leave-one-out cross-validation, used methods for estimating sparse partial correlationth@
« to show that controlling sparsity is related with determinpenalized maximum likelihood (referred as PML hereafter)
ing the threshold of partial correlation matrix, [22, [23)], [43] and (2) the penalized linear regression (referred
« and to suggest a new graph metric, the number af PLR hereafter)2[/]. The penalized linear regression using
connected components, for thresholding. The proposgdnorm penalty (LASSO) is known to have better performance
metric reflects the modular structures of brain networkfor the model selection and hub identification at the lower
computational cost. Peng, et al. proved the consistency of
The organization of the paper is as follows. In Sectibn identifying the true network neighborhood farp — oo [27].
we provide notations that will be used through the paper and
present the standard methods for calculating correlatiah a
partial correlation. We formulate the problem of estimgtin
correlation and the partial correlation under a sparsitg-co In this section, we present the penalized linear regression
straint as the sparse linear regression in SectianSection framework for estimating sparse correlation and partiaieso
IV deal with the implementation for estimating the spardation.
partial correlation. In Sectior/, after briefly introducing
CS and prove that our LASSO-based connectivity methad . .
satisfies UUP. Numerical experiments are given in Sectign A. Linear Regression for Correlations
where we use the 97 ROIs extracted from FDG-PET data forBoth correlation and partial correlation can be obtained by
26 autistic and 11 pediatric control subjects. We show thtite linear regression.
the proposed method consistently finds the brain networks, correlation:
which characterize the two groups and have significant group
differences in network connectivity. fi=aijf;+e(i=1,---,p). (1)

IIl. SPARSECONNECTIVITY ESTIMATION
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Fig. 1. Linear regression model for the partial correlatiestimation. Linear regression model if) (is represented as (aX = X B, where X =
(f1,---, Fp] €ER™@P and B = [3;;] € RP*P. B is a symmetric matrix with zero diagonal terms. It can be tenitas (b)x = Ab, wherex = veq(X),

A=T®X eRw*?” andb = veqB) € RP*X1 T € RPXP s a identity matrix. Ifb is s-sparse, i.e. it has at mostnumber of nonzero elements.

The parameters;; are estimated by minimizing the sumwherel € RP*? is a identity matrix. Then,5) can be written

of squares in a matrix form
I fi—aiifi|? x = Ab, (6)
= (f] F)od —2(f] £)aij + (£ £2)- wherez = vedX), A = (I ® X) € R"P*P* and b =
o ] ] veqB) € RP"*!, A is a block diagonal matrix, but not a
The minimum is obtained when square matrix, of which main diagonal blocks consist6$
£Tf as shown in Figl(b).
;= ZT J Let N = np and P = p? Forn < p, we have
It N < P. Subsequently, the problem of estimating the partial

correlation in the linear modeb] fall under a high-dimension-
For the normalization of the measuremgitf, = 1, we small-sample-size situation. Thus, we need to incorpdtae

havep;; = a;. shrinkage method in regularizing the model parameters by
« Partial Correlation: adding thel;-norm penalty to the model parameters.
Ffi=> Bifj+eli=1-p), @)

B. Adding Sparseness Constraint

The solution of linear data model iB)(is usually obtained
by the least squares minimization:

J#i
whereg;; is the measure of relationship betwegnand
f; given all other data vectors. When vey) = (1/7;) .
and coVe;, €;) = m;; /(7). the partial correlation;, b= argmin || x — Ab |3, @)
is given by p7] b
where|| - ||2 is alo-norm. When the linear regression is under a
0ij = Bijy | —- (3) smalln largep problem, there exist infinitely many solutions.
i To obtain a unique solution, we need to add the sparseness
Now, we write the linear regression model B fo a matrix constraint. The sparsest solution is obtained by itheorm
form (Fig. 1) in order to explicitly show the relationship Penalty, which measures the number of non-zero elements, as
between partial correlation, linear regression and CS.df w min || b ||o subject tox = Ab. 8)
denoteX = [fy,---, f,] € R"*P and B = [3;;] € R?*?. B b
is assumed to be symmetric with zero diagonal entries. Thefhce it is a combinatorial problem with NP-hard complexity
(2) can be rewritten as instead of using thé,-norm, we employ thé;-norm penalty
X - XB. @) (sum of absolute values of elements):
. . . min || b ||; subject tox = Ab, 9
Vectorize the both sides inf) as b
which is related with the linear programming and the basis

veqX) = ved X B), ) pursuit denoising problen2p]. The discussion about thi
where ve¢X) = [f] - f;;r]T is the vectorization operator. and/, equivalence can be found idJ. For a noisy case, we
Since ve¢XY Z) = (Z" ® X)vedY) with the Kronecker €an transform9) to the quadratic programming with a linear
product® [44], we have constraint

. 2 .
ved X B) = (I ® X)vedB), mén || x — Ab||; subjectto]| b |:1<e. (10)



The formulation {0) is known as LASSO 30|, [46]. By in- Hence, the minimum is obtained when

troducing the sparseness control paramgatehe formulation o [fo )\] (14)
(10) is rewritten by Qi = \Ji Jj» L
b= argmin | € — Ab ||§ +Ab]- (11) where
b a—b if a>0andla] >0b
The optimization for solving the sparse partial correlatis [a,b] = § a+b if a<0andla] >b
done by the coordinate descent learning and the active-set 0 if la] <b

algorithm 7], [47]. We can also apply the LASSO framework The partial correlation is also estimated in the same way.
to (1) in estimating sparse correlation. The algorithms for thEhe objective function for sparse partial correlation igegi
sparse correlation and partial correlation are outlinedhim by

next section.
T4 T4
G1 = Z || JFi— Zom Mf Hz +/\Z|9m| M

V. ESTIMATING SPARSE(PARTIAL) CORRELATIONS ji

In this section, we derive an algorithm for estimating th&lote thatm; can be estimated d|rectly from the sample
sparse (partial) correlations using the coordinate deseam- variance the measurements. So assumigis given, the
ing and the active-set algorithn27], [47]. We also propose Minimum is obtained when
the method tuning the amount of sparskyin (11) based on  9¢G; { Ab;; — B(Oik,2ij) + A, foré;; >0
the topological structure of the networks. W AB;j — B(Oig ki j) — A, for 6;; <0

where
A. Algorithm for Sparse (Partial) Correlations

A = _”-7'-7' fT f;
It requires huge computer memory to directly solve the
optimization problem for large number of nodesl). So B(6: Y _ 0ur VTkETjj
we consider the LASSO frameworks of the element-wise (Bt z.5) (f 7 k;j o St )
formulas () and @) in estimating sparse correlation and partial

correlation P7]. The sparse correlation is obtained by B is a function ofé;; for all k& = {1,....p}\ {i,j}. Hence
the partial correlation is estimated as

p
Qij = argminzz | fi — i f; 113 +/\Z lai;|  (12) b — (B(Oik,k£i,5) /\]+' (15)
@i G g i I A
while the sparse partial correlation is estimated by While the correlation estimationl{) is in a closed-form,

the partial correlation estimationl®) is a function of all
other partial correlation coefficients. In the coordinagésabnt
—argffllnz I fi=> Biif; I3 +)\Z|5w (13) optimization B8], we can obtain the global minimum by
i sequentially minimizing with respect t6;; while fixing all
The coordinate descent learning and the active-set abgoritother partial correlations. The algorithm for the coordéna
are used to solve the optimization problerhig8)(and (L3) [27], descent optimization is given below:

[47. e 5
o . L . _ nput : X =[f,- . f,] eRVP NS
no-::f oel;j:lﬁ;uviesfu::/(z:]og for estimating correlation withdyt Output : 0 c RP<P, 11 ¢ RP
P yis g y 1 Normalize X such thatf/1 = 0 and
P fifi=1forali@=[1,---,1]T eR")
2 i J i ) .
F = ZZ | fi—auf;lz- 2 Initialize [0;5]; ;_y  e; and[mil,_y -
=i 3 While [
SinceF is a convex function, the minimum is achievedaj 4 While m
when 5 Fori=1,...,pandj=i+1,...p,
OF R . [Bwf;”k;i OBY
* Repeat 4 unti|9(m) - (m_1)| < 4.
If we add thel;-norm penalty, we have a new objective 0 0
function 7 By 04/ = (l 5 for all 4, 5.
p , 8 Fori =1,. ,p,
Fr=>3 Il fi—aiif; 13 +2D lovsl. 7D 1 var(f, — Z#lﬂf?f ).
e w 9 Repeat 3 untilr) — 77V < 5.

The derivatives are given b
g Y For the convergence of the algorlthm we used 10~2 and

OF _ —fl-Tfj +a;+ A, foro;; >0 initialized (0:;]; ;_; ,i<;) and[mi],_, , using uniformly
Oaj —finj +a; — A, fora;; <0 generated values.




— ASD
—— PedCon
Random network

Since we assume that most of the partial correlatiéns
are zero, if we update only nonzero partial correlation, w
can reduce the computational complexity. Using this ide
Friedman and Peng exploited the active set algoritld, [
[47] which defines the nonzero partial correlation as the acti

number of clusters

set and updates onlf;; belonging to the active set. In the = & & & o Fo o oW
active set algorithm, the steps from 4 to 6 are then changed
as follows: Fig. 2. The plots of the number of clusters for changing thoés on

correlations. The cluster is defined as the connected coemt®rwith more
than two nodes.

4x While m
Construct the current active set
A= {(i,j)l currentg" V) # 0}_

5* While m/ The well-known characteristics of ASD is local overcon-
For all elements on the active set, nectivity and global underconnectivity. The overconngtti
Updateeg;”/) (i,5) € A in (19). is c_:haracterized by more nqmber of edges within the lobes
Repeat 5* until convergence on the active set. while the underconnectivity is characterized by less _n_umbe
Gk Fori=1,..pandj=i+1,..,p, of edges between the_ lobes. The local overconnectivity and
Updateeg.”) (i,j) € A in (15). global underconnectivity are related to the modular nekwor

which has many number of edges within a module and small
number of edges between modules. In addition, the autistic a
normal control subjects show significant group differenices

6* Repeat Step 4* until convergence.

B. Controlling Sparsity connectivity between lobes and within lobe)], [38], [39],
For practical purposes, it is necessary to determine tH). Hence, we hypothesized that (1) finding the modular
amount of sparsity\. structure in the brain network can be used in differentgatin

1) Thresholding and Sparsenes&stimating the partial ASD and PedCon and (2) the modular structure of ASD
correlation by fixing) is equivalent to thresholding the partian€twork shows the abnormal connectivity patterns withid an

correlations. This is evident from1§), where the partial Petween lobes.
correlation is given as a function of. Thus' we can app'y A cluster is defined to be a connected Component that has

the traditional thresholding methods for finding the suitabmore than two nodes connected with edges. We consider that

sparse network instead of controlling the sparsity. Howevén@ number of clusters is a graph metric reflecting the madula

if the sparsity is too small in the smatiHargey situation, it Structure of brain network. The modular structure gengrall

is impossible to estimate the exact partial correlationghat allows the edges between disjoint modules, while the dleete

case, we cannot directly compare the sparse partial cioreda Structure does not allow such edges. In this sense, modular

obtained from CS and the partial correlations obtained froffld clustered structures are different. However, in thjsepa

the usual thresholding. we will simply treat them equivalent to simply the problem
For selecting the sparsity parameterwe investigate the and consider that a cluster reflects the modular structure of

topological structures of the networks and check its stgbil Prain network. When the threshold is sufficiently small, all
during the cross validation a increases. We estimate thehodes are connected and the number of clusters becomes one.

stability of the topological structures in two different yga The number of clusters increases when the threshold ireseas
First, the sample variance of the total number of edges inP4t at a certain threshold, it obtains the maximum (Ffp.
network is considered during the cross validation. Thesiyar When the threshold is large, all nodes are disconnected and
which have the small sample variance is chosen. Secoffte humber of connected components becomes the number of
we estimate the number of edges which are included in tpedes, but the number of clusters becomes zero. We choose the
previous network with smaller sparsity among all edges @ tihreshold corre;pondmg to the maximum as the representati
network, i.e.,|Ex, NEx,_,| for Ai_1 < A;, where|&,| is the Of the network in subsequent analysis.

number of elements in a set of edggsin the partial corre-

lation network with the sparsith. If |Ex, N Ex,_,| = |En,], V. RELATIONSHIP TO COMPRESSEDSENSING

e, £, C &, then, the sparsity, is chosen. Because the | this section, we show that the sparse linear model for
thresholded network has the property that a set of edgesgllimating partial correlation is related to UUP. It opens a
the network is a subset of a set of that with smaller threShOWossibiIity that the the near-optimal recovery of sparsairbr

If the obtained sparse network satisfies the same property@kvork can be done by the proposed method.
thresholded network, we can consider that it is the optimal

solution of partial correlation. ) ) o

2) Clustered Structure via Thresholdingthe network ob- A Uniform Uncertainty Principle
tained from the partial correlation with the chosgnn the The coherence of4, u(A), is defined as the maximum
previous section still have many edges. Thus, we thresholdtorrelation coefficient among all correlations between tlifo
once again to find more suitable sparse network reflecting tleeent column vectors ir6j. If all basis vectors are orthogonal,
characteristics of our dataset, ASD and PedCon. the coherence is minimized. A signal issparse if there



Lilliefors statistics

exists at mosts number of nonzero elements in the signa QQplot
The exact sparse signal recovery is guaranteedsfgparse
signal, if the coherence is bounded pyA) < O(1/s) [50].
However, sinceN < P, this condition is difficult to satisfy.
A looser condition, which guarantees the near-optimalspai

2t

ot

Lilliefors statistic

-2 01

Quantiles of Sample

-
data recovery IS a UUFBEI’ [51] 7345tand’a2rd Nor?nalQuzanh‘les;‘ ' g = ® d‘U ROISS‘0 g g g ®
Definition 1: A measurement matrid satisfies theiniform (a) ASD
uncertainty principlUUP) with the oversampling factok if, ¢ QQplot o Lilliefars statistics
for every sufficiently smally > 0 and anys-sparse vectob % - ‘ i
such that 5, 4
s <v-N/A, gz =
(<]

A hO|dS |nequal|t|es :“Standfrd Nor?naIQué:-mrilesA 10 20 ) W ROI:O 50 70 %0 w

1 N 3 N (b) PedCon

b < |Ab|2 < - =-||b]3 16

) . ) Fig. 3. Checking Gaussianness of data matrix for (a) ASD apdPédCon.
with probability at least — O(p~*/7) for some fixed constant In the QQ-plots, the horizontal axises are the quantilesrafrenal distribution
p>0. while the vertical axises are the quantiles of data. If thta dae Gaussian,

. .. the QQ-plot should be close to the straight red line. In tightrpanels, the
Let S be the index set consisting efnumbers from between horizontal axises display the index of ROIs while the vaitiaxes displays

1 and P. Let Ag € RV** be a submatrix consisting of Lilliefors statistic which measures the maximum differerietween empirical
column vectors ofA (Fig. l(C)). The columns are obtainedand theoretical Gaussian distributions. Most ROIs (blUil $imes) are below

. . ... _the cutoff values 0.19 for ASD (a) and 0.29 for PedCon (b) atdHevel of
from_the |n_dex seb. Then, it can be shown that the cond|t|or1%. The two test procedures confirm the Gaussianess of our data.
(16) is equivalent to

1 N

2 pP reason not to assume normality for the given data matrix, i.e
for all subsetsS. Amax(-) and Amin(-) denote the largest and x,; ~ A/(0,1/p) (Fig. 3). Since FDG-PET measurements are
smallest eigenvalues. obtained in 97 nodes that are not close to each other, the the

Lemma 1:The Gaussian ensembl¥ € R"*”, which are elements ofX are likely to be i.i.d. so we did not check the
ii.d. N'(0,1/p), holds the UUP with the oversampling factor j.d. assumption here.

A = logp.
Lemmal implies that, if we pickA in the sparse linear
modelz = Ab as a Gaussian ensem¥ewith n > v-slogp, C. Sparse Brain Connectivity Recovery under CS

sparse recovery df can be done with overwhelmingly large ) N )
probability [35]. If the measurement matriX follows i.i.d. Gaussian, from

Now, we will show that the brain connectivity obtained-€mmal, X satisfies UUP. In other words, for any submatrix
by the penalized linear regression if) (can be recovered X x’ of X with K’ C K, it satisfies the condition1()) like
under UUP for the first time. It is sufficient to show that the

Gaussianess of data matiX in (6). 2 < Mmin(X 5 X k) < Amin (X 0 X k)

S )\min(A:S‘rAS) S /\max(A:S’rAS) S

N

—~ N| W

| w
SRS

T T
B. Gaussianess of Data Matrix < Dmin(X g X k) < Amax (X g X k) <

After centering and normalizing the column vectors, we
check the Gaussianess of the data ma¥ix= [f,---, f,] €  Let As € R¥** be a submatrix consisting of column
R™*P using both the Lilliefors test and quantile-quantile plotgectors of A (Fig. 1(c)). To check if a measurement matrix
(QQ-plots) B2). Because it is not possible to visualize thed in (11) holds UUP, we should show that all submatrices
QQ-plots for all ROIs here, we measured the correlatioAs: (S’ C S) satisfy (L7). BecauseAs is a block diagonal
coefficientsr of scatter points in the QQ-plots for quantificaimatrix (not a square matrix) of which block matrices are
tion. If the empirical distribution follows Gaussian,should X, ..., X k, With the number of column vectos, ... k,
asymptotically converge to 1. For the random numbers frothig. 1(c)), the smallest and largest eigenvalues@AS are
N(0,1/p) whose dimension is identical to the data matrix of
ASD and PedCony = 0.98 + 0.01 and 7 = 0.97 £ 0.03, /\min(AgAs):min{)\min(XlT(lXKl),...,)\min(XlT(pXKp)},
respectively. For the actual measurements from ASD and
PedCon,r = 0.97 & 0.02 and r = 0.96 + 0.03 (Fig. 3). /\max(AgAs)=maX{Amax(XEIXKl),~~-,Amax(X;T<pXKp)}-
The high correlation in the QQ-plot guarantees that our data
matrix follows a normal distribution. Using Lilliefors dtatic, |f we write the index setx’ = K, U--- U K, then,
we also tested Gaussianness. Since the Lilliefors statisti T
of data matrix are mostly smaller than the cutoff values of Amin (X g X k)
0.19 (ASD) and 0.29 (PedCon) at%llevel, there is no

)\min (AgAS)

<
< Anax(AZAs) < Anax(X X ).



For all subsetss’ C S, the block matrices ofd s, come from
Xk (K' C K). Therefore,

1
5 : % S Amin(14:§’r145) S Amin(14:§’r/145’)

(a) A=0.01 (b A=0.2 (c)A=0.8 (d)A=1.4 (e)A=1.7

. p () ASD

S Amin(14:5'|—/145’) S )\max(A:S'rAS) S

N W

SRS

—— Total number of edges in the graph
—— Number of edges which are nested
in the previous network with smaller A

The larger measurement matrix will satisfy the condition
(17), showing thatA also satisfies UUP with the samet
probability asX . For this reason, the sparse partial correlatic L :

obtained by LASSO is a near-optimal under CS and th o % 0 o 0% 0 07 o0 e e T e e
brain network recovery based on the partial correlation ci s

be theoretically guaranteed.

(g) PedCon

400

VI. NUMERICAL EXPERIMENTS

A. Imaging Data L ‘ ‘
. . 3 . 8Aﬂ1 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16 1.7 18 19 2
1) Subjects:There are twenty six children with ASD (24 sparseness parameter A

boys, mean age: 6.8 1.8 years) and eleven children W|thFi 4 (a)(e) show the partial correlation maps for difar A —

. g.
PedCon (8 boys, mean age: 9.432.55 years)._ The ASD_ 0.01,0.2,0.8,1.4 and 1.7. The number of edges in the network changes
group, who was diagnosed by the Korean version of Autisas) value changes for ASD (f) and PedCon (g). The blue plots aedtal
Diagnostic Interview-Revised (K-ADI-R)5], was recruited numbers of edges in the network. The red plots are the nundfeesiges
. L ' . . hich are included in the previous network with smalleamong all edges

from Child and Adolescent Psychiatric Outpatient Clinic of; 4 graph.
Seoul National University Hospital, South Korea. The ptdia
controls comprised as children who failed to meet the dater
of any psychiatric disorder and visited the clinic for 1Q , , o o
evaluation. of edges is large during the cross validation, it impliest tha

2) Image Acquisition:All PET scans were obtained fromthe qbtained partial correlation is not stable. The vagaisc
ECAT EXACT 47 (Siemens-CTI, Knoxville, USA) PET scan-€latively large k;eW"ele'@ = |A| < 0.3. But for A > 04, the
ner with an intrinsic resolution of 5.2 mm FWHM. PETVarance gets relatively sma er. .
images were 47 contiguous planes with a thickness of 3.470r the sparse network with > 0.4, most of edges in
mm. After transmission scan measured by 68Ge rod sourée etwork stgrt to bglon_g tq previous networks Wh'Ch have
for attenuation correction, emission scan was adminigter§Maller sparsity (red line in Figj). If the sparseness is not too
All participants were scanned under the normal environaienMall in the smalk largey situation, finding the sparseness
noise of the scanner room. Image reconstruction was pBArameter is related to fixing the threshold. Thus, we chose
formed using a filtered back-projection algorithm (Sheppl'® SParseness parameter= 0.4 for estimating the optimal

Logan filter at a cutoff frequency of 0.3 cycles/pixel as 1oBartial correlation.
x 128 x 47 matrices of size 2.k 2.1 x 3.4 mm).

3) Preprocessing:All PET data were preprocessed usingc. Reproducibility of Brain Network
Statistical Parametric Mapping (SPM 2, University College . -
of London, UK), implemented in the Matlab 6.5 (Mathworks To val!date our meth_qd, we checked th? reproducibil-

. . . ._1ty (consistency or stability) of networks using the cross-
Inc., USA) environment. The PET data is spatially normalize idation. We computed the mean and standard deviation of
to Korean standard template space developed by 78 Koreghoation. . pu o viatl
normal right-handed volunteers (Male/Female=49/29) dbas@art'al cz_)rrelanons. If the standard deV|a_1t|on Is lesqthal,
on MR and PET images. The mean FDG uptake within rROJE consider the network to be reproducibi®][ If the mean

. o - IS less than 0.1, we categorized it into zero. In this way, we

was extracted using Statistical Probabilistic Anatomialb- : . o ]
Korean version (SPAM-K)4]. The values of FDG uptake categorized the partial correlation into 4 classes: stabte,

were globally normalized to the individual’s total gray neat stable nonzero, unstable zero and unstaplg_nonzero..
mean count. In Table I, we compared the reproducibility of 3 different

methods, the pseudo-inverse (PINV), the penalized maximum

) ) likelihood (PML) and the penalized linear regression (PLR)

B. Controlling the sparsity by measuring the ratio of partial correlations belongingtto
We selected the optimal sparsityusing the leave-one-outclasses. The methods were briefly explained in Sedtidh

cross-validation in Sectiofiv-B. Since the number of ASD The percentages of stable elements obtained by PINV, PML
and PedCon data was 26 and 11 respectively, the leave-dneasd PLR are 61.90 %, 96.39 % and 100 % for ASD and
scheme produced 26 and 11 partial correlation maps of A9D.69 %, 89.54 % and 96.91 % for PedCon. Among nonzero
and PedCon fox = 0.01,0.1,0.2,...,2. The blue plots in elements, PML has the stable and unstable elements in the
Fig. 4 (f) and (g) show the number of edges in the network aatios (1.74:0.92) and (1.29:2.60) for ASD and PedCon. On
we increases\ values. If the sample variance of the numbehe other hand, PLR has the ratios (2.68:0) and (1.83:1018) f

number of edges




ASD and PedCon. Since the number of PedCon data is smalleR) Local Inference: We also extracted 28 local features
than ASD, PedCon is less stable than ASD. For PedCon, PEEBm ASD, PedCon and random networks (RAND). We con-
finds more stable elements than PML. This empirical evidensiglered ROIs belong to 7 lobes, frontal (F), subcortical (S)
for the consistency and near-optimal-recovery of PLR-Baskmbic (L), temporal (T), parietal (P), occipital (O) andhribic
partial correlation is also discussed in Peng, etaf].[ (L) lobes and Cerebellum (C). 7 features are the number of
edges connected within each lobe and 21 features are the
number of edges connected between two lobes. We performed
the Wilcoxon rank sum test on three pairs (ASD,RAND),
After obtaining the optimal partial correlation with= 0.4, (PedCon,RAND) and (ASD,PedCon) and used the Bonferroni
we thresholded the brain network when the number of clustgmocedure for the multiple comparison correction.
are maximized in Sectioiv-B. For simplicity, we visualized Fig. 7 shows the brain networks and the connectivity
the estimated 3D brain networks in a 2D space using ISOMARatrices of 7 lobes on two groups (column) and three methods
(Fig. 6). ISOMAP is an embedding technique that preservggw). The ROI locations of the brain networks are shown in
the relative distance between neighboring nodef]. [Fig. Fig. 6. We obtained the thresholded brain networks based on
6 (c) and (d) show the ASD and PedCon brain networkhe number of connected components and counted the number
thresholded. The color of nodes corresponds to a lobe thiconnection of each edge during the cross validation. Kefic
nodes belong. The nodes and edges of the networks in ¢¢)ges represent more reproducible connections. The matrix
and (d) have different colors for different clusters. Théoco entries are the mean and standard deviation of number osedge
representing the cluster in (c) and (d) is selected by btendibetween the corresponding lobes during the cross valigatio
node colors in the cluster. If the cluster consists of nodes The gray colored entries are the connections that aretstatis
the same lobe, the color of cluster is identical to the lolsally different from the random networks at05 level. The
color. We observe that the ASD network is more similar tred box indicates the significantly different connectiomsll
the lobe coloring scheme compared to the PedCon netwopkirwise comparisons. PML, PLR and CORR found 18, 26
Based on the Bonferroni correction, the corrected p-vala@d 27 gray colored entries in ASD connectivity matrices and
of each thresholds obtained by the maximum number ©fi, 18 and 26 one in PedCon. The number of red boxes for
clusters arep = 0.0189 £ 0.0095 for 26 ASD networks and PML, PLR and CORR is 4, 9 and 5, respectively. The results
p = 0.0253 £ 0.0164 for 11 PedCon networksLp]. show that PLR finds more significant network than PML and
CORR.
From Fig.7 (b), the local overconnectivity was found in the
ASD network in the frontal, parietal, limbic and subcortica
We constructed 26 ASD and 11 PedCon networks lybes(p < 0.001, corrected for comparisop < 0.01). The
thresholding the partial correlation based on four différe long-range underconnectivity patterns between lobes wire
methods: PINV, PML and PLR and the correlation (CORR}erved in the ASD network: frontal-parietal, frontal-teongl,
The CORR method was introduced in SectidhA. We also  frontal-limbic, parietal-temporal and occipital-tempbfp <
generated 100 weighted random networks using Erd6siRépyo1, corrected for comparisop < 0.01). Functional un-
(ER) model p7]. In the ER random network, the weight ofderconnectivity between frontal and parietal regions irDAS
edges is chosen randomly and uniformly in the intef0al].  was quite consistent with other studies, because it is @sdc
The generated random networks are thresholded in the sapig deficits of planning and problem solving in ASR].
way . Frontal mirror neuron system was suggested to mediate un-
1) Global Inference:From each network, we extracted 4derstanding of other’'s emotional states in concert wittblam
global features: the number of (1) edges, (2) clusters,d@ge center, such as amygdala. This emotional dysfunction in ASD
connected between two ROIs in different lobes and (4) edgeisildren might be explained through the abnormal conniggtiv
connected between two ROIs within the same lobe. To quantligtween frontal and limbic systerBg]. The occipital regions
the network differences among ASD, PedCon and randahowed reduced functional connectivity with the temporal
networks (Rand), the two-sample Wilcoxon rank sum test waegions, which was associated with mentalizing impairment
applied in a pairwise fashion. In Fi§, each panel shows thein ASD [60]. Abnormal behavioral phenotypes in ASD could
box plots of 4 global features for ASD (red), PedCon (bluéje involved in these long-range dysconnectivities. Thus, w
and Rand (green) using 4 different methods. The significatdin say that PLR finds more representative and discrimiativ
group difference a0.01 level is marked with the asterisk (*). networks which fit the previous studies better.
All global features obtained by PLR are significantly diéfat
from random networks. Although the number of edges and
clusters of ASD and PedCon were not different in PLR, the
number of edges connected between lobes and the numbdn this paper, we showed that the problem of estimating
of edges connected within a lobe were significantly differecorrelation and partial correlation can be formulated ie th
(p < 0.001). The results show that the autistic brain networkparse linear regression framework. The partial corcat
has local overconnectivity and long-range underconniggtivwidely used in modeling highly correlated networks since it
[58]. The network obtained by CORR also shows similashows the actual dependency between two nodes by factoring
results. out the redundant dependences of other nodes. However, the

D. Visualization of Modular Structure

E. Significance of Network Differences

VII. CONCLUSIONS



TABLE |

AFTER LEAVE-ONE-OUT CROSS VALIDATION, THE ENTRIES OF THE PARTIAL CORRELATION MAP ARE CATEGORIZEDNTO 4 CLASSES STABLE ZERO,
STABLE NONZERG, UNSTABLE ZERO AND UNSTABLE NONZERQ THE STABLE AND UNSTABLE CLASSES ARE DETERMINED BY WHETHER THESTANDARD
DEVIATION IS LESS THAN 0.1 OR NOT. THE ZERO AND NONZERO CLASSES ARE DETERMINED BY WHETHER THE MBMIS LESS THANO.10R NOT. WE
COMPAREDPINV, PML AND PLRMETHODS ONASD, PEDCON AND TWO RANDOM NETWORKS OBTAINED BY PERMUTING AND SELECTNG THE GIVEN
DATA RANDOMLY . THE RESULTS ARE GIVEN IN TERMS OF THE PERCENTAGE OF EDGES BELGMNG TO EACH CLASS AMONG TOTAL4656EDGES.

PINV

PML PLR

Group Class

TRUE Random TRUE Random TRUE Random

stable 61.90 0.02 96.39 82.26 100 96.56

ASD zero nonzero 39.78 22.12 0 0.02 94.¢ 174 8224 002 9732 268 9598 0.58

unstable 38.10 99.98

3.60 17.74 0 3.44

zero nonzero 25.73 1237 70.79 29.19 2.€ 0.92 1293 4.81 0 0 131 213

stable 11.69 0.04 89.54 66.32 96.91 92.33

PedCon zero nonzero 6.64 5.05 0 0.04 88.z 1.29 66.32 0 95.08 1.83 92.33 0

unstable 88.32 99.96

10.46 33.68 3.09 7.67

zero nonzero 5423 34.09 73.41 26.55 7.6 260 26.01 7.67 1.61 1.48 4.96 2.71

estimation of the partial correlation using the traditibleast [7]
squares method is unreliable when the number of obsergation
is smaller (smalk) than the large number of nodes (largen (8]
complex networks. To remedy the smallargep problem, the
l1-penalty for the sparseness constraint is usually intreduc
to the regression. The penalized linear regression, as know
as LASSO, naturally leads to sparse brain network modeling.
Under the i.i.d. Gaussian assumption, the proposed bréif]
network model can recover sparse underling signal even from
small number of noisy measurements. [11]

The numerical experiments show that the sparse brain
network can be estimated consistently. The proposed meth&d
was applied in characterizing the local overconnectivitg a
long-range underconnectivity in the autistic brain. Owule [13]
is consistent with previous autism-related clinical stsdB8],

[39], [49]. »
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Fig. 7. The Brain networks and the connectivity matrices ¢dt¥es for PML, PLR and CORR methods. The lobes are frontal {Ecortical (S), limbic
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The width of edge represents the number of connections gltin@ cross validation. If the edge is connected more fretyyenis thicker. The elements of
the connectivity matrices are the mean and standard daviafi the number of edges between 7 lobes during the crogiatiali. The gray colored entries
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