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Topological Properties of the Structural Brain
Network in Autism via ε-Neighbor Method

Min-Hee Lee , Dong Youn Kim , Moo K. Chung , Andrew L. Alexander, and Richard J. Davidson

Abstract—Objective: Topological characteristics of the
brain can be analyzed using structural brain networks con-
structed by diffusion tensor imaging (DTI). When a brain net-
work is constructed by the existing parcellation method, the
structure of the network changes depending on the scale of
parcellation and arbitrary thresholding. To overcome these
issues, we propose to construct brain networks using the
improved ε-neighbor construction, which is a parcellation
free network construction technique. Methods: We acquired
DTI from 14 control subjects and 15 subjects with autism.
We examined the differences in topological properties of the
brain networks constructed using the proposed method and
the existing parcellation between the two groups. Results:
As the number of nodes increased, the connectedness of
the network decreased in the parcellation method. However,
for brain networks constructed using the proposed method,
connectedness remained at a high level even with an in-
crease in the number of nodes. We found significant differ-
ences in several topological properties of brain networks
constructed using the proposed method, whereas topologi-
cal properties were not significantly different for the parcel-
lation method. Conclusion: The brain networks constructed
using the proposed method are considered as more real-
istic than a parcellation method with respect to the stabil-
ity of connectedness. We found that subjects with autism
showed the abnormal characteristics in the brain networks.
These results demonstrate that the proposed method may
provide new insights to analysis in the structural brain net-
work. Significance: We proposed the novel brain network
construction method to overcome the shortcoming in the
existing parcellation method.

Index Terms—Autism, diffusion tensor imaging (DTI),
ε-neighbor construction method, parcellation, structural
brain network, topological properties.

I. INTRODUCTION

THE human brain is a complex system capable of generat-
ing and integrating information from multiple sources in

a highly efficient manner [1]. Defining the global architecture
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of the anatomical connection patterns of the human brain is
important, because these connection patterns can provide new
insights into correlations between functional brain disorders and
underlying structural collapses [2], [3]. Diffusion tensor imag-
ing (DTI) is a technique that facilitates non-invasive studies of
the living human brain. Using DTI data, white matter tractogra-
phy can determine the fiber bundle direction at each pixel and
allow visualization of fiber bundles. The development of this
technique has yielded large datasets of anatomical connection
patterns [4]. Sporns et al. inferred the human brain connec-
tome by using the DTI data, thus comprehensively describing
the structure of element networks and connections forming the
human brain [3]. Recently, attempts to model the human brain
as a network of brain regions connected by anatomical tracts
or functional associations have attracted considerable interest,
because characterizing this structural and functional connectiv-
ity could impact studies of brain pathology and developmen-
tal disorders [5]. Comparisons of structural or functional net-
work topological properties between subjects could reveal puta-
tive connectivity abnormalities in neurological and psychiatric
disorders [4].

A network is set of nodes linked by edges. Nodes in a neural
network correspond to individual neurons at the microscopic
scale, but it is unclear how grey matter should be parcellated
at the macroscopic scale [6]. In many studies, nodes are com-
posed using the parcellation method [2], [6], [7], which is some-
what problematic in that the network structure is influenced by
changes in both the parcellation scale and thresholding in con-
nectivity matrices. Various topological parameters depend on
the choice of threshold. Because the topological properties of
nodes changes according to parcellation scale, Zalesky et al.
investigated how topological properties of the network, such as
normalized path length, average normalized clustering coeffi-
cient, small-worldness, and node degree changed according to
the parcellation scale used to divide brain regions. They argued
that the parcellation scale should be carefully determined in
structural brain network analysis [6].

To overcome these problems, Chung et al. proposed a net-
work graph modeling technique called the ε-neighbor con-
struction that does not use parcellation schemes [8]. The ε-
neighbor method iteratively considers only two endpoints of
each tract, designated as nodes on the graph, whereas tracts are
designated as edges [8]. In this study, we improved the ε-
neighbor construction method and evaluated the topological
properties of structural brain networks obtained from the ex-
isting parcellation method and the ε-neighbor construction.
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Many neuropsychiatric disorders are considered to reflect ab-
normalities in brain connectivity [9]. Autism is a neurodevel-
opmental disorder characterized by impaired communication,
social interaction, and social comprehension [10]. The increas-
ing prevalence of autism has promoted interest in understand-
ing brain functional and structural connectivity in this neurode-
velopmental disorder [11]. Many studies have used functional
magnetic resonance imaging (fMRI) to analyze and charac-
terize functional connectivity in autism [12]–[15]. Cherkassky
et al. observed lower functional connectivity in the left hemi-
sphere in autism [13]. Belmonte et al. observed local functional
over-connectivity and global functional under-connectivity in
autism [12]. However, some studies reported that global under-
connectivity was not always observed in autism, and concluded
that observations of abnormal over-connectivity and under-
connectivity require further investigation [14], [15].

Other studies have used DTI in studying autism [8], [9], [16],
[17]. Chung et al. reported that the brain networks in autism ex-
hibited slower integration rates and have more nodes with a low
degree of connectivity, thus demonstrating over-connectivity
[8], [17] Using the edge weight distribution, Adluru et al. re-
ported differences in autism [16]. Dennis et al. reported that car-
riers of a common variant in the autism risk gene, CNTNAP2,
had differences in structural connectivity. They found that sub-
jects with autism had a shorter characteristic path length, greater
small-worldness, and greater global efficiency in the left hemi-
sphere, and greater global efficiency in the right hemisphere
[9]. Rudie et al. examined differences in topological properties
in both structural and functional connectivities in autism. They
reported differences in topological properties of functional con-
nectivity [18]. However, they did not observe differences in the
topological properties of structural connectivity.

To determine if there are differences in structural connectivity
in autism, we applied the improved ε-neighbor construction
method to analyze and compare topological properties between
brain networks derived from 14 control subjects and 15 subjects
with autism.

II. NETWORK CONSTRUCTION METHODS

A. ε-Neighbor Construction Method

In this section, we explain the ε-neighbor construction method
in detail. Suppose the entire brain contains n tracts. The i-th
tract will have two endpoints, ei1 and ei2 . In the network graph
construction, we only consider the two endpoints at a time.
The endpoints of tract are considered to be nodes; tracts are
considered to be edges in the graph.

Let Gk = {Vk , Ek} be a 3D graph with node set Vk and edge
set Ek at the k-th iteration. The distance between point p to the
graph Gk to be the shortest Euclidean distance between p and
all points in Vk :

d(p,Gk ) = min
q∈Vk

||p − q|| (1)

Point p is designated an ε-neighbor of graph Gk if
d(p, Gk ) ≤ ε. Because ε is related to the scale at which the

Fig. 1. Six possibilities of the ε-neighbor construction: (a) e21 and e22
are all ε-neighbors of G1 . (b) Only e21 is an ε-neighbor of G1 . (c) Only
e22 is an ε-neighbor of G1 . (d) Neither e21 nor e22 is an ε-neighbor of
G1 . (e) e31 is an ε-neighbor of e21 in G2 and e32 is an ε-neighbor of e12
in G2 . (f) e21 and e22 are ε-neighbors of e11 or e12 in G1 . This case is
considered to be noise, because it resulted in a circular tract.

graph is constructed, ε is considered to be a measure of graph
resolution. If ε has a large value, the constructed graph will
have fewer nodes. If ε has a small value, the constructed graph
will have more nodes. The ε-neighbor construction method is
performed in order from the longest tract to the shortest tract.

Starting with two endpoints e11 and e12 of the first tract which
has the longest length of tracts, the ε-neighbor construction
method begins with graph G1 , with V1 = {e11 , e12} and E1 =
{e11e12}. Next, the endpoints e21 and e22 from the second
longest tract are added to the existing graph G1 . Fig. 1 shows
six possibilities of adding the second tract to graph G1 .

In Fig. 1(a), e21 and e22 are all ε-neighbors of G1 . Because
the endpoints e21 and e22 are close to the existing graph G1 ,
node set V1 and edge set E1 do not change. Thus, V2 = V1 and
E2 = E1 .

In Fig. 1(b), only e21 is an ε-neighbor of G1 . Node e22 is
added to node set V1 , and edge e21e22 is added to edge set E1 .
Thus, V2 = V1 ∪ {e22} and E2 = E1 ∪ {e21e22}.

In Fig. 1(c), only e22 is an ε-neighbor of G1 . Node e21 is
added to node set V1 , and edge e21e22 is added to edge set E1 .
Thus, V2 = V1 ∪ {e21} and E2 = E1 ∪ {e21e22}.

In Fig. 1(d), neither e21 nor e22 is an ε-neighbor of G1 .
Nodes e21 , e22 are added to node set V1 , and edge e21e22 is
added to edge set E1 . Thus, V2 = V1 ∪ {e21 , e22} and E2 =
E1 ∪ {e21e22}.

In Fig. 1(e), e31 is an ε-neighbor of e21 in G2 and e32 is
an ε-neighbor of e12 in G2 . The node set V3 does not change;
however, edge e31e32 is added to edge set E2 . Thus, V3 = V2
and E3 = E2 ∪ {e31e32}.

In Fig. 1(f), e21 and e22 are ε-neighbors of either e11 or e12 in
G1 . This relationship is considered to be noise since they result
in a circular tract. Thus, V2 = V1 and E2 = E1 . Previously in
Chung et al., this case was simply ignored thus resulting in an
additional noise in the network construction [8].

Fig. 2 shows a toy example for the ε-neighbor construction
process. Fig. 2(a) represents five sample tracts. The ε-neighbor
construction starts from graph G1 , which has V1 = {e11 , e12}
and E1 = {e11e12} as in Fig. 2(b). Next, the endpoints of the
second longest tract (e21 , e22) are used. Neither e21 nor e22
is an ε-neighbor of G1 . Thus, V2 = V1 ∪ {e21 , e22} and E2 =
E1 ∪ {e21e22} as in Fig. 2(c). In step 3, we use endpoints of the
third longest tract (e31 , e32). e32 is an ε-neighbor of G2 . Thus,
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Fig. 2. Toy example of the network construction process using the ε-
neighbor construction method. (a) Five sample tracts. (b) The ε-neighbor
construction starts from graph G1 , which has V1 = {e11 , e12} and E1 =
{e11 e12}. (c) Neither e21 nor e22 is an ε-neighbor of G1 . Thus, V2 =
V1 ∪ {e21 , e22} and E2 = E1 ∪ {e21 e22}. (d) e32 is an ε-neighbor of
G2 . Thus, V3 = V2 ∪ {e31} and E3 = E2 ∪ {e31 e32}. (e) e41 is an ε-
neighbor of e22 in G3 and e42 is an ε-neighbor of e11 in G3 . Thus,
V4 = V3 and E4 = E3 ∪ {e41 e42}. (f) e51 and e52 are all ε-neighbors of
G4 . Thus, V5 = V4 and E5 = E4 .

V3 = V2 ∪ {e31} and E3 = E2 ∪ {e31e32} as in Fig. 2(d). In
step 4, we use the endpoints of the fourth longest tract (e41 , e42).
e41 is an ε-neighbor of e22 in G3 and e42 is an ε-neighbor
of e11 in G3 . Thus, V4 = V3 and E4 = E3 ∪ {e41e42} as in
Fig. 2(e). Finally, we use the endpoints of the last longest tract
(e51 , e52). e51 and e52 are all ε-neighbors of G4 . Thus, V5 = V4
and E5 = E4 as in Fig. 2(f).

Fig. 3 shows the brain network constructed using the ε-
neighbor construction and the existing parcellation method. The
resulting 3D graphs are represented using adjacency matrices.
The adjacency matrix A = (adjij ) is defined as follows. If nodes
i and j are connected, adjij = 1, otherwise adjij = 0.

B. Parcellation Method

We also constructed the brain network using the parcellation
method for the comparison. We used the automated anatomical
labeling (AAL) template, which parcellates the brain into 116
regions [19]. Let P (i) denote the i-th parcellation. The weighted
adjacency matrix W = (wij ) for the AAL parcellation was de-
fined as

wij =
n∑

k = 1

I{ek 1 ∈P (i)}I{ek 2 ∈P (j )} + I{ek 1 ∈P (j )}I{ek 1 ∈P (i)},

(2)
where the indicator function I{ek 1 ∈P (i)} = 1 if ek1 ∈ P (i) and
0 otherwise [6]. Since some topological properties of weighted
graphs are ill-defined [6], we only considered binary graphs.
We binarized weighted adjacency matrix further by assigning
one to all non-zero entries for each weighted adjacency matrix.
(Fig. 3(b)).

III. COMPLEX NETWORK ANALYSIS

Complex networks have received recent attention from a
range of disciplines, including social science, information sci-
ence, biology, and physics [1]. Numerous studies have analyzed
networks according to their topological properties [2], [6], [20],
[21]. Complex network analysis is an approach that character-
izes datasets and describes the properties of complex systems
by quantifying the topologies of the associated networks. Com-
plex network analysis is based on graph theory, a mathematical
approach for studying networks [4]. In this study, we used the
following topological properties: path length, global efficiency
(Eglob), clustering coefficient, local efficiency (Eloc) node de-
gree, density, node betweenness centrality (NBC), and regional
efficiency (Ereg ).

A. Path Length

Functional integration in the brain is the ability to combine
information from multiple brain regions. A measure of this inte-
gration is often based on the concept of path length. Path length
measures the ability to integrate information flow and functional
proximity between pairs of brain regions [1], [4]. When the path
length becomes shorter, the potential for functional integration
increases [1]. The path length equal to the number of edges in
the path [1].

B. Clustering Coefficient

Clustering coefficient describes the ability for functional seg-
regation and efficiency of local information transfer. Clustering
coefficient at a node is calculated as the number of existing
connections between the neighbors of the node divided by the
number of all possible connections [22]. The clustering coeffi-
cient C for the graph is then calculated as the average clustering
coefficient over all the nodes.

C. Small-World

The small-world method of network analysis, with clustering
coefficient C and average path length L, was proposed by Watts
and Strogatz [22]. A real network was considered to be a small-
world network if it met the following criteria:

γ = Creal/Crand � 1

λ = Lreal/Lrand ≈ 1

σ = γ/λ > 1 (3)

where Creal and Lreal are the average clustering coefficient and
characteristic path length of real network. Crand and Lrand are
the average clustering coefficient and characteristic path length
of random networks that preserved the number of nodes, edges,
and node degree distributions present in the real network. In
our experiment, we used 100 random networks for each real
network. Recent studies have demonstrated that human brain
networks derived from DTI have small-world properties [2],
[6], [23]. Small-world networks have high clustering coeffi-
cients and short path lengths and might provide the underlying
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Fig. 3. (a) Structural brain network constructed by the ε-neighbor construction. Nodes are located in the center of ε sphere. (b) Structural brain
network constructed by the AAL parcellation method. Nodes are located in the mass center of each AAL region.

structural substrates of functional integration and segregation in
the human brain [2].

D. Network Efficiency

Regional efficiency Ereg measures the average path length
between a given node and the remaining nodes [7] and reflects
the integration of each node [25]. Given node i, it is defined as

Ereg (i) =
1

n − 1

∑

i �=j

1
dij

, (4)

where dij is the shortest path length between nodes i and j and
n is the total number of nodes.

Local efficiency Eloc measures the fault-tolerance of the net-
work and ability of information exchange in sub-networks [26].
It measures the efficiency of the connections between the nearest
neighborhoods of a node [24].

Global efficiency Eglob is defined as the average of the inverse
of the shortest path length between nodes [24]. The Eglob of a
brain network refers to the efficiency of parallel information
transfer in the network [24] and reflects integration over the
whole brain network [25].

E. Node Degree

Node degree in a graph is defined as the numbers of con-
nections with other nodes. Typically, node degree is calculated
as the average for all the nodes. A node with a high degree is
interacting with many other nodes in the network [4].

Node degree distribution shows resilience to a targeted attack,
i.e., node removal [27], [28]. The human brain network has been

considered to be a scale-free network, implying the existence of
a few highly connected nodes with superior resilience to random
node failures [1], [29]. Recently, studies have claimed that the
human brain network is not scale-free [2], [6], [20]. To test for
scale-freeness, we fitted the node degree distribution to three
degree distributions:

power law : x(α−1)

exponential : e(−x/xc )

exponentially truncated power law : x(α−1)e(−x/xc ) , (5)

where x is the node degree value, xc denotes the estimated cutoff
degree, and α is the estimated exponent. The node degree dis-
tribution was fitted using the curve fitting toolbox in MATLAB
and goodness of fit was assessed by the R-squared values.

F. Density

Network density is measure of the number of connections
compared to the maximum possible number of connections
between nodes, and indicates how well the network is con-
nected [30]. Biological networks, however, are characterized
by a small number of connections [30]. Low densities describe
sparse graphs, whereas high densities describe dense graphs
[31].

G. Connected Component

A connected component is a sub-graph whose nodes are con-
nected by edges. The number of connected components of the
graph is the number of structurally independent or disconnected
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sub-graphs. To identify connected components, we used the
Dulmage-Mendelsohn decomposition method, a method widely
used for decomposing a sparse matrix [32]. The largest con-
nected component was defined as the connected component
with the largest number of nodes [33].

Network connectedness refers to how well network nodes
are connected. Suppose there is total n number of nodes. If
the size of the largest connected component approaches n, the
connectedness will increase [34]. In this study, we calculated
the size of the largest connected component as a proportion of
n.

H. Node Betweenness Centrality

In a complex network, node betweenness centrality (NBC)
can be used to determine the relative importance of a node and
to represent the communication load. NBC can measure the
influence of a node over information flow between other nodes
[2]. The betweenness centrality of a given node v is defined as

NBC =
∑

i �=v �=j

σij (v)
σij

, (6)

where σij is the number of shortest paths between nodes i and j
and σij (v) is the number of shortest paths passing through node
v [35], [36].

To understand the connection structure of a network, the node
attack was performed [27], [28]. To observe the effects of re-
moving nodes on the network, we calculated the size of largest
connected component after removal of a node. Node attacks
were performed as follows. 1) For random node attack, we
removed randomly chosen nodes until the size of largest con-
nected component becomes zero and repeated this procedure
1000 times. 2) For the targeted node attack, we employed NBC
that was used in previous targeted node attack studies [27], [28].
We removed the nodes in decreasing order of their NBC. The
removal process continues until the size of largest connected
component becomes zero.

We compared the size of largest connected component be-
tween two groups for each removal step.

I. Statistical Analysis

Matlab version R2014a (Mathworks, Natick, MA, USA) was
used for statistical analysis. In this study, we used a nonparamet-
ric permutation t-test for the statistical analysis in all network
properties between two groups [37]. We randomly permuted
the group labels, and then recomputed two-sample t-statistics
between the permuted groups. The permutation was repeated
10000 times. We determined the 95 percentile points of the t-
distribution as a critical value (p-value = 0.05). The p-values
were adjusted for multiple comparisons using the false discov-
ery rate (FDR) correction.

IV. APPLICATION

A. Image Acquisition and Processing

We analyzed 29 DTI consisting of 14 normal controls
(12.1 ± 2.7 years old, range 10–19) and 15 subjects with autism

(13.9 ± 3.3 years old, range 10–22) who were matched for age,
handedness, IQ, and head size.

To acquire DTI with more directions, scans take more time
and children with autism may have difficulty staying still [38].
Yendiki et al. reported that children with autism showed more
head motion than typically developing children [39]. The longer
scan time causes more head motion [39]. Thus, DTI were ob-
tained for a single (b = 0) reference image and 12 non-collinear
diffusion-encoding directions, with a diffusion weighting factor
of b = 1000 s/mm2.

Distortion associated with eddy currents and head motion for
each dataset was adjusted using automated image registration
(AIR) [40]. Distortions from field inhomogeneities were ad-
justed using custom software algorithms [41]. The six tensor ele-
ments were calculated using the non-linear fitting methods [42].
We used nonlinear tensor image registration algorithms for spa-
tial normalization of DTI data [43], and performed streamline-
based tractography using the TENsor Deflection (TEND) algo-
rithm [44], [45].

B. Comparisons Against Parcellation Method

To compare the ε-neighbor construction method to the exist-
ing conventional parcellation method, it was necessary to per-
form the template normalization. We performed 3D non-linear
image registration between fractional anisotropy and AAL tem-
plates using Ezys [46]. This enabled us to use both methods in
the same normalized space.

To align tracts to AAL parcellation, tract culling was neces-
sary. A tract was considered usable if each endpoint of the tract
intersected one of the parcellations in the AAL template. Unus-
able tracts were culled from the set of all tracts. Moreover, tracts
that were less than 10 mm in length were also culled because
they were considered to be noise tracts. Culling is a necessary
step to eliminate spurious tracts that do not interconnect in the
parcellation method [6]. We found that there are many unusable
tracts in one subject, which is considered as an outlier. For this
reason, one outlying subject was removed in the analysis. After
culling tracts, we used the same usable tracts in both methods.
The DTI had 3056.7 ± 266.21 culled tracts and 6943.30 ±
266.21 usable tracts (Fig. 4). Approximately 30% of tracts were
unusable in the parcellation method.

Since location and the number of nodes in the networks con-
structed using the ε-neighbor method may be different from
networks constructed using the parcellation method, we trans-
formed the ε-neighbor networks to the AAL parcellation. We
combined the nodes located in each AAL parcellation into one
node.

For pair comparisons, it was also necessary to use the network
scales where the basic topological properties of the networks are
compatible between the methods. We adjusted the ε-radius in
the ε-neighbor construction method and parcellated additional
subregions within AAL using the algorithm proposed by Za-
lesky [6]. This results in networks with 116, 221, 330, 456,
and 561 nodes (Fig. 5). We computed the connectedness of
the network as a function of the parcellation scale and ε-radius
(Table I). The connectedness was close to one for the ε-neighbor
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Fig. 4. The results of culling tracts. A tract was considered usable if
it intersected one of the parcellations in the AAL template. Tracts with
length less than 10 mm were also culled as these were considered to
be noisy tracts. Tracts that do not connect any two AAL parcellations are
also culled. (a) Culled tracts. (b) Usable tracts.

Fig. 5. Results of additional parcellation. To observe how topological
properties of the network changed according to the number of nodes,
we parcellated additional subregions within AAL parcellations. (a) 116
nodes (b) 221 nodes (c) 330 nodes (d) 456 nodes (e) 561 nodes.

TABLE I
CONNECTEDNESS COMPARISON BETWEEN THE PARCELLATION

AND ε-NEIGHBOR CONSTRUCTION METHODS

Parcellation Method ε-neighbor Construction

Mean SD Mean SD

116 Nodes 0.906 0.025 0.999 0.006
221 Nodes 0.935 0.024 0.999 0.003
330 Nodes 0.887 0.032 0.997 0.004
456 Nodes 0.820 0.033 0.994 0.005
561 Nodes 0.786 0.032 0.993 0.005

SD: standard deviation.

construction regardless of the number of nodes used. On the
other hand, connectedness decreased for the parcellation method
as the node size increased. Thus, the comparisons were done us-
ing 116 and 221 node networks, which results in less than 10%
disconnectedness for the parcellation method.

For the ε-neighbor construction method with 116 nodes, sig-
nificantly higher Eglob (t-stat. = −1.70, p-value = 0.05) and
node degree (t-stat. = −1.96, p-value = 0.03) were observed in
autism. For the ε-neighbor construction method with 221 nodes,
significantly higher Eglob (t-stat. = −2.81, p-value = 0.0053)

and density (t-stat. = −2.52, p-value = 0.0097) were observed
in (Table II). For the parcellation method, we could not observe
the differences in topological properties between the two groups.

C. Abnormal Topological Properties in Autism

Since the parcellation method was not sensitive compared
to the ε-neighbor construction method, we used the ε-neighbor
construction method in characterizing the topological properties
of the autistic brain network.

1) Global Properties: To avoid the biased results owing
to selection of a specific ε-radius, we had chosen a range of
the graph resolution ε-radius (7∼12 mm) with the following
conditions. a) The number of nodes is more than 90 (when ε-
radius becomes 12 mm) which is frequently used as network
scale in previous brain network studies [7], [25], [48] and fewer
than 500 (when ε-radius becomes 7 mm) which is often the
highest number of nodes used in brain network analysis. b) The
number of nodes and edges between two groups are similar to
each other.

For comparison of global properties between the two groups,
we used the area under curve (AUC). Since all subjects met the
small-worldness criteria for a range of ε-radius, the constructed
brain networks can be considered to be small-world networks
(Fig. 6). Moreover, we could not observe significant differences
in small-worldness between the two groups. Small-world net-
works can be classified into three categories - power law, expo-
nential, and exponentially truncated power law - according to
their degree distributions [47]. We found that the node degree
distribution fit the best to the exponentially truncated power
law (Fig. 7). The exponentially truncated power law model
yielded the best fit for the brain network in the normal con-
trols. The estimated parameters were α = 0.9148, xc = 13.96
with the R-squared value Rep = 0.997 for the normal controls
and α = 0.925, xc = 14 and the R-squared value Rep = 0.997
for autism. The better fit of the data to the exponentially trun-
cated power law indicated that the brain networks had hub nodes
and bridge edges [2]. The results are in agreement with previous
studies [2], [6].

We compared global topological properties of the brain net-
works between the groups. The subjects with autism exhibited a
significantly shorter average path length (t-stat. = 2.58, p-value
= 0.0075), higher global efficiency (t-stat. = −2.23, p-value =
0.017), and higher degree (t-stat. = −2.46, p-value = 0.012).
However, we could not observe differences in density, clustering
coefficient and local efficiency between the groups. Global prop-
erties for the brain network of each subject, including means,
standard deviations of AUC, and results of group comparisons
using non-parametric permutation t-test, are summarized in Ta-
ble III and Fig. 8.

2) The Effects of Node Attack: Many network measures
are influenced by the number of nodes and edges in the network
[4]. We choose the graph resolution such that outliers or signif-
icant differences in the numbers of nodes and edges between
the groups did not exist. We used the ε-radius of 7mm. This
resolution is the smallest integer that produced fewer than 500
nodes to reduce computational complexity.
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TABLE II
DIFFERENCES IN GLOBAL PROPERTIES BETWEEN CONTROL SUBJECTS AND SUBJECTS WITH AUTISM FOR THE ε-NEIGHBOR

CONSTRUCTION METHODS

Control Autism Group Differences

Mean SD Mean SD t-statistics p-value Corrected p-value

116 Nodes Global Efficiency 0.471 0.013 0.478 0.011 −1.692 0.050∗ 0.072
Local Efficiency 0.538 0.032 0.546 0.027 −0.754 0.237 0.237

Density 0.106 0.008 0.110 0.007 −1.678 0.054 0.072
Degree 12.17 0.605 12.74 0.880 −1.958 0.032∗ 0.072

221 Nodes Global Efficiency 0.391 0.006 0.398 0.007 −2.810 0.005∗∗ 0.020∗
Local Efficiency 0.362 0.018 0.361 0.031 0.148 0.442 0.442

Density 0.046 0.002 0.049 0.004 −2.516 0.010∗∗ 0.020∗
Degree 10.34 0.203 10.531 0.407 −1.530 0.068 0.091

SD: standard deviation; ∗: Significant at the 0.05 level; ∗∗: Significant at the 0.01 level.

Fig. 6. Assessment of small-worldness as a function of ε radius in the
structural brain network of control subjects and subjects with autism.
Control subjects and subjects with autism met the small-worldness crite-
ria for all ε radius. There was no significant difference in the area under
curve of small-worldness between the two groups.

We performed the random and targeted node attacks. We
found that the brain networks were more vulnerable to targeted
node attack than random node attack and it is consistent with
prior studies [27], [48]. We could not detect statistical difference
in the size of largest connected component for the random attack.
However, we detected statistically significant difference in the
size of largest connected component in the targeted node attack
over 9 to 33 of removed nodes (p-value < 0.05) (Fig. 9).

3) Regional Efficiency: We also investigated if there were
alterations in the regional characteristic of the whole brain net-
works in autism. We compared regional efficiency Ereg for each
region and specific resolution (ε-radius of 7mm). Since the lo-
cations of nodes are different across subjects, we averaged Ereg
across the same AAL parcellation. All nodes showed higher re-
gional efficiency in autism. In particular, we observed increased
Ereg in the right superior temporal gyrus (t-stat. = −2.40, p-
value = 0.01) and left middle temporal gyrus (t-stat. =−2.30, p-
value = 0.01) in autism relative to the normal controls (Fig. 10).

Fig. 7. Degree distribution of the brain network. The power law, expo-
nential and exponentially truncated power law were fitted. R-square was
calculated to determine the good of fit. R-squares for the power law (Rp),
the exponential (Re), and exponentially truncated power law (Rep) were
computed for autism (a) and normal controls (b). Blue and red circles
are the log-log plot of cumulative node degree distribution.

V. VALIDATION

To investigate the sensitivity of the order in which stream-
lines were used in the ε-neighbor method, we randomly ordered
tracts and applied the same procedure. Since the brain network
constructed by randomly ordered tracts may produce different
results, we generated 1000 brain networks constructed by ran-
domly ordering the tracts. The resulting p-values were then
averaged.

Since the number of nodes and edges influences the topolog-
ical properties [4], it was necessary to compare networks with
the similar number of nodes and edges. We found that there is
no statistically significant differences in the number of nodes
and edges between the brain networks constructed by the sorted
tract length for ε-radii 7, 7.5, 8, . . . 11, 11.5, 12 mm and ran-
domly ordered tracts for ε-radii 6.8, 7.3, 7.5, . . . 11.3, 11.8 mm
(p-value > 0.15). Thus, we used these radii for comparisons.

We could not find statistically significant differences in topo-
logical properties including density, connectedness path length,
clustering coefficient, global efficiency, local efficiency and
degree between the brain networks constructed with ordered
lengths and random ordered lengths on the same network scales
(p-value > 0.3).

The main advantage of using the ordered length of tracts over
randomly ordered length is computation. The construction of
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TABLE III
GROUP DIFFERENCES IN AREA UNDER CURVE OF GLOBAL PROPERTIES

Control Autism Group Differences

Mean SD Mean SD t-statistics p-value Corrected p-value

Path length 12.351 0.165 12.191 0.163 2.582 0.008∗∗ 0.040∗
Global efficiency 2.301 0.030 2.328 0.034 −2.232 0.017∗ 0.040∗
Clustering coefficient 1.772 0.083 1.809 0.1028 −1.052 0.154 0.180
Local efficiency 2.631 0.090 2.686 0.125 −1.338 0.102 0.143
Small-worldness 6.421 0.274 6.374 0.313 0.405 0.348 0.348
Density 0.482 0.018 0.496 0.025 −1.722 0.049∗ 0.086
Degree 67.912 1.932 70.410 3.332 −2.465 0.012∗ 0.040∗

SD: standard deviation; ∗: Significant at the 0.05 level; ∗∗: Significant at the 0.01 level.

Fig. 8. Comparisons of topological properties between control subjects and subjects with autism. For statistical analysis, area under curve was
calculated for each global property. Asterisk (∗) means that control subjects have higher value of topological property than subjects with autism at a
given ε radius (p < 0.05). Dot (.) means that subjects with autism have lower value of topological property than control subjects at a given ε radius
(p < 0.05). We observed significant differences in area under curve of density, characteristic path length, global efficiency, and degree between two
groups.

1000 brain networks using randomly ordered tracts took ap-
proximately 90 hours for parallel computation on a quad-core
machine. However, construction of brain networks using the
sorted tract length took approximately 5 minutes on the same
computer. Thus, the use of sorted tract length in determining the
order of tracts to use was appropriate.

Since it is difficult to obtain real data with the ground truth, we
performed a simulation study. We combined 14 control subjects
and 15 subjects with autism and randomly split them evenly so
that Group I has 7 normal controls and 7 subjects with autism
while Group II has 7 normal controls and 8 subjects with autism.
It is expected that there is no group difference between Group
I and Group II. This process is repeated 10000 times to ensure
that the desired error rate is controlled. We did not detect the
difference in topological properties between the randomly split
groups (p-values � 0.4). This controlled experiment shows that
our method does not produce the false positives in the null
data.

VI. DYNAMIC ε-NEIGHBOR CONSTRUCTION

The proposed ε-neighbor static in a sense that the node co-
ordinates are always the coordinates of one of the endpoints of
tracts. We also considered a dynamic ε-neighbor method, where
we adjusted the center of ε-balls at each iteration. The proce-
dure is identical to the static ε-neighbor construction method
except that we also adjust the coordinates of nodes when a new
endpoint was merged to the existing graph. It is based illus-
trated using an example (Fig. 11). (a) The initial graph G1 con-
sists of node set V1 = {e11 , e12} and edge set E1 = {e11e12}.
(b) e21 and e22 are ε-neighbors of G1 . New center coordi-
nates are e′11 = (e11 + e21)/2 and e′12 = (e12 + e22)/2. G2
consists of V2 = {e′11 , e′12} and E2 = {e′11e

′
12}. (c) e31 is

an ε-neighbor of G2 . The new center coordinates are e′′11 =
(e11 + e21 + e31)/3. G3 consists of V3 = {e′′11 , e′12 , e32} and
E3 = {e′′11e

′
12 , e′′11e32}. (d) e41 is an ε-neighbor of G3 and the

center coordinates are updated to e′32 = (e32 + e41)/2. Thus,
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Fig. 9. The change in size of largest connected component over the number of deleted nodes during the random node attack (a) and the targeted
node attack (b). In the random node attack, there is no statistically significant difference between the groups. In the targeted node attack, the
significant differences are observed. The asterisk indicates that subjects with autism have bigger connected component than the normal controls at
the given removal step (p < 0.05).

Fig. 10. Disrupted nodes in autism. Higher regional efficiency nodes in
autism relative to the normal controls (p < 0.05). STG.R, right superior
temporal gyrus; MTG.L, left middle temporal gyrus.

Fig. 11. Toy example of dynamic ε-neighbor construction method.

V4 = {e′′11 , e′12 , e′32 , e42} and E4 = {e′′11e
′
12 , e′′11e

′
32 , e′32e42}.

The process continues all the tracts are exhausted.
We compared topological properties between the networks

constructed by the static and dynamic ε-neighbor methods.
The networks constructed by the static ε-neighbor method had
significantly more nodes (p-value < 0.05) at all ε-radii 7,
7.5, . . . 11.5, 12 and significantly fewer edges (p-value < 0.05)
at ε-radii 10, 10.5, 11, 11.5, 12 than the dynamic method.

All the topological properties are statistically different be-
tween the statistic and dynamic methods (p-value < 0.05). Un-
like the static method, we could not observe any significant
difference in topological properties between the normal control
subjects and the subjects with autism in the dynamic method.
The networks constructed by the dynamic method have different
topological organization as well as lacks the sensitivity to detect
subtle network differences.

VII. DISCUSSION

Structural brain networks consist of sets of nodes (brain re-
gions) linked by edges (white matter tracts). Previous studies
have used existing parcellations to identify the network nodes
[2], [6], [7]. However, this method is problematic in that net-
work structures are influenced by changes in the parcellation
scale and thresholding in connectivity matrices. To overcome
these problems, we proposed the ε-neighbor method.

We also examined how connectedness changes according to
the network scale. Since some nodes remained disconnected
from the largest connected component, connectedness decreased
when the parcellation method was used and the parcellation
scale becomes finer (Fig. 12). Due to the increase in number
of disconnected nodes, topological properties such as clustering
coefficient, average path length, and small-worldness do not
meaningfully characterize network structures in the parcellation
method [51].

In the proposed method, connectedness did not change with
the network scale (ε-radius). In the ε-neighbor method, network
connectedness remained at a high level even as the number of
nodes increased. Thus, the topological properties of network
can be characterized in a more meaningfully manner in the
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Fig. 12. Example of decreased connectedness in the parcellation
method. (a) All nodes (parcellations) are intersected by tracts. (b) Node
5 is not intersected by any tract. Connectedness decreases in the par-
cellation method as the parcellation scale becomes finer.

Fig. 13. (a) Typical connectivity in the normal controls. (b) Over-
connectivity in autism. Subjects with autism have shorter path length,
higher global efficiency, higher density, and higher node degree.

ε-neighbor method [51]. Our method is more realistically mod-
eling the brain than the parcellation method.

Using fMRI and DTI, previous studies have tested the per-
vading hypothesis that brain connectivity in autism is abnor-
mal [12], [17]. We observed significant differences between
networks constructed from control subjects and subjects with
autism with respect to path length, global efficiency, node de-
gree, and density. More randomly connected networks tend to
have shorter path lengths and higher global efficiency than more
structured networks [52], which may reflect less organization in
the former [9], [18].

From the results of shorter average path length, higher global
efficiency, higher density, and higher degree in autism, we con-
cluded that subjects with autism exhibited over-connected brain
networks (Fig. 13). Since the presence of structural connections
between two brain regions implies strong functional connec-
tions [53], over-connected structural brain network may be re-
lated with functional over-connectivity. The over-connectivity
could cause the increase of synaptic excitation and decrease of
synaptic inhibition. Imbalance of synaptic reaction could lead
to functional deficits observed in autism [54].

We examined the structural characteristics of the brain net-
works in autism using the targeted node attack. We observed
statistically significant differences in the size of the largest con-
nected components. The size of the largest connected compo-
nent is more steadily preserved in autism in the targeted node
attacks. A more tolerant network for the targeted node attacks in

autism implies that the network has more potential alternative
paths and possible over-connectivity [27].

To identify regional abnormality caused by the structural
over-connectivity in autism, we computed the regional effi-
ciency. Subjects with autism had increased regional efficiency
in the right superior temporal gyrus and the left middle tem-
poral gyrus. These affected regions are consistent with those
reported in previous studies based on fMRI, electroencephalo-
gram (EEG), and DTI [55]–[59]. Temporal gyrus is critical path-
ways involved in language and social cognition. Abnormalities
of this region may be causative of the neurobehavioral features
observed in autism [58]. Superior temporal gyrus is connected
to regions of association and limbic system [60] and may be
crucial in face and gaze processing [61] and is related to emo-
tional responses which also related to social cognition including
visual, auditory and olfactory [62].
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