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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network
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modeling without determining the threshold within the same
persistent homology framework.
The brain network corresponds to the Rips complex, which is

the main algebraic representation used in persistent homology,
and the multiscale networks corresponds to the Rips filtration,
which is the sequence of the nested Rips complexes over dif-
ferent scales [36]. The main topological features are the Betti
numbers. Among the Betti numbers, the first three Betti num-
bers, which count the number of connected components, holes
and voids, would be of interest in practice. In this paper, we will
mainly focus on the zeroth Betti number , which measures the
number of the connected components.
The changes of the Betti numbers over the Rips filtration

can be visualized using the barcode [37], [38]. The barcode is
a topologically invariant representation of the network change
over the filtration. So it does not have geometric information
of node positions. If we incorporate the node indexing to the
barcode, surprisingly we obtain the single linkage dendrogram
(SLD) [39]–[41]. Since the distance between two different SLDs
can be measured using the Gromov–Hausdorff (GH) distance
[40], [41], we can directly measure the distance between any
two networks.
The two main contributions of this paper are as follows.
1) We propose a new multiscale network modeling frame-
work for brain connectivity that avoids using a single fixed
threshold. The proposed method basically uses networks
generated at every possible threshold. The computational
challenge of handling significantly many networks was ad-
dressed by introducing the concept of graph filtration in the
persistent homology framework.

2) We show that, if we add the geometrical information of
node indexing to the barcode, we obtain SLD. The differ-
ence between two different SLDs can be measured using
the GH distance. Hence, our method provides the first uni-
fied mathematical framework for measuring brain network
differences.

The proposed method is applied in differentiating the ab-
normal resting glucose metabolic networks using 103 ROIs ex-
tracted from FDG-PET of 24 attention-deficit hyperactivity dis-
order (ADHD), 26 autism spectrum disorder (ASD), and 11
pediatric controls (PedCon). Numerical experiments show that
our graph filtration framework can differentiate the populations
better than most known graph theoretic approaches as well as
the previous persistent homology framework.

II. BRAIN NETWORK CONSTRUCTION

Consider FDG-PET measurements obtained in selected
ROIs in subjects. Each ROI serves as a node in the brain
network. We have the FDG-PET measurement at th node.
The measurement set is denoted as . The
measurement is assumed to be normally distributed with
mean zero and the variance 1. This condition can be guaranteed
by centering and normalizing the measurements. We define the
distance between the measurements and through the
Pearson correlation

(1)

The functional brain network is represented using measurement
set and the distance , which form themetric space .
Let us more formally define the network constructed by

thresholding correlations between the nodes.
Definition 1: We connect the nodes and with an edge if

the distance for some threshold . The collection
of all those edges is denoted as . Then the binary network

at threshold is a graph consisting of the node set
and the edge set .
All previous studies on brain network modeling used the

single fixed threshold [17]–[20] while we are trying to avoid
using a fixed threshold using the persistent homology frame-
work.

III. PERSISTENT NETWORK HOMOLOGY AND CLUSTERING

In this section, we introduce the basic concepts used in per-
sistent homology and relate them to brain network modeling.

A. Network as Simplicial Complex

The shape of an object can be approximated by the point
cloud data (node set) consisting of points. If we connect
points of which distance satisfies a given criterion, the con-
nected points start to recover the topology of the object. There-
fore, we can represent the underlying topology as a collection of
the subsets of that consist of nodes which are connected [29],
[42]. Denote the collection of all possible subsets as . There
are possible subsets of that can be a possible topology.
Here, we provide the formal definition of the topology [29].
Definition 2: If , is a topological space on the

finite set if
1) , ,
2) implies and,
3) .
Note that every metric space is a topological space. Hence, the
binary network is also a topology. In general, given a
point cloud data set with a rule for connections, the topolog-
ical space is a simplicial complex and its element is a simplex
[29]. A node is a 0-simplex, an edge is a 1-simplex, and a tri-
angle is a 2-simplex. A complete graph with nodes represents
the edges of a -simplex.
Definition 3: A simplicial complex is a finite collection of

simplices such that [29]
1) any face of is also in , and
2) for , is a face of both and .
The binary network is a simplicial complex consisting
of 0-simplices (nodes) and 1-simplices (edges) [43]. There are
various simplicial complexes. One of them is the Rips complex.
Definition 4: Given a point cloud data , the Rips complex

is a simplicial complex whose -simplices correspond
to unordered -tuples of points which are pairwise within
distance [38].
While the binary network has at most 1-simplices,

the Rips complex has at most -simplices. So the Rips
complex can have faces as well (Fig. 1). Trivially we always
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Fig. 1. Construction of binary network and Rips complex. (a) Point cloud data
(b) the balls of radius centered at each point. (c) The binary network

. (d) The Rips complex .

have assuming we use the same metric in
constructing the binary network and the Rips complex.

B. Multiscale Network as Graph Filtration

So far we treated the network at a fixed threshold as
a simplicial complex. When we change the threshold, we obtain
a sequence of networks

We will explore the relationship among these networks.
When increases, the subsequent Rips complex becomes

larger than all the previous Rips complex. Therefore, we have

for . The nested sequence of the Rips com-
plexes is called a Rips filtration, which is the main theme of
persistent homology [29]. Similarly, we also have graph filtra-
tion for the case of the sequence of nested binary networks [44]

for . This is the reason why we introduce the
Rips complex in the first place. We need the basic mathematics
of Rips complex in building graph filtration, which is a subset
of Rips filtration.
As illustrated in Fig. 2(b), as the filtration value changes,

the topological characteristic of the Rips complex changes. The
topological change of the filtration can be visualized using the
barcode, which is constructed by plotting the changing topolog-
ical features over different filtration values. The topological fea-
ture is displayed using a bar which starts and ends when the fea-
ture appears and disappears. The barcode represents the changes
in topological features when the filtration value changes.
Among the many topological features, the zeroth Betti

number counts the number of connected components in
a network. We formally define the connected component in
networks and simplicial complexes.
Definition 5: In a simplicial complex, a path between the two

nodes is a sequence of nodes such that from each of its nodes
there is an edge to the next node in the sequence. The connected
component in the simplicial complex is a subset of which any
two nodes are connected to each other by paths.
Since the th Betti number is estimated by the - and
-simplices, the binary network contains enough in-

formation to compute [29]. In Fig. 2(f), we plotted the ze-
roth Betti number (vertical) of the Rips complex over the

Fig. 2. The schematic of the multiscale network modeling via barcode and den-
drogram. (a) Node set and metric . (b) The Rips filtration at the filtration
values 0, 1, 2, and 2.7. (c) The corresponding adjacency matrices of the Rips
filtration. (d) The connected component matrices representing the connected
components through different colors. (e) The single linkage distance . (f),
(g) The topological changes are visualized by the barcode and the single linkage
dendrogram (SLD). The vertical axis of the barcode represents the zeroth Betti
number , and one of dendrogram represents the indexes of nodes. Their hor-
izontal axes represent the filtration value. If we rearrange the bars according to
the node indexes, and connect them following how new connections were in-
troduced in the Rips filtration, the barcode is transformed to SLD.

filtration value (horizontal) [38]. The barcode is basically a de-
creasing function showing when the connected components are
merging to form a bigger component.
The change of shows the topological change of a net-

work before all nodes are connected. Until now, many brain
network studies have concerned about the network properties
after all nodes are connected. It is because they have focused
on finding the small-worldness, scale-freeness, or modularity.
In this paper, we are interested in how the nodes are connected
before all nodes are connected by observing the change of .

C. Multiscale Network as Dendrogram

The barcode represents the global topological changes of a
network visually; however, it lacks the geometric information of
where the changes occur. That is the limitation of the barcode
representation. By including an additional geometric informa-
tion of node positions in the barcode, it is possible to transform
the barcode into a dendrogram which provides a richer visual
representation of how a brain network changes.
Consider the Rips filtration . Let
and be the two disconnected components of the Rips

complex . Suppose that there are two nodes
and such that the distance between and is
less than the next filtration value , i.e. .
Then and will be connected at . In other words, the
components and will be connected at if

(2)

Note that is the single linkage distance between
the clusters and often used in hierarchical clustering
[40], [41]. Hence, the sequence of how components are merged
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during the Rips filtration is identical to the sequence of the
merging in the dendrogram construction. To emphasize our
main finding, we write it as a proposition.
Proposition 1: The sequence of how connected components

are merged during the Rips filtration is identical to the sequence
of the clustering in the single linkage dendrogram. The filtra-
tion value at which the two connected components
and are merged is determined by the single linkage distance

.
Fig. 2(f) and (g) shows the schematic of the relationship be-

tween the Rips filtration and the SLD construction. We used
as the single linkage distance between

the nodes. At each filtration value, the connected components
are identified by the circles with different colors in (b). If we re-
arrange the bars in the barcode and connect the bars according
to the node indexing and the Rips filtration, we obtain SLD [see
the color of lines in (f) and (g)].
The barcode shows the global topological characteristics of

when the components are merged while SLD shows the local
network characteristics of what subnetworks are clustered to-
gether. Note that SLD is invariant under the permutation on
node indexes. Regardless of which nodes we start building SLD,
our framework can always produce the consistent SLD. This is
a useful property for a data set with extremely large number of
nodes. The single linkage clustering is the only method that sat-
isfies the uniqueness theorem for clustering algorithms and it
is sufficiently stable for small perturbations in the metric [40],
[41], [45].

D. Single Linkage Matrix

Given the network , we were able to construct SLD.
Then using SLD, we can recompute the distance between the
nodes in the network using the single linkage distance . We
can view the original distance as the observed distance while
the single linkage distance as the model predicted distance
using SLD. Let be a path between
and . Then the single linkage distance is formally given
as

(3)

The minimum is taken over every possible path between and
. For simplicity, is called as a single

linkage matrix (SLM). Fig. 2(e) shows the SLM , which can
be decomposed into the sequence of matrices representing the
connected components in (d).
SLD can be easily understood through information diffusion

during the filtration. Suppose that each node has its own in-
formation. At the filtration value , the information starts
to diffuse simultaneously from each node over the network.
If the information meets by connecting edges, the informa-
tion is mixed and the nodes belonging to the same connected
component will share the mixed information. In this way, the
single linkage distance between two nodes can be thought as
the smallest diffusion rate to mix the information starting from

the two nodes. The single linkage hierarchical clustering (den-
drogram) visualizes this diffusion process by a tree diagram
that depends on the filtration value.

IV. DISTANCE BETWEEN NETWORKS

Traditionally, the network comparison is performed by de-
termining the difference between the graph theoretic measures
such as assortativity, betweenness centrality, small-worldness
and network homogeneity [12], [46], [47]. In persistent ho-
mology, there are various metrics that have been proposed
to measure the distance between the two topological spaces.
Probably the most widely used metric is the bottleneck distance
that is often used in measuring the distance between the two
persistence diagrams [48]. GH distance is also proposed to
measure the distance between dendrograms [40], [41].

A. Graph Theoretic Measures

In this study, we considered seven most widely used graph
measures: assortativity, betweenness centrality, clustering coef-
ficient, characteristic path length, small-worldness, modularity
and network homogeneity [47], [49]–[52]. Other several net-
work similarity measures such as the vertex similarity, graphlet
degree distribution or P-Rank were not included [53]–[55].
While the first seven measures are defined in the both weighted
and binary networks, the last three measures are only defined
in the binary network. To compare the performance under the
same condition, we only used the graph measures defined in the
weighted network. Here we briefly explain the graph measures
for completeness.
Assortativity is the correlation between the degrees of con-

nected nodes [49]. Betweenness centrality is the average of the
ratio of all shortest paths which pass through each node [50].
The clustering coefficient is the average of the fraction of trian-
gles around each node and the characteristic path length is the
average of the shortest path length between each pairwise nodes
[51]. The fraction of the average clustering coefficient over the
characteristic path length defines the small-worldness [51]. The
modularity measures how the network can be subdivided into
modules or communities [52].When the number of edges within
a module is larger while the number of edges between modules
is smaller, the modularity becomes higher. Each graph measure
reflects a different topological characteristic of the brain net-
work. For example, the clustering coefficient and characteristic
path length are related to the small-worldness. The assortativity
and betweenness are related to the scale-freeness. The modu-
larity is related to the community structure [46], [56]. The net-
work homogeneity is a node-wise measure obtained by themean
correlation of the any given node with every other node within
a given network [47].
Except for the characteristic path length, small-worldness and

modularity, the other measures are defined in each node or edge
in the network. Since we need a single scalar value representing
the network for the comparison, we estimated the average assor-
tativity, betweenness centrality and clustering coefficient. The
global network homogeneity was obtained by calculating the
sum of the network homogeneity scores [47].
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Each graph measure is an algebraic invariant representing its
own topological characteristic of the network. Using their Eu-
clidean distances, we know whether the networks have similar
topological properties or not.

B. Bottleneck Distance

The bottleneck distance was originally defined for measuring
the distance between two sets in the same metric space.
Definition 6: Let be point cloud sets in the metric space
. Each element of is paired with at least one element of

. The bottleneck distance between and is then given
by

(4)

If we plot the birth and death time of a chosen topological fea-
ture over the filtration in the horizontal and vertical axes respec-
tively, we obtain the persistence diagram [29]. The bottleneck
distance is applied to measure the difference between two per-
sistence diagrams.
In this study, we are interested in how the number of the con-

nected components as themain topological feature of interest. In
the graph filtration, the zeroth Betti number always decreases
and no new component is born. Hence the birth time is always
fixed at the filtration value 0 and only the death time is varying.
Since the number of nodes is fixed for all brain networks, the
number of connected components is identical in each network.
Then, the one-to-one function from to is simply deter-
mined by the death time. The bottleneck distance for the brain
network is the maximum difference between two sequences of
the ordered single linkage distances, i.e., filtration values when
the two disjoint components are connected.

C. Gromov–Hausdorff Distance

The Hausdorff and bottleneck distances are usually defined
for different point sets in the same metric space. However, this
is not a useful metric in measuring the distance between net-
works because each network will have its own metric. So what
we need is a new metric, GH distance, that can be used to mea-
sure the distance between different metric spaces [57]. In com-
puting the GH distance, we need to determine the correspon-
dence between two different metric spaces, and . In our
brain network model, the node sets and is given in the fixed
identical locations in the template. Therefore, the node
is simply mapped to [44], [57]. Therefore, GH-distance
can be trivially discretized as

The GH distance is the maximum difference between two SLMs
when the order of column and row vector is fixed. While the
bottleneck distance finds when the difference is maximized be-
tween two networks during the changing of the number of con-
nected components, the GH distance finds where the difference
is maximized between networks.

V. APPLICATION TO SIMULATION DATA

We applied the proposedmethod to the simulation data shown
in Fig. 3(a). For replicating our results, we have provided the
simulation data and MATLAB codes at http://sites.google.com/
site/hkleebrain/home/persistent-homology-2. We used 10 prob-
ability mapswhich are composed of 1, 4, 9, 16, , 100 bivariate
normal distributions. We denoted the probability maps from left
to right panels as . One hundred data points are
sampled from each probability map (blue dots). Each data point
is considered as a node and the Euclidean distances is used for
edge weights. Then, their distance matrices, SLMs, SLDs and
barcodes of are computed and shown, respectively, in (b), (c),
(d), and (f). The distance matrices and SLMs are in .
In the dendrogram (d), the horizontal and vertical lines repre-
sent the connected components and the merging of two con-
nected components. Its color is varied according to the distance
to the giant component, which is a connected component when
all nodes are connected. We set the distance from giant com-
ponent to giant component as one. Whenever the component
is divided into two smaller components, the distance increases
one by one. The colorbar for the distance to the giant compo-
nent is shown in the left. We illustrated the barcode of as the
decreasing function in (f). The color of each line is varied ac-
cording to the corresponding datasets, . When the
dataset is changed from C1 to C10, the barcode has flatter peak,
lighter tail and steeper slope.We generated 200 datasets by sam-
pling 20 datasets per probability map.We estimated the distance
between all pairwise SLMs using GH metric. The obtained 200
200-dimensional GH distance matrix is shown in (e). Using

GH distance matrix, we clustered 200 SLMs into 10 clusters
based on Ward’s linkage cluster analysis. During the clustering,
we assumed that the group labels of all SLMs are unknown.
After clustering, the clustered labels are compared to the true la-
bels. The clustering accuracy is 87%. Most of the misclustering
occurred in C9 and C10.

VI. APPLICATION TO BRAIN NETWORK MODEL

In this paper, we applied the proposed framework in con-
structing functional brain networks with 103 ROIs extracted
from FDG-PET data. FDG-PET measures glucose metab-
olism, which is associated with neuronal activity [58]. The
interregional metabolic correlation between brain regions was
used to reflect functional connectivity during the resting state
[59]–[61]. While the resting state fMRI records the blood
oxygenation level dependent (BOLD) signal every 2 or 3 s,
FDG-PET records the FDG uptake for 30 min after 20 min
from the injection. Thus, FDG-PET data at the resting state is
more stationary and invariant to the noise compared to fMRI
studies.

A. Subjects

FDG-PET was scanned from three groups. They were re-
cruited fromChild andAdolescent Psychiatric Outpatient Clinic
of Seoul National University Hospital, Seoul, South Korea.
Twenty-four children with ADHD (19 boys and 5 girls, mean
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Fig. 3. Simulated results. (a) 10 probability maps for sampling the data points. Each map is composed of 1, 4, 9, 100 bivariate normal distributions from
left to right and they are denoted as , respectively. We sampled 100 data points from each probability map like the blue dots in each panel. (b)
The distance matrices, (c) SLMs, (d) SLDs, and (f) barcodes of of the sampled datasets. In (d) and (e), the horizontal axes represent the filtration value and the
vertical axes represent the index of connected component and one of nodes, respectively. The slope of barcodes become more steep going from C1 to C10. Twenty
datasets with 100 datapoints are generated from each probability map. The total number of datasets is . We computed their SLMs using 20 10
datasets and GH distances of all pairwise SLMs. Then, 200 200 GH distance matrix are obtained as shown in (e). When we clustered 200 SLMs using Ward’s
cluster analysis, the clustering accuracy was 87%.

age: 8.2 1.6 years) were examined. They were diagnosed by a
board certified child and adolescent psychiatrist using DSM-IV
diagnostic criteria, Korean version of ADHD rating scale IV
(K-ARS) and, Korean version of Kiddie-Schedule for Affective
Disorders and Schizophrenia-Present and Lifetime version
(K-SADS-PL). Twenty-six children with ASD (24 boys and 2
girls, mean age: 6.0 1.8 years). They were diagnosed by the
Korean version of the Autism Diagnostic Interview-Revised
(K-ADI-R) and the Korean version of the Autism Diagnostic
Observation Schedule (ADOS). The pediatric controls com-
prised 11 children (7 boys and 4 girls, mean age: 9.7 2.5
years). They visited our clinic but failed to meet the criteria
of any psychiatric disorder or visited a Child and Adolescent
Psychiatric Outpatient Clinic of Seoul National University
Hospital for IQ evaluation only. This study was approved by
the Institutional Review Board of Seoul National University
College of Medicine.

B. PET Image Acquisition and Preprocessing

All PET scans were obtained using an ECAT EXACT 47
(Siemens-CTI, Knoxville, TN) PET scanner with an intrinsic
resolution of 5.2 mm full-width at half-maximum (FWHM). An

emission scan was obtained with FDG dose of 0.3 mCi/kg for
30 min during resting state, after a transmission scan measured
by 68 Ge rod sources for attenuation correction. All participants
were scanned under normal environmental noise of the scanner
room. A filtered back-projection algorithm (Shepp–Logan filter
at a cutoff frequency of 0.3 cycles/pixel as
matrices of size mm) was used for transaxial
image reconstruction. PET images were spatially normalized to
the Korean standard template space after converting to Analyze
format and smoothed with a Gaussian filter of 16 mm FWHM
using Statistical Parametric Mapping (SPM 2, University Col-
lege of London, London, U.K.), implemented in the Matlab 6.5
(Mathworks Inc., Natick, MA) environment [62]. To minimize
the any ethnic differences, we used Korean standard PET and
MR templates developed using the normal Korean volunteers
[62]. The procedure for obtaining the FDG-values from 103
ROIs is as follows.
1) The ROIs were manually parcellated in high resolution
MRI and the weighted probabilities of ROIs were esti-
mated based on the population.

2) The ROIs drown in MR image were warped into Korean
PET template registered to Korean MR template, which is
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Fig. 4. (a) Procedure for constructing the correlation-based distance map (1) using the given dataset. (b)–(d) The obtained distance maps for ADHD, ASD,
and PedCon groups. F, P, T, S, O, and C represent frontal, parietal, temporal, subcortical, occipital, and cerebellar regions. L and R indicate the left and right
hemispheres.

Fig. 5. Graph filtration of (a) ADHD, (b) ASD, and (c) PedCon at the filtration values . The color of nodes at is shown in the
colorbar. If the nodes belong to the same connected component, they are colored identically. The barcodes of ADHD, ASD, and PedCon are shown in (d).

called as Korean statistical probabilistic anatomical map
(KSPAM). It provides effective tools for quantifying the
regional intensity of FDG uptake of PET data. In this way,
we have probabilistic ROIs in PET template space.

3) All PET images were then normalized to PET template
using the affine transformation and the subsequent non-
linear registration based on the linear combination of dis-
crete cosine bases in SPM toolbox.

4) The FDG-value of ROI in PET template space were ex-
tracted by the weighted averaging with the weights given
by the weighted probability.

The value of FDG uptake was globally normalized to the indi-
viduals total graymatter mean count. This normalized value was
obtained from 103 ROIs as follows: 20 frontal, 20 parietal, 30
temporal, 16 subcortical, 14 occipital, and 3 cerebellar regions.
The age effect was factored out from 103 ROIs using a general
linear model.

VII. RESULTS

Using the predefined 103 ROIs, we constructed the brain net-
works following the proposed framework. We will also validate
our proposed framework with more available graph theoretic
approaches.

A. Multiscale Brain Networks

We computed the correlation-based distance (1) for
ADHD, ASD, and PedCon groups in Fig. 4. The multiscale
brain networks were constructed using the graph filtrations on
ADHD, ASD, and PedCon populations.
The distance metric we used is one minus correlation. So the

distance is always between 0 and 2. The negative correlation
corresponds to the distance larger than 1. However, during the
filtration, almost all nodes are connected before epsilon value
reaches 1 in our data set without exception. The nodes merge
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Fig. 6. (a)–(c) SLMs of ADHD, ASD, and PedCon obtained from the original correlation-based distance in Fig. 4(b)–(d). Compared to the correlation-
based distance , we have better group separation in the single linkage distance . F, P, T, S, O, and C represent frontal, parietal, temporal, subcortical, occipital
and cerebellar regions. L and R indicate the left and right hemispheres. (d)–(f) Single linkage dendrograms of ADHD, ASD, and PedCon. The vertical and horizontal
axes represent the node index and filtration value. The color of lines shows the distance to the giant component. The distance to the giant component of the giant
component is 1. Whenever the connected component is divided into the smaller components, the distance increases one by one.

together quickly in the filtration to form a single giant connected
component. So we did not really consider negative correlations
and the filtration is done between 0 and 1.
The graph filtrations at eight different

values = 0.05,0.1,0.15,...,0.35 are shown in
Fig. 5(a) ADHD, (b) ASD, and (c) PedCon. The color of node
is changed according to the connected component to which
the node belongs. At , the color of nodes (connected
components) is shown in the colorbar. When increases, the
color of node is changed. We also illustrated the barcodes for
the three groups in (d). The maximum single linkage distances
of ADHD, ASD, and PedCon are 0.40, 0.51, and 0.47.
In the barcode for , the decreasing slopes are 364, 300,

and 314 for ADHD, ASD, and PedCon. The single linkage dis-
tance matrices for ADHD, ASD, and PedCon were also com-
puted in Fig. 6(a)–(c). The single linkage dendrograms within
a network were illustrated in Fig. 6(d)–(f). The color of lines
in the dendrogram represents the distance to the giant compo-
nent for each connected component. The maximum distances to
the giant component are 25, 31, and 26 for ADHD, ASD, and
PedCon, respectively.

B. Performance Against Other Network Measures

The 3-D static PET image is obtained one per subject. Since
we do not have multiple PET scans per subject, we couldn’t gen-
erate a single network per subject. So we used the Jackknife re-
sampling technique to generate additional networks. For a group
with subjects, one subject is removed and the remaining
subjects are used to construct a network. This process is repeated
for each subject to produce networks for the group. Therefore,
we were able to simulate 24, 26, and 11 networks for ADHD,
ASD, and PedCon groups. For all networks, we
estimated the SLM, barcode of , slope of barcode , average
assortativity, average node betweenness centrality, average clus-
tering coefficient, characteristic path length, small-worldness,
modularity, and the global network homogeneity. Then, the GH
distance was computed between all pairwise SLMs. The bottle-
neck distance was computed similarly for all barcodes. For the
other eight graph theoretic measures, all pairwise differences
were also computed. We obtained total 10 distance matrices be-
tween the networks. The result is summarized in Fig. 7, where
each distance matrix is normalized with the maximum value 1.
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Fig. 7. Comparison of 11 different methods: (a) GH distance, (b) bottleneck distance, (c) slope of barcode , (d) assortativity, (e) betweenness centrality, (f)
clustering coefficient, (g) characteristic path length, (h) small-worldness, (i) modularity, and (j) global network homogeneity. In each distance matrix, the three
diagonal block matrices with the size 24 24, 26 26, and 11 11 measure the distance between networks within a group and the off-diagonal block matrices
measure the distance between groups. The clustering accuracy using the Ward’s cluster method was also performed. From (a) to (j), the clustering accuracies are
100%, 44.26%, 86.89%, 80.33%, 85.25%, 80.33%, 96.72%, 93.44%, 60.66%, and 96.72%. The GH-distance shows the best performance.

The size of the distance matrices is
, which corresponds to the number of simulated net-

works in the three groups. We clustered the simulated networks
into three groups using the Ward’s cluster analysis using each
computed distance matrix. During the clustering we assume that
the true group labels are unknown. Then, we evaluated the clus-
tering accuracy by comparing the assigned labels with the true
labels. The obtained clustering accuracies are 100%, 44.26%,
86.89%, 80.33%, 85.25%, 80.33%, 96.72%, 93.44%, 60.66%,
and 96.72% for GH distance, bottleneck distance, slope of bar-
code , assortativity, betweenness centrality, clustering coef-
ficient, characteristic path length, small-worldness, modularity,
and global network homogeneity, respectively.
We conclude that the GH-distance based approach shows the

best performance against 10 available methods. Surprisingly
the bottleneck distance predominantly used in persistence ho-
mology performed poorly possibly due to the fact that it ignored
the geometric information of network nodes.

VIII. DISCUSSION

A. Summary

In this paper, we proposed a new framework for modeling
brain connectivity using the persistent homology. The proposed
framework avoids the traditional thresholding of connectivity
matrices in obtaining binary networks. Instead of trying to find
an optimal threshold, which may not be optimal for other net-
works, we constructed networks for every possible threshold.
Then we determined the persistent topological features over the
evolution of the network changes at every scale.
In developing a unified mathematical framework, we bor-

rowed heavily from the persistent homology. In this paper, we
showed that binary networks are the subsets of the Rips com-
plex, and the collection of the networks over different scales

forms the Rips filtration. For the visualization of the multiscale
networks, we used the barcode and the dendrogram, and ex-
plored the relationship between the two representations.
For quantification, we used the single linkage distance and

GH-distance. We showed that the GH-distance has better dis-
criminating power than the bottleneck distance and many other
graph theoretic measures.

B. Network Findings

In Fig. 5(d), the slopes of barcode are
with the significance level 0.05 based on the Wilcoxon

rank-sum test using the resampled datasets. The filtra-
tion values when all nodes are connected is generated are

with the significance level 0.05. It
implies that ASD has longer heavy tail in the shape of barcode
(globally disconnected until the larger filtration values) and
sharper peak (locally connected at the smaller filtration values)
compared to PedCon and ADHD. The sharp peak and long
heavy tail of ASD is related to local over-connectivity and
global under-connectivity, respectively [63].
For pairwise comparisons of the single linkage distances

(Fig. 6), theWilcoxon rank-sum test was used with Bonferroni’s
correction. We found that ASD showed loosely connected be-
tween left inferior prefrontal regions such as BA44 and BA45
and other brain regions (corrected ). The loose
coupling of inferior frontal area 44/45 might be reflected
the behavioral symptom in ASD [64]. We found that ADHD
showed loosely connected pattern between sensorimotor region
and various frontoparietal regions including anterior cingulate
compared to PedCon (corrected ). This loose con-
nected pattern might reflect the deficits of cognitive attentional
control [65] and sensori-motor integration [66]. Also, ASD
and ADHD have commonly abnormal connected structure in
cerebellum (corrected ). Cerebellum is one of the
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pathophysiological regions in ADHD and ASD. In this way,
the single linkage distance using network filtration could be an
another indicator for characterizing abnormal brain network.

C. Future Works

In this paper, we considered the graph filtration. and only the
zeroth Betti number was used as the topological invariant.
However, since the functional brain network itself is not in the
3-D Euclidean space where the nodes are embedded but in a
higher dimensional space, we also need to consider higher de-
gree Betti numbers beyond the zeroth by extending the concept
of network filtration to the Rips complex.
For a network with an extremely large number of nodes, the

construction of the Rips filtration and the corresponding single
linkage dendrogram is time consuming. Since the construction
of a single linkage dendrogram is equivalent to that of the min-
imum spanning tree (MST) [44], it is possible to speed up the
computation by using either the Prim’s or Kruskal’s algorithm
that are often used in finding MST. The relationship between
MST and our persistent homological framework is also left out
for a future study.
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