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Abstract

We present a unified statistical approach to deformation-based morphometry applied to the cortical surface. The cerebral cortex has th
topology of a 2D highly convoluted sheet. As the brain develops over time, the cortical surface area, thickness, curvature, and total gray
matter volume change. It is highly likely that such age-related surface changes are not uniform. By measuring how such surface metrics
change over time, the regions of the most rapid structural changes can be localized. We avoided using surface flattening, which distorts th
inherent geometry of the cortex in our analysis and it is only used in visualization. To increase the signal to noise ratio, diffusion smoothing,
which generalizes Gaussian kernel smoothing to an arbitrary curved cortical surface, has been developed and applied to surface dat
Afterward, statistical inference on the cortical surface will be performed via random fields theory. As an illustration, we demonstrate how
this new surface-based morphometry can be applied in localizing the cortical regions of the gray matter tissue growth and loss in the brain
images longitudinally collected in the group of children and adolescents.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction 2001; Giedd et al., 1999; Paus et al., 1999; Thompson et al.,
) ) 2000). Between ages 12 and 16, the corpus callosum and the

The cerebral cortex has the topology of & 2-dimensional (g mnoral and parietal lobes show the most rapid brain tissue
convoluted sheet. Most of the features that distinguish thesegrovvth and some tissue degeneration in the subcortical

cqrtlctalt_reglofntshcan otnlylbe rpeasulgecli relagvlf_ tohtlhitglggal regions of the left hemisphere (Chung et al., 2001; Thomp-
orientation of the cortical surface (Dale and Fischl, ): son et al., 2000). It is equally likely that such age-related

As brain develops over time, cortical surface area as well as ) . .
: ) . changes with respect to the cortical surface are not uniform
cortical thickness and the curvature of the cortical surface . . .
as well. By measuring how geometric metrics such as the

change. As shown in the previous normal brain develop- ical thick ¢ d local surf h
ment studies, the growth pattern in developing normal chil- cortical thickness, .cu.rval ure, a? OCS surtace area c hange
dren is nonuniform over whole brain volume (Chung et al., over .tlme, any statistically significant brain tissue growth or
loss in the cortex can be detected.
c § ) ‘s 210 The first obstacle in developing surfaced-based mor-
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+1-608-262-0032. cortical surfaces from MRI. It requires first correcting RF
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nonuniform intensity normalization method (N3), which
eliminates the dependence of the field estimate on anatomy
(Sled et a., 1998). The next step is the tissue classification
into three types. gray matter, white matter, and cerebrospi-
nal fluid (CSF). An artificial neural network classifier (Oz-
kan et a., 1993; Kollakian, 1996) or a mixture model cluster
analysis (Good et a., 2001) can be used to segment the
tissue types automatically. After the tissue classification, the
cortical surface is usually generated as a smooth triangular
mesh. The most widely used method for triangulating the
surface is the marching cubes algorithm (Lorensen and
Cline, 1987). Level set method (Sethian, 1996) or deform-
able surfaces method (Davatzikos, 1995) are also available.
In our study, we have used the anatomic segmentation using
the proximities (ASP) method (MacDonald et al., 2000),
which is a variant of the deformable surfaces method, to
generate cortical triangular mesh that has the topology of a
sphere. Brain substructures such as the brain stem and the
cerebellum were removed. Then an ellipsoidal mesh that
aready had the topology of a sphere was deformed to fit the
shape of the cortex guaranteeing the same topology. The
resulting triangular mesh will consist of 40,962 vertices and
81,920 triangles with the average internodal distance of 3
mm. Partial voluming is a problem with the tissue classifier
but topology constraints used in the ASP method were
shown to provide some correction by incorporating many
neuroanatomical a priori information (MacDonald, 1997,
MacDonald et al., 2000). The triangular meshes are not
constrained to lie on voxel boundaries. Instead the triangular
meshes can cut through avoxel, which can be considered as
correcting where the true boundary ought to be. Once we
have a triangular mesh as the realization of the cortical
surface, we can model how the cortical surface deforms
over time.

In modeling the surface deformation, a proper mathemat-
ical framework might be found in both differential geometry
and fluid dynamics. The concept of the evolution of phase-
boundary in fluid dynamics (Drew, 1991; Gurtin and Mc-
Fadden, 1991), which describes the geometric properties of
the evolution of boundary layer between two different ma-
terials due to internal growth or external force, can be used
to derive the mathematical formula for how the surface
changes. It is natural to assume the cortical surfacesto be a
smooth 2-dimensional Riemannian manifold parameterized
by u' and u?:

X(ul! u2) = {Xl(ulv uz)l X2(ul! uz)v
XUt u?) : (U, u’) € D C R?.

A more precise definition of a Riemannian manifold and a
parameterized surface can be found in Boothby (1986),
Carmo (1992), and Kreyszig (1959). If D isaunit square in
R? and a surface is topologically equivalent to a sphere then
at least two different global parameterizations are required.
Surface parameterization of the cortical surface has been
done previously by Thompson and Toga (1996) and Joshi et

al. (1995). From the surface parameterization, Gaussian and
mean curvatures of the brain surface can be computed and
used to characterize its shape (Dale and Fischl, 1999; Grif-
fin, 1994; Joshi et al., 1995). In particular, Joshi et a. (1995)
used the quadratic surface in estimating the Gaussian and
mean curvature of the cortical surfaces.

By combining the mathematical framework of the evo-
lution of phase boundary with the statistical framework
developed for 3D whole brain volume deformation (Chung
et a., 2001), anatomical variations associated with the de-
formation of the cortical surface can be statistically quan-
tified. Using the same stochastic assumption on the defor-
mation field used in Chung et al. (2001), we will localize the
region of brain shape changes based on three surface met-
rics: area dilatation rate, cortical thickness, and curvature
changes and show how these metrics can be used to char-
acterize the brain surface shape changes over time.

Asanillustration of our unified approach to deformation-
based surface morphometry, we will demonstrate how the
surface-based statistical analysis can be applied in localiz-
ing the cortical regions of tissue growth and loss in brain
images longitudinally collected in a group of children and
adolescents.

2. Modeling surface deformation

Let Ux, t) = (Uy, U, Uy)' be the 3D displacement
vector required to deform the structure at X = (X, X, Xg) in
gray matter (), to the homologous structure after time t.
Whole gray matter volume Q will deform continuously and
smoothly to (), via the deformation x — x + U while the
cortical boundary 9}, will deform to 0€),. The cortical
surface 9€), may be considered as consisting of two parts:
the outer cortical surface Q™" between the gray matter and
CSF and the inner cortical surface 90" between the gray
and white matter (Fig. 1); i.e.,

00, = 90 U Q.

Although we will exclusively deal with the deformation of
the cortical surfaces, our deformation-based surface mor-
phometry can be equally applicable to the boundary of any
brain substructure.

We propose the following stochastic model on the dis-
placement velocity V = 9U/ot, which has been used in the
analysis of whole brain volume deformation (Chung et al.,
2001):

V(x) = u(x) + ZVA(x)e(x),

where u is the mean displacement velocity and V2 isthe 3
X 3 symmetric positive definite covariance matrix, which
allowsfor correlations between components of the displace-
ment fields. The components of the error vector e are are
assumed to be independent and identically distributed as
smooth stationary Gaussian random fields with zero mean
and unit variance. It can be shown that the normal compo-

X € Q @)
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Fig. 1. Yellow, outer cortical surface; blue, inner cortical surface. Gray matter deformation causes the geometry of the both outer and inner cortical surfaces
to change. The deformation of the surfaces can be written as x — x + U(x, t), where U is the surface displacement vector field.

Fig. 2. The outer and the inner cortical surfaces of a single subject at age 14 (left) and at age 19 (right) showing globally similar cortical patterns. The top
of the inner cortical surface has been removed to show predominant ventricle enlargement. The red color is the region where the mean curvature is greater

than 0.01.

nent of the displacement velocity V = 9U/dt restricted on
the boundary 9Q), uniquely determines the evolution of the
cortical surface (Chung et al., 2002).

Estimating the surface displacement fields U and the
surface extraction can be performed at the same time by the
ASP agorithm. First, an ellipsoidal mesh placed outside the
brain was shrunk down to the surface Q). The vertices of
the resulting inner mesh are indexed and the ASP agorithm
will deform the inner mesh to fit the outer surface 9Q3™ by
minimizing a cost function that involves bending, stretch
and other topological constraints (MacDonald et al., 2000).
The vertices indexed identically on both meshes will lie
within avery close proximity and these define the automatic
linkage in the ASP agorithm. To generate the outer surface
000" at later time t, we start with the inner surface 9Q),
and then deform it to match the outer surface 9Q™" by
minimizing the same cost function. Starting with the same
mesh in two outer surface extractions, each point on 9Q
gets mapped to corresponding points on aQ5™ and aQM"
This method assumes that the shape of the cortical surface

does not appreciably change within subject. This assump-
tion is valid in the case of brain development for a short
period of time as illustrated in Fig. 2, where the global
sulcal geometry remains stable for a 5-year interval, al-
though local cortical geometry shows dlight changes. As
reported in Chung et al. (2001), the displacement isless than
1 mm/year on average for the same data set while the
average internodal distance in triangular meshes we are
using is 3 mm. So the displacements are relatively small
compared to the size of mesh itself.

Constructing surface atlas 9€) .., Where the statistical
parametric maps (SPM) of surface metrics will be formed,
is done by averaging the coordinates of corresponding ver-
tices that have the same indices. This atlas construction
method has been first introduced by MacDonald et al.
(2000), where it is used to create the cortical thickness map
for 150 normal subjects. The geometrical constraints such as
stretch and bending terms in ASP agorithm enforces a
relatively consistent correspondence on the cortical surface.
Figure 3 shows the mapping of gyral pattern (red and yellow
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Fig. 3. Individual gyral patterns mapped onto the surface atlas (), ,.- The gyral patterns (yellow and red lines) are extracted by computing the bending metric
on the inner cortical surface (left). The middle and right figures show the mapping of the gyral pattern of a single subject (left) onto the atlas surface. The
gyri of the subject match the gyri of the atlas illustrating a close homology between the surface of an individual subject and the surface atlas. If there is no
homology between the corresponding vertices, we would have complete misalignment.

Fig. 4. Outer (left) and inner (middle) triangular meshes. Triangle (p;, p., P3) € 9Q2™ on the outer surface will have corresponding triangle (g5, ., ds) €
a0i" on the inner surface. A convex-hull from 6 points {ps, P2, Pa, U1, A2, 0a} Will then form atriangular prism and the collection of 81,920 triangular prisms

becomes the whole gray matter.

lines) of a single subject onto the atlas surface. The gyri of
the subject match the gyri of the atlas. Note the full ana-
tomical details still presented in 0(), . even after the vertex
averaging. Mgjor sulci such as the central sulcus and supe-
rior temporal sulcus are clearly identifiable. If there is no
homology between corresponding vertices, one would only
expect to see featureless dispersion of points.

3. Surface parameterization

The ASP method generates triangular meshes consisting
of 81,920 triangles evenly distributed in size. In order to
quantify the shape change of the cortical surface, surface
parameterization is an essential part. We model the cortical
surface as a smooth 2D. Riemannian manifold parameter-
ized by two parameters u* and u? such that any point x €
90 can be uniquely represented as

x = X(ul, u?

for some parameter space u = (u*, U?) € D C R2 We will
try to avoid global parameterization such as tensor
B-splines, which are computationally expensive compared
to a loca surface parameterization. Instead, a quadratic
polynomial

z(u', ) = Buu' + Bu* + Ba(uh)? + Bautu?
+ Bs(U?)? 2

will be used as a local parameterization fitted via least-
sguares estimation. Using the least-squares method, these
coefficients B; can be estimated. The numerical implemen-
tation can be found in Chung (2001). Slightly different
quadratic surface parameterizations are also used in estimat-
ing curvatures of a macaque monkey brain surface (Joshi et
a., 1995; Khangja et a., 1998). Once B; are estimated, X (u*,
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u?) = (uh, u?, Z(u, u?)" becomes a local surface param-
eterization of choice.

4. Surface-based morphological measures

Asin the case of local volume change in the whole brain
volume (Chung et a., 2001), the rate of cortical surface area
expansion or reduction may not be uniform across the cor-
tical surface. Extending the idea of volume dilatation, we
introduce a new concept of surface area, curvature, cortical
thickness dilatation, and their rate of change over time.

Suppose that the cortical surface 9€), at time t can be
parameterized by the parameters u = (u*, u?) such that any
point X € a{), can be written as X = X(u, t). Let X; =
aX/au' be a partial derivative vector. The Riemannian-met-
ric tensor g;; is given by the inner product between two
vectors X; and X, i.e, g;(t) = (X, X;). The Riemannian
metric tensor g;; measures the amount of the deviation of the
cortical surface from a flat Euclidean plane. The Rieman-
nian metric tensor enables us to measure lengths, angles and
areasin the cortical surface. Let g = (g;) bea2 X 2 matrix
of metric tensors. From Chung et al. (2002), the rate of
metric tensor change is approximately

0

a_? =~ 2(VX)(VV)VX, 3
where V = gU/Vt and VX = (X, X,) isa3 X 2 gradient
matrix. We are not directly interested in the metric tensor
change itself but rather functions of g and ag/at, which will
be used to measure surface area and curvature change.

4.1. Local surface area change
The total surface area of the cortex 9(), is given by

o€y =f \det g du,
D

where D = X %04, is the parameter space (Kreyszig,
1959). Theterm det g is called the infinitesimal surface area
element and it measures the transformed area of the unit
sguare in the parameter space D via the transformation
X(, t) : D — 94),. Theinfinitesimal surface area element can
be considered as a generalization of Jacobian, which has
been used in measuring local volume in whole brain volume
(Chung et a., 2001). The local surface area dilatation rate
A req OF therate of local surface area change per unit surface
area is then defined as

1 0,detg
Agen = , 4)
Jdetg ot

which can be further smplified as A ;e = 9(IN V det g)/ot. If
the whole gray matter (), is parameterized by 3D curvilinear

coordinates u = (u*, U?, %), then the dilatation rate a(In
"V det g)/ot becomes the local volume dilatation rate A, yme
first introduced in deformation-based morphometry (Chung
et a., 2001). Therefore, the concepts of local area dilatation
and volume dilatation rates are essentialy equivalent.

In our study, two MR scans were collected for each
subject at different times. Let t} and t}, to be the times scans
were taken for subject j. Then the local surface area dilata-
tion rate Al for subject j is estimated as afinite difference,

j _ \detg(th — ydetg(t)
TE(th—th) \det g(th)

where g(t) is the matrix evaluated at t. Other dilatation rates
that will be introduced later can be estimated in a similar
fashion.

Instead of using metric tensors g;;, it is possible to for-
mulate local surface area change in terms of the areas of the
corresponding triangles. However, this formulation assigns
surface area change values to each face instead of each
vertex and this might cause a problem in both surface-based
smoothing and statistical analysis, where values are defined
on vertices. Defining scalar values on vertices from face
values can be done by the weighted average of face values,
which should converge to (4). It is not hard to develop
surface-based smoothing and statistical analysis on values
defined on faces but the cortical thickness and the curvature
metric will be defined on vertices so we will end up with
two separate approaches; one for metrics defined on vertices
and the other for metrics defined on faces. Therefore, our
metric tensor approach seems to provide a basis of unifying
surface metric computations, surface-based smoothing, and
statistical analysis together.

Under the assumption of stochastic model (1), the area
dilatation rate can be approximately distributed as Gaussian:

Agea(X) = Aagea(X) + €xrea( X)), ©)

where Ao, = tr[g” Y(VX)(V)VX] is the mean area dila-
tation rate and e, iS @ mean zero Gaussian random field
defined on the cortical surface (Chung et a., 2002). The area
dilatation rate is invariant under parameterization; i.e., the
area dilatation rate will always be the same no matter which
parameterization is chosen. A, can be estimated by the
sample mean A, = (2], Al,)/n and the significance of
the mean will be tested via T statistic.

So far our statistical modeling is centered on localizing
regions of rapid morphological changes on the cortical sur-
face but both local and global morphologica measures are
important in the characterization of brain deformation.
Globa morphometry is relatively easy compared to local
morphometry with respect to modeling and computation.
The total surface area [|9€}/| can be estimated by the sum of
the areas of 81,920 triangles generated by the ASP algo-
rithm. Then we define the total surface area dilatation rate as
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d
AtotaJ area — a In ||an”

It can be shown that, under assumption (1), that the total
surface area dilatation rate Ay areq IS distributed as a
Gaussian random variable and hence a statistical inference
on total surface area change will be based on asimplet test
(Chung et al., 2002). This measure will be used in deter-
mining the rate of the total surface area decreases in both
outer and inner cortical surfaces between ages 12 and 16.

4.2. Local gray matter volume change

Loca volume dilatation rate A,qme fOr whole brain
volume is defined in Chung et a. (2001) using the Jacobian
of deformation x — x + U(X) as

J
Avoume = tr(VV) = ﬁtr(VU)

and used successfully in detecting the regions of brain tissue
growth and loss in the whole brain volume. Compared to the
local surface area change metric, the local volume change
measurement is more sensitive to small deformation. If a
unit cube increases its sides by one, the surface area will
increase by 22 — 1 = 3 while the volume will increase by
2% — 1 = 7. Therefore, the statistical analysis based on the
local volume change will be at least twice more sensitive
compared to that of the local surface area change. So the
local volume change should be able to pick out gray matter
tissue growth pattern even when the local surface area
change may not. In the results section, the highly sensitive
aspect of local volume change in relation to local surface
area change will be demonstrated.

The gray matter (), can be considered as a thin shell
bounded by two surfaces 9Q°" and Q" with varying
cortical thickness. In triangular meshes generated by the
ASP agorithm, each of 81,920 triangles on the outer surface
has a corresponding triangle on the inner surface (Fig. 4).
Let p,, P, P3 be the three vertices of atriangle on the outer
surface and q,, g,, g be the corresponding three vertices on
the inner surface such that p; is linked to g; by the ASP
algorithm. The triangular prism consists of three tetrahedra
with vertices{py, P2, P3, A1}, { P2, P3, d1, A2}, and {ps, 1,
d,, g3} - Then the volume of the triangular prism is given by
the sum of the determinants

D(p1, P2, P3: 91 + D(P2 P3, A1, 0

+ D(p3l qll q21 q3)1

where D(a, b, ¢, d) = |det(a — d, b — d, ¢ — d)|/6 isthe
volume of a tetrahedron whose vertices are {a, b, c, d}.
Afterward, the total gray matter volume ||Q),/| can be esti-
mated by summing the volumes of all 81,920 triangular

prisms. Similar to the total surface area dilatation rate, we
define the total gray matter volume dilatation rate as

d
Atota] volume — a In ||Qt||

4.3. Cortical thickness change

The average cortical thickness for each individua is
about 3 mm (Henery and Mayhew, 1989). Cortical thick-
ness usualy varies from 1 to 4 mm depending on the
location of the cortex. In normal brain development, it is
highly likely that the change of cortical thickness may not
be uniform across the cortex (Fig. 5). We will show how to
localize the cortical regions of statistically significant thick-
ness changein brain development. Our approach introduced
here can aso be applied to measuring the rate of cortical
thinning, possibly associated with Alzheimer’s disease. As
in the case of the surface area dilatation, we introduce the
concept of the cortical thickness dilatation, which measures
cortical thickness change per unit thickness and unit time.
There are many different computational approaches to mea-
suring cortical thickness but we will use the Euclidean
distance d(x) from apoint x on the outer surface Q™" to the
corresponding point y on the inner surface 90", as defined
by the automatic linkages used in the ASP algorithm (Mac-
Donald et a., 2000). The vertices on the inner triangular
mesh are indexed and the ASP algorithm can deform the
inner mesh to fit the outer surface by minimizing a cost
function that involves bending, stretch, and other topologi-
ca constraints. Therefore, both the outer and the inner
surfaces should match sulci to sulci and gyri to gyri, and the
vertices indexed identically on both surfaces would lie
within avery close proximity. One advantage of the cortical
thickness metric based on this automatic linkage is that it is
less sensitive to fluctuations in surface normals and regions
of high curvature (MacDonald et a., 2000). A validation
study for the assessment of the accuracy of the cortical
thickness measure based on the ASP agorithm has been
performed and found to be valid for the most of the cortex
(Kanani et a., 2000). There is also an alternate method for
automatically measuring cortical thickness based on the
Laplace equation (Jones et al., 2000).

Let d(x) = [x — y|| be the cortical thickness computed as
usual Euclidean distance between x € 0Q°" andy € Q™.
We define the cortical thickness dilatation rate asthe rate of
the change of the thickness per unit thickness and unit time,
i.e,

d
Athickneﬁs = 5 In d(X)
Under the assumption of stochastic model (1), the thickness

dilatation rate can be approximately distributed as Gaussian:

Athickn&s(x) = Athicknees(x) + Ethickneﬂs(x)r

where Ayicness 1S the mean cortical thickness dilatation rate
and €, cxness 1S @ Mean zero Gaussian random field. Unlike



Fig. 5. Top: Cortical thickness dilatation rate for a single subject mapped onto an atlas. The red (blue) regions show more than 67% thickness increase
(decrease). Note the large variations across the cortex. Due to such large variations, surface-based smoothing is required to increase the signal-to-noise ratio.
Bottom: t statistical map thresholded at the corrected P value of 0.05 (t value of 5.1). Both yellow and red regions are stetistically significant regions of
thickness increase. There is no region of statistically significant cortical thinning detected. The blue region shows very small t value of —2.4, which is not
statistically significant.

Fig. 6. Top: Bending metric computed on the inner cortical surface of a 14-year-old subject. It measures the amount of folding or curvature of the cortical
surface. This metric can be also used to extract sulci and gyri in the problem of sulcal segmentation (see Fig. 3). Bottom: Corrected t map thresholded at
5.1 showing statistically significant region of curvature increase. Most of the curvature increase occurs on gyri while thereis no significant change of curvature
on most of sulci. Also there is no statistically significant curvature decrease detected, indicating that the complexity of the surface convolution may actually
increase between ages 12 and 16.
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Fig. 7. A typical triangulation in the neighborhood of p = p,. When the ASP algorithm is used, the triangular mesh is constructed in such away that it is

always pentagonal or hexagonal.

Fig. 8. Diffusion smoothing simulation on a triangular mesh consisting of 1280 triangles. This smaller mesh is the surface of the brain stem. The artificial
signal was generated with Gaussian noise to illustrate the smoothing process. (a) Theinitial signal. (b) After 10 iterationswith &t = 0.5. (c) After 20 iterations

with 8t = 0.5.

the surface area change metric, cortical thickness can only
be defined locally but we can compute the within average
thickness dilatation rate for subject j:

, 1 .
Alavg thickness — m J Ajthickn%(X) dx. (6)
0 XEd o

Then A,y thickness Will measure the between and within
average cortical thickness dilatation rate.

4.4. Curvature change
When the surface 9}, deforms to 9€),, curvatures of the
surface change as well. The principal curvatures can char-

acterize the shape and location of the sulci and gyri, which
arethe valleys and crests of the cortical surfaces (Bartesaghi
et a., 2001; Joshi et al., 1995; Khanegja et al., 1998; Subsal,
1999). By measuring the curvature changes, rapidly folding
and cortical regions can be localized. Let k, and k, be the
two principal curvatures as defined in Boothby (1986) and
Kreyszig (1959). The principa curvatures can be repre-
sented as functions of B;s in quadratic surface (2) (Chung,
2001). To measure the amount of folding, we define bend-
ing metric K as a function of the principa curvatures:

2 2
Ki{ + K5
K= + «a.

2
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We may arbitrarily set « = 0.001. If the cortical surface is
flat, bending metric K obtains the minimum 0.001. The
larger the bending metric, the more surface will be crested
as shown in Fig. 6.

We define the local curvature dilatation rate as

d
Acurvalure = a InK. (7)

Under the linear model (1), it can be similarly shown that
the curvature dilatation is approximately distributed as a
Gaussian random field (Chung et al., 2002),

ACUI’VBIUI’G(X) = )\curvalure(x) + SCUI'VBIUI’G(X) ’

where Ay rvarure 1S the mean curvature dilatation rate and
€curvature 1S @ Mean zero Gaussian random field. As in the
case of the average cortical thickness dilatation rate (6), the
average curvature dilatation rate can be computed and used
as a global measure;

1
Ar:lvg curvature — m J Acurvalure (X) dx.
Q)

Q0o

A similar integral approach has been taken to measure the
amount of bending in the 2D contour of the corpus callosum
(Peterson et al., 2001).

5. Surface-based diffusion smoothing

In order to increase the signal-to-noise ratio (SNR) as
defined in Dougherty (1999), Rosenfeld and Kak (1982),
and Wordley et a. (1996b), Gaussian kernel smoothing is
desirable in many statistical analyses. For example, Fig. 5
showsfairly large variationsin cortical thickness of asingle
subject displayed on the average brain atlas (... By
smoothing the data on the cortical surface, the SNR will
increase if the signal itself is smooth and in turn, it will be
easier to localize the morphological changes. However, due
to the convoluted nature of the cortex whose geometry is
non-Euclidean, we cannot directly apply Gaussian kernel
smoothing on the cortical surface. Gaussian kernel smooth-
ing of functional data f(x), X = (X5, ... ,x,) € R" with
FWHM (full width at half-maximum) = 4(In 2)¥2 t is
defined as the convolution of the Gaussian kernel with f:

1
F(x, t) = Mw—t)nlzf

R

& 0 f(y)dy. ®

Formulation (8) cannot be directly to the cortical surfaces.
However, by reformulating Gaussian kernel smoothing as a
solution of a diffusion equation on a Riemannian manifold,
the Gaussian kernel smoothing approach can be generalized
to an arbitrary curved surface. This generalization is called
diffusion smoothing and has been used in the analysis of
fMRI data on the cortical surface (Andrade et al., 2001). It

can be shown that (8) is the integral solution of the n-
dimensional diffusion equation

aF

T AF (9)
with the initia condition F(x, 0) = f(x), where A = 0%/9x2
+ ...+ 9%0x2isthe Laplacian in n-dimensional Euclidean
space (Egorov and Shubin, 1991). Hence the Gaussian ker-
nel smoothing is equivalent to the diffusion of the initial
dataf(x) after timet. When applying diffusion smoothing on
curved surfaces, the smoothing somehow has to incorporate
the geometrical features of the curved surface and the
Laplacian A should change accordingly. The extension of
the Euclidean Laplacian to an arbitrary Riemannian mani-
fold is called the Laplace-Beltrami operator (Arfken, 2000;
Kreyszig, 1959). The approach taken in Andrade et al.
(2001) is based on alocal flattening of the cortical surface
and estimating the planar Laplacian, which may not be as
accurate as our estimation based on the finite element
method (FEM). Further, our direct FEM approach com-
pletely avoid any local or global surface flattening. For
given Riemannian metric tensor g;;, the Laplace-Beltrami
operator A is defined as

1 9 _oF
AF = E oo <|9|1/29” m>, (10)
]

where (g”) = g~* (Arfken, 2000, pp. 158—167). Note that
when g becomes a 2 X 2 identity matrix, the Laplace-
Beltrami operator in (10), simplifiesto astandard 2D Lapla-
cian:

a°F d°F

a(ul)z a(u2)2
Using the FEM on the triangular cortical mesh generated by
the ASP algorithm, it is possible to estimate the Laplace-
Beltrami operator as the linear weights of neighboring ver-
tices (Chung, 2001).

Let py,. .., Py be M neighboring vertices around the

central vertex p = p,. Then the estimated Laplace-Beltrami
operator is given by

AF

AF(p) = 3w, (F(p) — F(p))

i=1
with the weights

__ Cot 6; + cot i

2 Il
i=1

where 6; and ¢; are the two angles opposite to the edge
connecting p; and p, and |[T;|| is the area of the i-th triangle
(Fig. 7).

This is an improved formulation from the previous at-
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tempt in diffusion smoothing on the cortical surface (An-
drade et a., 2001), where the Laplacian is simply estimated
asthe planar Laplacian after locally flattening the triangular
mesh consisting of nodespy, . . ., P, onto aflat plane. Inthe
numerical implementation, we have used formula

(Pis1— Py Piss — P

cot Bi = f
2|7

~APi-1— P, Pi-1— P
Cot i = 21T

and [Tl = l(pis1 — P) X (p; — p)|/2. Afterward, the finite
difference scheme is used to iteratively solve the diffusion
equation at each vertex p:

F(p- tnJrl) - F(p’ tn)

thir — 1o

with the initial condition F(p, 0) = f(p). After N-iterations,
the finite difference scheme gives the diffusion of theinitial
data f after duration Nét. If the diffusion were applied to
Euclidean space, it would be equivalent to Gaussian kernel
smoothing with

= AF(p, t,),

FWHM = 4(In 2)¥2,[Nét.

Computing the linear weights for the Laplace-Beltrami op-
erator takes a fair amount of time (about 4 min in Matlab
running on a Pentium |11 machine), but once the weights are
computed, it is applied through the whole iteration repeat-
edly and the actual finite difference scheme takes only 2 min
for 100 iterations. Figure 8 illustrates the process of diffu-
sion smoothing. Unlike Gaussian kernel smoothing,
smoothing is an iterative procedure. However, it should be
emphasized that Gaussian kernel smoothing isa special case
of diffusion smoothing restricted to Euclidean space.

6. Statistical inference on the cortical surface

All of our morphological measures such as surface area,
cortical thickness, curvature dilatation rates are modeled as
Gaussian random fields on the cortical surface; i.e.,

AX) = AX) + €(X), X € Q50 11

where the deterministic part A is the mean of the metric A
and e isamean zero Gaussian random field. This theoretical
model assumption has been checked using both Lilliefors
test (Conover, 1980) and quantile-quantile plots (ggplots)
(Hamilton, 1992). The qgplot displays quantiles from an
empirical distribution on the vertical axis versus theoretical
quantiles from a Gaussian distribution on the horizontal
axis. It is used to check graphically if the empirical distri-
bution follows the theoretical Gaussian distribution. If the
data come from a Gaussian field, then the qgplot should be
close to a straight line (Fig. 9a). If the data comes from a
lognormal distribution, it may not form a straight line (Fig.

9b). Because it is not possible to view qgplots for every
vertices on the cortex, we measured the correlation coeffi-
cients vy of the vertical and horizontal coordinatesin ggplots.
If the empirical distribution comes from Gaussian, -y should
asymptotically converge to 1. For Gaussian simulation, y =
0.98 *+ 0.01 and for lognormal simulation y = 0.84 = 0.08
on the cortex. For the cortical thickness data, which has
been filtered with the diffusion smoothing, y = 0.96 = 0.03.
So it does seem that the smoothed cortical thickness metric
can be modeled as a Gaussian random field. Using Lilliefors
statistic, we statisticaly tested the Gaussian assumption.
The Lilliefors test, which is a special case of the Komog-
orov-Smirnov test, looks at the maximum difference be-
tween the empirical and a theoretical Gaussian distribution
when the mean and the variance of the distribution are not
known. Since the Lilliefors statistics of the cortical thick-
ness metric are mostly smaller than the cutoff value of 0.19
at 1% level (0.16 at 5% level), there is no reason to reject
model (11) (Fig. 9e).

Gaussian kernel smoothed images tend to reasonably
follow random field assumptions when a fairly large
FWHM is used. Diffusion smoothing is equivaent to
Gaussian kernel smoothing locally in conformal coordinates
on the cortex (Chung, 2001b). Also the P value for local
maxima formula is quite stable even if a dlightly different
assumption such as nonisotropy is used (Wordley et al.,
1999h). Therefore, detecting the region of statisticaly sig-
nificant A(x) for some x can be done via thresholding the
maximum of the T random field defined on the cortical
surface (Wordley et a., 1996a, 1999).

The T random field on the manifold 0€),; .5 is defined as

M
T(x) = \n %

where M and S are the sample mean and standard deviation
of metric A over the n subjects. Under the null hypothesis

X € aQatIas;

Ho: A(X) =0foral x € 0Q .

i.e., no structural change; T(x) is distributed as a Student’s
t with n — 1 degrees of freedom at each voxel x. The P
value of the local maxima of the T field will give a conser-
vative threshold, which has been used in brain imaging for
a quite some time (Worsley, 1996a).

For very high threshold y, we can show that

Pmax ., T(x) =y) = 2 $i(dQuulpi(y),

(12)

where p; isthei-dimensional EC density and the Minkowski
functional ¢, are

ﬁbo(aﬂatlas) =2, (bl(aﬂatlas) =0,
DI Qaas) = [|0Qaad, P2(0Qa1a) = 0
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Fig. 9. Checking Gaussian assumption for the cortical thickness metric. The horizontal axis displays the quantiles of a Gaussian distribution while the vertical
axis displays the quantiles of an empirical distribution. How closely the blue dots lie along the straight line gives an idea if the underlying empirical
distribution follows the theoretical Gaussian distribution. (@) Computer simulation of a Gaussian distribution. (b) Computer simulation of a lognormal
distribution. Thisis to illustrate how the qgplot of a non-Gaussian distribution is different. (c) Vertex 40546 is where t value is 10.2. (d) Vertex 14300 gives
t = 27. (e) Lilliefors statistic measures the maximum difference between empirical and theoretical Gaussian distributions. Most of cortex shows value less
than the cutoff value 0.19, indicating that the Gaussian random field assumption is valid.

Fig. 10. t map of the cortical dilatation rate for null data. The null data were created by reversing time for the half of subjects chosen randomly. In the null

data, the mean time difference is —0.24 year, so our statistical analysis should not detect any morphologica changes. In fact, the t values in every vertices
were well below the threshold.
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Fig. 11. Top: t map of local gray matter change computed in 3D and then superimposed with an atlas brain. The predominant local gray matter volume
increases were detected around the central sulcus and temporal lobe. The left and right hemispheres show an asymmetric growth pattern. Bottom: t map of
the cortical surface area dilatation rate showing the statistically-significant region of area expansion and reduction. The red regions are statistically significant
surface area expansions while the blue regions are statistically significant surface area reductions between ages 12 and 16.

and ||0Q, a4l is the total surface area of 90, s (Wordley,
1996a). When diffusion smoothing with given FWHM is
applied to metric A on surface ()., the O-dimensional
and 2-dimensional EC density becomes

y

poly) = fx —
((n?— 1)77)”2F(n—21>

y2 -n/2
X <1+ —— 1) dy,

n

1 4In2 r(é)
pZ(y)_FWHMZ(Z’?T)slz n-—-1 12 n—1
) ()

y2 —(n—2)/2
X y(l + - 1) .

Therefore, the excursion probability on the cortical surface
can be approximated by the following formula

P(max ., T(X) = y) = 2po(y) + [[0Qaadlpa(y).

We compute the total surface area|[0€), 4| by summing the
area of each triangle in a triangulated surface. The total
surface area of the average atlas brain is 275,800 mm?,
which is roughly the area of 53 X 53 cm? sheet. We want
to point out that the surface area of the average atlas brain
is not the average surface area of 28 subjects. When 20 mm
FWHM diffusion smoothing is used on the template surface
Q0 11as 2.5% thresholding gives

P(maxxemaﬂasT(x) =5.1)
= P(maxxemaﬂasT(x) = -51)
=~ 0.025.

Our surface-based smoothing and analysis are checked on
null data. The null data are created by reversing time for
randomly chosen half of the subjects. In the null data, the
mean time differencet, — t; is —0.24 year so the statistical
analysis presented here should not detect any morphological
changes. For the cortical thickness dilatation rate, the max-
imum and the minimum t values are 3.1808 and —3.9570
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respectively, well bellow the threshold 5.1 and —5.1, indi-
cating that the analysis obviously did not detect any statis-
ticaly significant morphological changes.

7. Results

Twenty-eight normal subjects were selected based on the
same physical, neurological, and psychological criteria de-
scribed in Giedd et a. (1996). This is the same data set
reported in Chung et al. (2001), where the Jacobian of the
3D deformation was used to detect statistically significant
brain tissue growth or loss in 3D whole brain via deforma-
tion-based morphometry. 3D Gaussian kernel smoothing
used in this study is not sensitive to the interfaces among the
gray, white matter, and CSF. Gaussian kernel smoothing
tends to blur gray matter volume increase data across the
cortical boundaries. So in some cases, statistically signifi-
cant brain tissue growth could be found in CSF. Our
deformation-based surface morphometry can overcome this
inherent shortcoming associated with the previous morpho-
metric analysis.

Two T;-weighted MR scans were acquired for each sub-
ject at different times on the same GE Sigma 1.5-T super-
conducting magnet system. The first scan was obtained at
the age t; = 11.5 = 3.1 years (min 7.0 years, max 17.8
years) and the second scan was obtained at the aget, = 16.1
+ 3.2 years (min 10.6 years, max 21.8 years). The time
difference between the first and the second scan was 4.6 +
0.9 years (minimum time difference 2.2 years, maximum
time difference 6.4 years). Using the automatic image pro-
cessing pipeline (Zijdenbos et a., 1998), MR images were
spatially normalized into standardized stereotactic space via
a global affine transformation (Collins et a., 1994; Ta
lairach and Tournoux, 1988). Subsequently, an automatic
tissue-segmentation algorithm based on a supervised artifi-
cia neural network classifier was used to classify each
voxel as CSF, gray matter, and white matter (Kollakian,
1996). Afterward, a triangular mesh for each cortical sur-
face was generated by deforming a mesh to fit the proper
boundary in a segmented volume using the ASP agorithm.
As described in the previous section, the ASP algorithm is
used to extract the surface and compute the displacement
field-on the outer cortical surface. Then we computed the
local area dilatation, the cortical thickness, and the curva-
ture dilatation rates. Such surface metrics are then filtered
with 20 mm FWHM diffusion smoothing. Image smoothing
should improve the power of detection and compensates for
some of registration errors (Chung et al., 2001).

Gray matter volume change. The total gray matter volume
dilatation rate for each subject was computed by computing
the volume of triangular prisms that forms gray matter. The
mean total gray matter volume dilatation rate Az volume =
—0.0050. This 0.5% annual decreasein thetotal gray matter
volume is statistically significant (t value of —4.45). There

have been substantial developmental studies on gray matter
volume reduction for children and adol escents (Courchesne
et a., 2000; Giedd et al., 1999; Jernigan et a., 1991;
Pfefferbaum et al., 1994; Rgjapakse et al., 1996; Riesset dl.,
1996; Steen et a., 1997). Our result confirms these studies.
However, the ROI-based volumetry used in the previous
studies did not allow investigators to detect local volume
change within the ROIs. Our local volumetry based on
deformation field can overcome the limitation of the ROI-
based volumetry.

Brain tissue growth and loss based on the local volume
dilatation rate was detected in the whole brain volume that
includes both gray and white matter (Chung et a., 2001).
The morphometric analysis used in Chung et al. (2001)
generates a 3D dstatistical parametric map of brain tissue
growth. By superposing the 3D SPM with the triangular
mesh of the cortical surface of the atlas brain, we get gray
matter volume change SPM restricted onto the cortical sur-
face (Fig. 11). Although it is an ad hoc approach, the
resulting SPM projected onto the atlas brain seems to con-
firm some of the resultsin Giedd et al. (1999) and Thomp-
son et al. (2000). In particular, Giedd et al. (1999) reported
that frontal and parietal gray matters decrease but temporal
and occipital gray mattersincrease even after age 12. In our
analysis, we found local gray matter volume growth in the
parts of temporal, occipital, somatosensory, and motor re-
gions but did not detect any volume loss in the frontal |obe.
Instead we found statistically significant structural move-
ments without accompanying volume decreases (Chung et
al., 2001).

Surface area change. We measured the total surface area
dilatation rate for each subject by computing the total area
of triangular meshes on the both outer and inner cortical
surfaces. The mean surface areas for all 28 subjects area are

100 = 302180 mm?,  [|o Q7] = 289380 mn?,

[0Q = 229940 mm?,  [|aQf]| = 221520 mm?.

So we can see that both the outer and inner surface areatend
to decrease between ages 12 and 16. The mean total area
dilatation rate for 28 subjects was found to be

A = —0.0093, Al e = —0.0081.

A 0.8to 0.9% decrease of both surface area change per year
is statistically significant (t value of —9.2 and —7.5, respec-
tively). So it does seem that the outer surface shrinks faster
than the inner surface.

After knowing that the total surface areas shrink, we
need to identify the regions of local surface area growth or
reduction. The surface area dilatation rates were computed
for all subjects, then smoothed with 20 mm FWHM diffu-
sion smoothing to increase the signal-to-noise ratio. Aver-
aging over 28 subjects, local surface area change was found
to be between —15.79 and 13.78% per year. In one partic-
ular subject, we observed between —106.5 and 120.3% of
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the local surface area change over 4-year time span. Figure
11 isthe t map of the cortical surface area dilatation show-
ing cortical tissue growth pattern. Surface area growth and
decrease weredetected by T>5.1and T < —5.1 (P < 0.05,
corrected), respectively, showing statistically significant lo-
cal surface expansion along the inferior frontal gyrusin the
left hemisphere and local surface shrinkage in the left su-
perior frontal sulcus. Most of surface reduction seems to be
concentrated near near the frontal region.

Cortical thickness change. The growth pattern of cortical
thickness change is found to be very different but closely
related to that of local surface area change. The average
cortical thickness at t, is 2.55 mm while the average cortical
thickness at t, is 2.60 mm. The average cortical thickness
dilatation rate across all within and between subjects was
found to be A ;g thickness = 0.012. This 1.2% annual increase
in the cortical thicknessis statistically significant (t value of
4.86). However, three out of 28 subjects showed from 0.6
up to 2% of cortical thinning. Although there are regions of
cortical thinning present in all individual subjects, our sta-
tistical analysis indicates that the overall global pattern of
thickness increase is a more predominant feature between
ages 12 and 16. Also we localized the region of statistically
significant cortical thickness increase by thresholding the t
map of the cortical thickness dilatation rate by 5.1 (Fig. 5).
Cortical thickening is widespread on the cortex. The most
predominant thickness increase was detected in the left
superior frontal sulcus, which is the same location we de-
tected local surface area reduction while local gray matter
volume remains the same. So it seems that while thereis no
gray matter volume change, the left superior frontal sulcus
undergoes cortical thickening and surface area shrinking
and perhaps this is why we did not detect any local volume
change in this region.

The most interesting result found so far isthat thereis
almost no statistically significant local cortical thinning
detected on the whole cortical surface between ages 12
and 16. As we have shown, the total inner and outer
surface areas as well as the total volume of gray matter
decrease. So it seems that all these results are in contra-
diction. However, if the rate of the total surface area
decrease is faster than the rate of the total volume reduc-
tion, it is possible to have cortical thickening. To see this,
suppose we have a shallow solid shell with constant
thickness h, total volume V, and total surface area A.
Then V = hA. It can be shown that the rate of volume
change per unit volume can be written as V/V = h/h +
A/A. Using our dilatation notation, Aiya volume =
Aavg thickness _+ Atgtjetll arear In our data, Atotal volume —
—0.0050 > ASY s = —0.0093, so we should have
increase in the cortical thickness. However, we want to
point out that this argument is heuristic because the
cortical thicknessis not uniform across the cortex. Sowell
et al. (2001) reported cortical thinning or gray matter

density decrease in the frontal and parietal lobes in a

similar age group. The thickness measure they used is
based on gray matter density, which measures the pro-
portion of gray matter within a sphere with fixed radius
between 5 to 15 mm around a point on the outer cortical
surface (Sowell et al., 2001; Thompson et al., 2001).
However, the gray matter density not only measures the
cortical thickness but also the amount of bending. If a
point is chosen on a gyrus, the increase in the bending
energy will correspond to the increase in gray matter
density. So the region of gray matter density decrease
reported in Sowell et al. (2001) more closely resembles
the region of curvature increase (Fig. 6) than the region
of cortical thickness change (Fig. 5). Because they mea-
sure different anatomical quantities, it is hard to directly
compare the result reported in Sowell et al. (2001) to our
result.

Curvature change. Our study might be the first to use the
curvature as the direct measure of anatomical changes in
normal brain development. We measured curvature dilata-
tion rate for each subject. The average curvature dilatation
rate was found to be A,yq curvature = 2.50. A 250% increase
is statistically significant (t value of 19.42). Local curvature
change was detected by thresholding the t statistic of the
curvature dilatation rate at 5.1 (corrected). The superior
frontal and middle frontal gyri show a curvature increase. It
is interesting to note that between these two gyri we have
detected a cortical thickness increase and a local surface
area decrease. It might be possible that cortical thickness
increase and local surface area shrinking in the superior
frontal sulcus cause the bending in the neighboring middle
and superior frontal gyri. Such an interacting dynamic pat-
tern has been also detected in Chung et a. (2001), where
gray matter tissue growth causes the inner surface to trans-
late toward the region of white matter tissue reduction.
We also found no statistically significant local curvature
decrease over the whole cortex. While the gray matter is
shrinking in both total surface area and volume, the cortex
itself seems to get folded to give increasing curvature.

Conclusions

The surface-based morphometry presented here can sta-
tistically localize the regions of cortical thickness, area, and
curvature change at a local level without specifying the
regions of interest (ROI). This ROI-free approach might be
best-suited for exploratory whole brain morphometric stud-
ies. Our analysis successfully avoids artificial surface flat-
tening (Andrade et a., 2001; Angenent et al., 1999), which
can destroy the inherent geometrical structure of the cortical
surface. It seems that any structural or functional analysis
associated with the cortex can be performed without surface
flattening if an appropriate mathematics is used.

Our metric tensor formulation gives us an added advan-
tage that not only it can be used to measure local surface
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area and curvature change of the cortex but also it is used
for generalizing Gaussian kernel smoothing on the cortex
viadiffusion smoothing. Sinceit isadirect generalization of
Gaussian kernel smoothing, the diffusion smoothing should
locally inherit many mathematical and statistical properties
of Gaussian kernel smoothing applied to standard 3D whole
brain volume. The modification for any other triangular
mesh can be easily done. We tried to combine and unify
morphometric measurement, image smoothing, and statisti-
cal inference in the same mathematical and statistical frame-
work.

As an illustration of this powerful unified approach, we
applied it to a group of normal children and adolescents to
see if we can detect the region of anatomical changes in
gray matter. It is found that the cortical surface area and
gray matter volume shrink, while the cortical thickness and
curvature tend to increase between ages 12 and 16 with a
highly localized area of cortical thickening and surface area
shrinking found in the superior frontal sulcus at the same
time. It seemsthat the increase in thickness and the decrease
in the superior frontal sulcus might cause increased folding
in the middle and superior frontal gyri.

Our unified deformation-based surface morphometry can
also be used as a tool for future investigations of neurode-
velopmental disorders where surface analysis of either the
cortex or brain substructures would be relevant.
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