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Topology-Based Kernels With Application to
Inference Problems in Alzheimer’s Disease

Deepti Pachauri*, Chris Hinrichs, Moo K. Chung, Sterling C. Johnson, and Vikas Singh

Abstract—Alzheimer’s disease (AD) research has recently wit-
nessed a great deal of activity focused on developing new statistical
learning tools for automated inference using imaging data. The
workhorse for many of these techniques is the support vector
machine (SVM) framework (or more generally kernel-based
methods). Most of these require, as a first step, specification of
a kernel matrix /}C between input examples (i.e., images). The
inner product between images I; and I; in a feature space can
generally be written in closed form and so it is convenient to treat
KC as “given.” However, in certain neuroimaging applications such
an assumption becomes problematic. As an example, it is rather
challenging to provide a scalar measure of similarity between two
instances of highly attributed data such as cortical thickness mea-
sures on cortical surfaces. Note that cortical thickness is known
to be discriminative for neurological disorders, so leveraging
such information in an inference framework, especially within
a multi-modal method, is potentially advantageous. But despite
being clinically meaningful, relatively few works have successfully
exploited this measure for classification or regression. Motivated
by these applications, our paper presents novel techniques to com-
pute similarity matrices for such topologically-based attributed
data. Our ideas leverage recent developments to characterize sig-
nals (e.g., cortical thickness) motivated by the persistence of their
topological features, leading to a scheme for simple constructions
of kernel matrices. As a proof of principle, on a dataset of 356
subjects from the Alzheimer’s Disease Neuroimaging Initiative
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study, we report good performance on several statistical inference
tasks without any feature selection, dimensionality reduction, or
parameter tuning.

Index Terms—Alzheimer’s Disease Neuroimaging Initiative
(ADNI), Alzheimer’s disease, cortical thickness based kernels,
topological persistence.

I. INTRODUCTION

LZHEIMER’S disease (AD) is a neurodegenerative
disorder that leads to progressive loss of memory and
cognitive function. Early clinical diagnosis is challenging
because AD-specific changes begin years before the patient
becomes symptomatic [1]-[5]. Therefore, a major focus is to
identify such changes at the earliest possible stage by leveraging
neuroimaging data [6]. One specific interest is to go beyond
group analysis (i.e., between clinically different groups), rather
to “learn” patterns characteristic of neurodegeneration using
machine learning (ML) methods. Of course, AD is just one po-
tential application and image-based machine learning methods
are applicable to a variety of neuroimaging problems.
Statistical machine learning methods provide means for
learning a hypothesis (or concept) from a set of training ex-
amples. In the context of a specific disorder (e.g., AD), the
training data is given as a set comprised of both diseased and
control subjects and our objective is to learn a pattern in such
examples to help predict the target variables for new “test”
cases. Some work in the last few years has focused on making
use of a popular machine learning algorithm called support
vector machine (SVM) learning for inference problems, such
as classification, regression, etc. A main focus of recent efforts
has been directed towards classification of AD and control
subjects in the hope that this will lead to earlier predictions of
which subjects will go on to develop AD. Beyond the classi-
fication domain, however, there are other significant scientific
questions which may be addressed via kernel methods, e.g.,
analyzing subtle interactions between biological or psycholog-
ical measures and brain topology. We provide a brief review
of these strategies next to highlight their key advantages and
limitations, especially in the context of the data types (and the
inference problems) of interest in this paper. The review will
not only help establish the discriminative power of imaging
data (especially cortical thickness), but highlight the growing
consensus towards the design of automated tools, so as to use
other markers of histological changes (plaques, tangles, etc.) in
a disease’s presymptomatic phases by adapting extensions of
ML algorithms.

U.S. Government work not protected by U.S. copyright.
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A. Related Work

The need to represent, manipulate and analyze complex brain
data has led to a set of novel techniques for brain surface pa-
rameterization. These algorithms provide a smooth functional
representation of the complex inherent geometries of brain sur-
faces [7]-[9] and have successfully been applied to discover
disease-specific regions in group analysis [10]. On the other
hand, a number of recent efforts have focused on utilizing do-
main knowledge. For instance, in [11], the authors exploited the
fact that the hippocampal volume was atrophic in AD and re-
ported 82%-95% classification accuracy on a data set of 39 sub-
jects (19 AD, 20 controls). Numerous MR imaging-driven volu-
metric studies have used voxel-based morphometry (VBM) [12]
to perform disease specific statistical analysis using clinically
relevant measures at the voxel level (such as gray matter density
[13]) and show differences in regional gray matter loss between
the two groups [14]. However, [15]-[17] have independently
shown that classification models that depend on voxel-by-voxel
evaluation of the neurological data require extensive feature re-
duction either by recursive elimination [18] or by manipulating
the weights learned by a linear SVM [16]. Kloppel et al. [16]
achieved 95% accuracy on a data set of 90 subjects (33 AD,
57 controls). Likewise, classification performance of methods
based on PCA [19], [20] show a dependence on selection cri-
teria of principal components of the dataset, while [21] pro-
poses that improvements in accuracy can be obtained via a spa-
tial regularization (Markovian interaction between voxels) and
reported an increased classification accuracy of 82% on a subset
of 183 subjects from ADNI. While feature selection (or dimen-
sionality reduction) is extensively used, it involves a careful
selection of parameters to preserve the important components
of the signal. Also, the performance must not be too depen-
dent on the sample size and the number of features must re-
main stable across datasets [22]. Nonetheless, the above papers
demonstrate that good classification accuracy on certain types
of neuroimaging data can be obtained via novel preprocessing
or by incorporating additional domain specific modifications in
the learning algorithm. Next, we make the case that the above
techniques are not easily extensible to a class of (clinically in-
teresting) neuroimaging data for many inference tasks and new
methods are needed to exploit the discriminative components of
the signal.

Recent evidence suggests that neurological measures defined
on cortical surfaces, such as cortical thickness values [23]-[27]
are a clinically meaningful measure of the underlying brain mor-
phology and a reliable measure of gray matter atrophy [28],
[29], but are not yet fully utilized for automated inference in the
context of AD. To address this problem, we focus on methods
for extraction and precise characterization of important topo-
logical features for such data—with cortical thickness values
as an example, we design new methods for “kernelizing” sig-
nals defined on cortical surfaces. Using characterizations in-
spired from the “persistence” of topological surface features,
we present a framework for construction of affinity (or weight)
matrices between subjects’ distributions of cortical thickness
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(or other measures!), each defined on surfaces. This permits
using such data systematically within any off-the-shelf statis-
tical toolbox, without manual parameter or feature selection.
The construction of similarity measures based on a topological
signal such as cortical thickness allows the inclusion of topo-
logical data along with other biomarkers in predictive models.
The inclusion of such highly independent covariates offers the
potential to aid machine learning methods that operate with ROI
measures, gray matter maps, and so on, by providing additional
information which is not detected by other feature extraction
methods. Note that our goal is not to argue that cortical thick-
ness is better than existing features, rather, the machinery devel-
oped here presents methods to construct representations for such
data which may then be used in conjuction with other features of
choice. Indeed, since cortical thickness is a clinical measure, its
relevance will be different in different application scenarios. Fi-
nally, the proposed algorithm achieves a general purpose char-
acterization of any topology-based signal in a mathematically
elegant framework—which is in fact the primary focus of the
proposed method.

The contributions of this paper are as follows. 1) We give
topology-based kernel construction algorithm for measures de-
fined on cortical surfaces. 2) On a dataset of AD and control
subjects (ADNI), we investigate the effectiveness of proposed
characterization in group level studies, standard regression and
classification. This avoids the difficulties of extensive prepro-
cessing and regularization, as when using standard ML tools. In
an additional set of experiments with standard ROI-based fea-
tures, we evaluate the utility of proposed topology-based fea-
tures. 3) We provide an implementation for performing infer-
ence (classification, regression, linear models, and so on) on
complex data such as signal defined on cortical surfaces. The
goal of this work is neither to assert that cortical thickness is the
best discriminator of AD, nor to claim that the proposed method
is the best mechanism for classification purposes. Rather, it is
a general purpose nonparametric method for constructing sim-
ilarity measures on topological signals which can be included
in multi-modal or multi-variate models to boost the signal of
interest.

II. MAIN IDEAS

In the following section, we draw an outline for the mo-
tivation behind our method in the context of AD-related
statistical inference. We will present the complete formulation
of topology-based kernel construction using cortical thickness
signal in the next section.

In the context of Alzheimer’s disease as well as other dis-
orders [30]-[32], numerous findings confirm fundamental dif-
ferences in the patterns of cortical volume loss and regard cor-
tical atrophy a useful biomarker for AD [10], [33]. Cortical
thinning leads to localized changes in the spatial distribution

IThe complete analysis in the paper refer to cortical thickness values. We
will be using terms “signal,” “brain measure,” and *“ cortical thickness values”
interchangeably because the proposed method is easily extendable to any brain
measure defined on cortical surfaces each defined on surfaces.
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of gray matter and hence a geometric realization of topolog-
ical measures on the cortex can induce separability between
diseased and healthy brains. The goal is to use such clinical
signals to derive similarity measures. Because cortical thick-
ness is a highly attributed marker, most of the existing models
have used this anatomically relevant aspect of disease progres-
sion in a generative setting by assuming co-registered surfaces
and by performing statistical tests to evaluate the discriminative
power of each feature, where the feature vector’s dimensionality
equals the number of cortical surface vertices and the thick-
ness values at the vertices give the magnitude of each corre-
sponding entry. One may then calculate inter-subject distances
(or similarities) in terms of geometric distances based on top
discriminative features (or inner products), which may then be
fed into a standard SVM procedure. Notice the two major dif-
ficulties with this approach. First, we must account for the mis-
match between the training set size and the dimensionality of
the distribution via feature reduction [19], [22] or introduction
of bias [21]. Second, during the reconstruction step of cortical
thickness using automated software tools, point-wise correspon-
dence of mesh topology among the training subjects may be un-
available. This will lead to different number of vertices at dif-
ferent coordinates for different subjects. One approach to this
problem is to try mapping cortical thickness onto a sphere with
a fixed number of vertices, re-sample and interpolate the cor-
tical thickness measure for each subject so as to allow a direct
point-wise comparison. However, the procedure not only atten-
uates vertex-wise signal but also ignores the higher order inter-
actions between subsets of vertices that vary between the two
groups. Also neurodegeneration is an exclusive event and exact
locations (coordinates of affected vertices) also vary among the
population, obscuring the statistical concept under study. More
importantly, in the context of cortical thickness, vertex-wise
thickness values may be less relevant—in some settings sepa-
rability between classes likely comes from variation between
topological features (comprised of more than one vertex). In
other words, subtle losses of gray matter may affect the shape
or topology or cortical surfaces before they significantly af-
fect the thickness measures?. A naive alternative is to look at
all possible groups of vertices and evaluate the significance of
their variation, which is clearly intractable. Our approach below
seeks to characterize brain images by deriving a representation
of “groups” of vertices on each individual cortex. Briefly, we
determine whether a localized region in the brain exhibits any
gray matter atrophy via construction of a simplex on critical
points—which provide information on the global topology.
Our method is based on topological persistence of brain mea-
surements defined on cortical surfaces. Within the framework of
signal filtration, if one considers the cortex as a complex then
the spatial properties of cortical thickness can be represented
as the history of a growing complex using notions of “birth
and death” of homological classes. It is reasonable to expect
that inferences based on such topological changes which occur
during the growth either as critical points or noise as a function
of their lifetime, will capture the differences between clinically

2Note that this means that in the case of AD versus control classification,
such an advantage may be lost, since cortical thickness has been shown to be
discriminative by itself.
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different groups well on a global level. Our algorithm seeks to
characterize such changes to derive a precise representation of
the topological features on the signal. Once such a represen-
tation is obtained, we can easily construct similarity measures
(kernels) and leverage emerging ML tools (e.g., MKL) for in-
clusion in statistical inferences.

ALGORITHM

Summary: Let us denote the set of cortical data in the training
set as X = {X1,Xo,...,X,} with known target variables
v = {y1,92,-- -, Yn}, where y; € {+1,-1} (ory; € R) in
a classification (or regression) setting. X comprises the cor-
tical data of both AD and control groups. The original signal
defined on the cortical surface is noisy and it is necessary to
estimate the unknown signal to increase signal-to-noise ratio
and smoothness of the signal for subsequent analysis. This is
achieved via image smoothing over $2. Making use of the mean
signal is not ideal for constructing similarity matrices which
promote separability, due to signal attenuation. Such a process
will make it rather difficult to identify subtle, but clinically rel-
evant variations. Further, substantial overlap in the class distri-
butions confounds inference. In contrast, our proposed method
is motivated by the fopological characterization of the signal
which makes no assumption on point-wise correspondences of
cortical measure on a naturally formed spherical atlas. Hence,
no assumption is made regarding a specific preprocessing tool
for extraction, allowing the proposed framework to handle dis-
parities among spherical atlases of individual subjects (gener-
ated by some preprocessing tool of choice). As a result, the
collection of critical points on the mean signal is adequate to
characterize the topology of the signal. By pairing the critical
points in a nonlinear fashion, we construct scatter plot for each
image, which encodes the topological properties of the input
signal. The concentration maps of such scatter plots are then
used to learn the disease patterns by employing off-the-shelf
ML toolbox. We now present details of the algorithm in the fol-
lowing subsections.

A. Heat Kernel Smoothing

Existing methods model the cortical measurement f(r) as
signal plus noise: f(z) = p(x) + €(x), where y is the signal
and ¢ is noise. In the following analysis, f(z) is the cortical
thickness mapped onto a spherical surface, i.e., # € $? as shown
in Fig. 1 (right).

We used heat kernel smoothing to estimate the signal [7],
[34]. The heat kernel is essentially Green’s function of the
isotropic diffusion equation [34]. The solution of which with
the following initial conditions (f(¢,0 = 0) = 8s2) provides
the heat kernel K, as

[e%s) m=l

Ka'(tas) = Zeiklﬂ Z lem(t)yvl?n(s)

=0

(1)

m=—1

where —\; = {{{ 4+ 1) is the eigenvalue and Y},,, are eigenfunc-
tions of the operator known as spherical harmonics. Spherical
diffusion of a given functional measurement f € L?($?) ie., a
smooth estimate of f denoted as f is written as a convolution:
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Fig. 1. (left) Cortical thickness and surface coordinates. (right) For our pro-
cessing, cortical thickness has been projected on to a sphere. Cortical thickness
is measured in millimeters and color bar corresponds to thickness values at each
vertex.

Fig. 2. Weighted Fourier Series representation of cortical thickness signal.
(top) Degree k = 5,20,50, and 70 (left to right). (bottom) Bandwidth
o = 0.01,0.001, 0.0005, and 0.00001 (left to right).

f = K, * f. The finite estimate of the continuous convolution
is called the weighted Fourier series (WFS)

m=l

k

f - Z 67)\[” Z fleYlm(t) (2)
=0 m=—1

where flm = (f,Yim) is the Fourier coefficient. This is a more

flexible spectral approach that explicitly represents the solution

to the diffusion equation analytically.

In principle, series approximation of smoother cortical signal
improves by increasing the number of coefficients in the sum-
mation. The optimal choice of the degree is useful to save com-
putational time, Fig. 2 (top row) shows the finite expansion ap-
proximation of the cortical thickness shown in Fig. 1 as the de-
gree increases from k£ = 5 to & = 70 (bandwidth (¢) = 0). The
spatial smoothness of the thickness is controlled by o. Fig. 2
(bottom row) shows the thickness data as o varies in the range
[1072,10®]. The goal is to estimate the signal using WFS to
suppress noise. An optimal selection of & is required to avoid
over-fitting and not to lose the discriminative features during
smoothing step. We used ¢ = 10~ and corresponding degree
k = 30 in our experiments based on [7].

B. Scatter Plots of Persistence

We will characterize the signal in terms of its critical points
and the sublevel sets. The sublevel sets of a signal f are defined
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f(x) (arb.unlt)

X Birth

Fig. 3. Critical points pairing scheme for a 1-D function (based on [40]), also
see Appendix A.

as R(y) = f~1(—o0,y] where f(x) is the signal (i.e., the corre-
sponding cortical thickness measure) and f~*(y) is its inverse.
In other words, a sublevel set is the set of all points  for which
f(z) < y. Observe that critical points of the signal (i.e., local
minima and maxima) provide information about local variations
in signal. But we are interested in points which preserve infor-
mation about the connected regions of its sublevel sets. We can
define the time-point (thickness value) at which a critical point
will be “visited” in a filtration of the signal [35]. As we increase
Yy, the critical points of the signal are visited (in order) and ho-
mology of f(x) < y changes (with y) i.e., signal value f(z) is
critical if the rank of homology groups of sublevel set R{ f(x))
change by visiting f(z), i.e., if a homology class is born (or
dies) by visiting f(z).

Clearly, the critical points are markers of the creation and
deletion of connected components in the sublevel sets, with in-
creasing values of the filtration. More importantly, unique pair-
ings of these critical points are sufficient to identify each topo-
logical feature in the signal. Our pairing rule is defined using
persistence of critical points [36], [37] and is formulated as
follows.

Consider an ordered set C' of all critical points of f(x) (i.e.,
cortical thickness), C' = {¢1 < ¢2 < --- ¢, }. This defines a se-
quence of connected components and a corresponding sequence
of homology groups. Our aim is to store the history of homo-
logical changes within this sequence i.e., a history of homology
classes. A class is born at ¢; if it did not exist in sublevel sets
R(y) suchthaty € C; where C; = {¢;|(Ve; < ¢;),¢i,¢5 € C}.
A class dies entering ¢y, if it existed in sublevel sets 2(y) such
thaty € C}, but did not exist in sublevel sets with filtration value
in subset C* = {¢;|(Vc; > ¢1),¢j.cn € C'}. Now we can rep-
resent the “life duration” of a class born at ¢; and dies at ¢;, by
pairing the critical points (c;, ¢y, ). Furthermore, we can present
the history of each class by drawing these pairs of critical points
in 2-D plane “scatter plot.” The construction of a scatter plot for
an arbitrary 1-D function f(z),z € R! is illustrated in Fig. 3.

To facilitate the construction of scatter plots using cortical
thickness for each subject, we first calculated critical points of
the cortical thickness. Critical points in this setting are defined
as those points where the cortical thickness is maximum/min-
imum relative to its immediate neighbors. We used Delaunay
triangulation [38] to generate a simplical complex of critical
points. The signal value was used to define the “filtration” on
the complex. We used publicly available software [39] to calcu-
late the persistent homology in degree-0 for each subject. The
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Input signal
(Cortical thickness)

Heat kernel smoothing on the input signal
(section IIL.A)

!

Generate persistence diagram
Obtain scatter plot of topological persistence

Evaluate concentration map of the scatter plot on a uniform grid
(kernel density estimation)

Vectorize the concentration map (PDF)
This is the final descriptor

Fig. 4. Flow chart to represent the complete algorithm.

procedure essentially provides a unique pairing of critical points
which preserve the information of connected regions as dis-
cussed above. That is, preserving only the paired critical points
(birth-death pairs) and the corresponding filtration step at which
they were visited i.e., thickness values. This procedure yields
a collection of topological feature descriptors (i.e., connected
regions of a sublevel set) for each subject which can be repre-
sented as a scatter plot (also known as a plot of Betti intervals).
In the scatter plot representation, each feature is described in
terms of its birth and death “time,” i.e., the filtration values of
the paired critical points. Now, by comparing the scatter plots of
such paired values, we can establish the desired similarity mea-
sure between subjects.

We construct a concentration map from the scatter plot by
using kernel density estimation (KDE); we estimate the distri-
bution of pairs on a uniform grid. Vectorization of the concentra-
tion map provides a probability distribution function (PDF) for
each subject. This is PDF of the scatter plot and does not directly
tie to the high and low thickness values. By choice of a suit-
able KDE similarity measure, we can now compute similarity
inter-subject measures, that will give a positive semi-definite
(PSD) kernel matrix; where entries are the similarity between
these PDFs. If the topology of cortical thickness is discrimina-
tive then many of these cortical topology measures will show
a variation (between AD and controls) resulting in measurable
group differences in the clinical populations in terms of their
critical point pairings. Observe that with the similarity measure
and kernels constructed above, the application of kernel regres-
sion or classification (also, group analysis) on this data is quite
simple. In Fig. 4 we have demonstrated the various steps in-
volved in the algorithm.

III. EXPERIMENTAL SETUP

Our objective in this section is to evaluate the effectiveness
of the chosen topological representation. As an illustrative ex-
ample, we focus on inference problems in AD such as classifica-
tion, regression and group studies on clinically different groups.
The purpose here is not to achieve the best classification accu-
racy for AD (or that cortical thickness is the most discrimina-
tive feature) rather to show how topologically-based data can
be systematically used within image-based statistical analysis.
We performed experiments using cortical thickness signal de-
fined on cortical surfaces for each subject employing our al-
gorithm discussed in Section III. The initial processing of 7'1
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TABLE I
DEMOGRAPHIC DETAILS AND BASELINE COGNITIVE STATUS MEASURES
OF THE STUDY POPULATION

AD (mean) | AD (s.d.) | Controls (mean) | Controls (s.d.)
No. of subjects 160 - 196 -
Age 75.53 7.41 76.09 5.13
Gender(M/F) 86/74 - 101/95 -
APoE4 carriers 76 - 81 -
MMSE at Baseline 21.83 5.98 28.87 3.09
Years of Education 13.81 4.61 15.87 323

weighted MR images was performed using FreeSurfer. To learn
discriminative topological characteristics we used a set of 356
subjects (160 AD, 196 controls) in our evaluations. We made
use of ground truth diagnosis of each subject (i.e., class labels),
based on given clinical evaluation of cognitive status for each
subject. A more detailed description of the data set, preliminary
processing and algorithm implementation are covered in the fol-
lowing subsections. Later, in Section V, we demonstrate the use
of derived features in various inference settings.

A. Data Set

We evaluated the accuracy of our method by per-
forming experiments on data collected as part of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(http://www .loni.ucla.edu/ADNI). A summary of demographic
and neuropsychological details of subjects used in our study is
presented in Table I.

B. Preliminary Data Processing

The MR images in our data set were processed using
FreeSurfer [41] to calculate the cortical and subcortical
anatomy. To enable the reconstruction of brain’s cortical
surface from structural MRI data, freely available software
FreeSurfer (v1.133.2.57) was used on a 64-bit Linux worksta-
tion. FreeSurfer models the boundary between white matter and
cortical gray matter, tessellates the resulting surfaces and cal-
culates distances between the surfaces (i.e., thickness values) at
each vertex. This procedure gives a cortical thickness measure
at each point on the cortex for each subject’s cortical surface (in
fact, for each pair of left and right hemispheres) in our dataset3.
For improved visualization, a cortical surface-based spherical
atlas has been defined based on average folding patterns (see
Fig. 1). Surfaces from individuals were aligned with this atlas
with a nonlinear registration algorithm. The registration is
based on aligning the cortical folding patterns and therefore
directly aligns the anatomy instead of image intensities. The
spherical atlas forms a coordinate system in which point-wise
correspondence between subjects can be achieved by inter-
polation, though such correspondence is not required for our
algorithm.

C. Implementation

Mean signal on the cortical surface was obtained via image
smoothing, as discussed in Section III-A. We calculated crit-
ical points and scatter plots on the mean signal for each sub-

3AD brain scans have severe atrophy due to which “auto-Talairach” step
failed. Therefore during automated cortical reconstruction process using
recon-all directive, we disabled Talairach transformation via -notal-check for
all subjects.
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Fig. 5. (a) Scatter plot of an AD subject. The units on the birth—death axes are millimeters. In general, these scatter plots may have arbitrary units. (b) Concentration
map of the scatter plot using gaussian kernel of bandwidth of 0.2 on a square grid [0, 3] with 502 pixels (colorbar represent the density of points). (c) PDF of a

concentration map.

ject Fig. 5(a), as discussed in Section III-B. To derive a sim-
ilarity measure on scatter plots, we used kernel density esti-
mation to generate the concentration map of a scatter plot on
a square grid [0, 5] with 502 pixels for each cortical surface
Fig. 5(b). Once the concentration map for each cortical surface
was obtained, vectorized concentration maps (PDFs) Fig. 5(c)
were used to construct the kernels. We used these kernels to per-
form the following experiments. 1) 2-sample ¢-tests on the con-
centration maps (PDFs) to locate statistically relevant pixels in
the concentration map. 2) Kernel regression to model impor-
tant cognitive markers in a 10-fold cross-validation setting [42]
for the two clinical groups. 3) 10-fold cross-validation classifi-
cation to estimate predictive accuracy on unseen test examples
using the kernel SVM implementation provided in the Shogun
toolbox [42]. The entire process described above was carried
out separately for the right and left hemispheres of each sub-
ject’s brain, giving two trained SVM classifiers. While sophis-
ticated methods to combine different types of kernels exist, our
final prediction label for a test example was derived by aver-
aging the two classifier outputs—i.e., winner (classifier with a
higher confidence) takes all. An additional set of classification
experiments to assess the predictive accuracy of ROI-based fea-
tures supplemented with topological persistence kernels is also
presented. 4) Localizing the brain regions which were involved
in homological changes in the two groups.

IV. EXPERIMENTAL RESULTS

In order to show the effectiveness of topological features, we
have performed (A) group analysis, (B) regression, and (C) clas-
sification. Here, we present an analysis of the performance of
our algorithm on the data described above.

A. t-Statistics

In order to test the hypothesis that the proposed topology-
based features do indeed extract meaningful about AD-related
atrophy, we performed 2-sample #-tests on each pixel in the con-
centration map. Fig. 6 shows the differences in means for each
pixel above (AD—control, for left and right hemispheres,) and
p-values in negative log scale below, with statistically signif-
icant pixels in correspondingly “warmer” colors. Several no-
table properties can be seen from the figure. First, we see that
there is a significant shift in the AD group towards the origin,

0.3 0.3
5 5
0.2 0.2
c 4 c 4
® 01 & 0.1
3 ﬂ)
a3 o
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Fig. 6. Group analysis of extracted concentration maps for left and right hemi-
spheres. Above are shown the differences in means for each pixel, (AD—con-
trol for left and right hemispheres, respectively) Below are shown the p-values
(negative log-scale). The differences are highly significant, (p < 107*¢) and
suggest both gross and subtle anatomical variations are present in the data.

corresponding to the global thinning seen in AD. Second, we
can see from the distribution of the p-values that there are more
subtle effects in regions off of the ¥ = z line, which suggest that
there are higher-order topological effects. Finally, we can see
that there are regions of nonzero density below the y =  line
despite there not being any min-max pairs in these regions—this
is due to the kernel density estimation step, which interpolates
the density function to regions where there are no min-max pairs
and which is agnostic of the process by which the points are
extracted.

B. Regression

We also used our topological representation to predict the
values of various relevant cognitive measures in a 10-fold cross-
validation setting using a kernel regression model. This way,
the model does not have access to the quantities it is trying
to estimate until after training. We then performed 2-sample
t-tests between the outputs to show that the model is indeed
detecting separable group differences. We found that predicted
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TABLE II
TABLE OF p-VALUES ON PREDICTED NEUROPSYCHOLOGICAL SCORES
Neuropsychological Scores p-value Neuropsychological Scores p-value
Rey Auditory Trial 1 10—10 Trail Making A ~0
Rey Auditory Trial 2 ~0 Trail Making B ~0
Rey Auditory Trial 3 10—16 Trail Making A & B errors committed 10~ 14
Rey Auditory Trial 4 ~0 Digit Span ~0
Rey Auditory Trial 5 ~0 Boston Naming (Spontaneous) 1@="9
Rey Auditory Trial 6 ~0 Boston Naming (Cues Given) 10—°
Rey Auditory Trial B 10—12 Boston Naming (Phonemic Cues Given) 10—9
Category Fluency: Animals 1e=1¢ Boston Naming (Correct Response) 10—8
Category Fluency: Vegetables = 0 Boston Naming (Total Number Correct) 10—15
Category Fluency: Vegetables, Intrusions | 0.0002 ANART errors 10—
values of 20 neuropsychological scores showed highly signifi- . ROC Curves
cant group-wise differences between AD and control subjects. jﬂ'_'
The p-values of two-tailed #-test were ~ O for these neuropsy- 09l _;iﬁ""-l i) ]
chological scores. In other words, the estimated values of in- _/:'.".r_
dividual cognitive scores were discriminative for clinically dif- 0.8 ‘/ 1
ferent groups. This also helps explain the fact that gray matter o
atrophy and thus topological features lead to cognitive decay. g M 1
. . o
Table II presents the complete set of significant results. E el r ]
2 0 ]
©
) . K
C. Classification v 05 |
In addition we calculated predictive accuracy, ROC curves £
and area under ROC curves for cross-validated classification ex- % 04r 1
periments. These results are shown in Table III and Fig. 7 and 2 03
summarized below. The combined classifier had an accuracy of ’
75%. Left hemisphere- and right hemisphere-derived classifiers 0.2 ]
had accuracies of 73.31% and 73.03%, respectively. The higher :

X R S == |_eft hemisphere
accuracy of the C(?mblned clgsmﬁer compared to that of ellther 0.1 | s Right iemisphere
of the single-hemisphere-derived classifiers suggests that it af- ; . . Average
fords greater separability of the clinical groups when both hemi- % 02 04 0.6 08 1

spheres are used. The AUC measures were 0.7955 for the left
hemisphere derived classifier, 0.7973 for the right hemisphere
derived classifier and 0.8063 for the combined classifier.

1) ROI: In order to quantify the significance of proposed
topology-based features, we investigated the following hypoth-
esis: Do topology persistence-based kernels add to the discrim-
inative power of ROI-base kernels? 1f so, we can conclude that
the proposed representation scheme provides information on
certain aspects of the concept not captured by ROI features on
their own.

ROI-data from ADNI consists of volumetric numerical sum-
maries of hippocampus and temporal lobes. In a set of experi-
ments, we studied the predictive accuracy for AD versus CN of
ROI-base features exclusively. In the second step, we combined
the topological and ROI-based kernels and tested the discrimi-
native power of the unified kernel on exactly same 10-fold setup
used in ROI-based experiments. Table IV shows the different
combinations and their predictive accuracies. Except one com-
bination (left middle temporal), all combinations show non-neg-
ligible improvements in the mean accuracy. We performed a
paired t-test on the outcome. We found that while on all cases
the mean accuracy improved, for the left and right hippocampul
ROIs as well as right middle temporal lobes, the null-hypoth-
esis can be rejected at v = 0.05. For the two other features, the
p-values were also small. This experiment, provides reasonable
evidence that topological persistence-based kernels add relevant
information in the unified kernel for statistical analysis tasks.

False Positive Rate (FPR)

Fig. 7. ROC curves demonstrating performance of topology-based representa-
tions of ADNI data.

TABLE III
MEASURES OF OUR METHOD’S ACCURACY ON CLASSIFICATION EXPERIMENTS
Method Accuracy AUC
Left Hemisphere 73.31% 0.7955
Right Hemisphere 73.03% 0.7973
Averaged Confidence 75.00% 0.8063

D. Correlation Between Algorithm Outcomes and Cognitive
Biomarkers

From both a therapeutic and a research standpoint, it is
important to identify signs of a disease at its predementia stage.
Current diagnostic criteria for AD are based on neuropsy-
chological scores such as: mini-mental status examination
(MMSE) and neuropsychological battery scores such as log-
ical memory and delayed recall. Other neuropsychological
scores (Category fluency, Trail making, Rey auditory, Boston
Naming, etc.) are not used in diagnosis, however, as measures
of cognitive status we nevertheless expect such scores to be
highly correlated with the diagnosis (i.e., ground truth) and
regard them as “pseudo-ground truth” due to this confounding
influence. Recent studies have suggested that in early stages
of AD, cognitive impairment does not correlate with brain
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TABLE IV
PREDICTIVE ACCURACIES OF UNIFIED KERNELS (ROI+TOPOLOGY)

Hemisphere ROI Kernel Accuracy Kernel Combination Accuracy | p-value
Left Hippocampus 79.03% Hippocampus + Topology 83.09% 0.016
Left Middle Temporal 78.13% Middle Temporal + Topology 79.59% 0.336
Left Inferior Temporal 79.88% Inferior Temporal + Topology 82.51% 0.068
Right Hippocampus 75.88% Hippocampus + Topology 79.30% 0.045
Right Middle Temporal 74.64% Middle Temporal + Topology 78.13% 0.013
Right Inferior Temporal 72.59% Inferior Temporal + Topology 75.22% 0.054
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Fig. 8. Pearson’s correlation between classification confidence of algorithm and cognitive biomarkers.
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< 4 = 4
3 3
2 2 the status of individual subjects accurately so as to identify
1 8 individuals likely to progress to AD.
o o E. Localizing Persistence

Fig. 9. The flat maps to show topologically interesting brain regions. Angles
6 and ¢ (zenith and azimuthal, respectively) are associated with spherical atlas.
(Top) Differences in means at each vertex, (AD versus control for left and right
hemispheres, respectively). (Bottom) p-values in negative log-scale.

structure delineation, which explains the weakness of cognitive
scores particularly with early AD onset identification. Fig. 8,
illustrates statistical correlation of many cognitive scores with
the classification confidence output by an SVM trained on the
proposed imaging-based topological features. We found that
most cognitive scores are in agreement with the classification
confidence for both left and right hemisphere. This suggests
that indeed imaging-based markers are capable of predicting

Finally, we used spatial information of min-max pairs to
locate the brain regions persistently involved in topological
changes in each subject. These are representative locations on
the brain where homology classes were born (and died) during
the growth of individual cortex. Fig. 9 (top) shows the differ-
ences in means of min-max locations for the clinical groups
(AD—control, for left and right hemispheres). We noticed
significant differences in the patterns of topologically active
brain regions between the two groups corresponding to the
global thinning in AD. Fig. 9 (bottom) shows p-values in neg-
ative log scale of 2-sample #-tests on each vertex. Statistically
significant regions are shown in “warmer” colors. Noticeably,
localized regions (neighboring vertices) corresponds to the
cortical thinning in specific brain regions.
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Fig. 11. Sublevel sets R(y) (i.e., f{) in solid red below blue line) are drawn on ordered set C' for all critical points of (), C' = {c1 < ¢z < ¢3 < ¢4} One
homological class (1-D hole) is born at ¢1, let us call this class H; . Second class is born at ¢, — call this class 5. H class died at c3 (i.e., the 1-D hole opens up
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Fig. 12. Critical points pairing scheme to preserve the history of homological classes (persistence) present in f(x). (a) Pair (¢1,¢4) corresponds to the “life
duration” of hole H;. (b) Similarly, (c2. c3) corresponds to the “life duration™ of hole H. (a) First entry in scatter plot (right). (b) Second entry in scatter plot
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Fig. 13. f(x) and its persistence scatter plot.

V. CONCLUSION

In this paper we have proposed a new method for constructing
kernels using cortical thickness measures defined on brain sur-
faces. This type of feature extraction will allow the inclusion
of highly attributed brain signals into statistical inference ma-
chinery. We have demonstrated the value of these features in
the context of mild AD via kernel-based analysis methods. Our
method offers a discriminative, yet compact representation of
cortical surfaces, using persistence of the topological features
induced by cortical thickness signal. The method is self-gov-
erning with respect to any point-wise correspondence of the
mesh topology among subjects and any kind of feature reduc-
tion. The underlying concept of our method enables easy com-
putation of meaningful similarity measures in a non-generative
manner for use within machine learning methods, not offered
by most existing methods. Due to this reason, our experiments
show possible and scientifically important inferences that can
be derived using proposed features, using AD as an illustrative
example. Our experimental results demonstrate the strength of
topological features in capturing subtle anatomical variations
present in complex data. Given that cortical thickness measures
are suspected to be relevant for neurological disorders. In its
present form, the paper outlines machanisms to exploit such
data, if available. We believe that these methods will add to

the diagnostic accuracy obtainable by MR and/or FDG-PET im-
ages alone [21], or within multi-modal analysis frameworks pro-
posed recently [43], [44]. Our implementation will be provided
at http://pages.cs.wisc.edu/~pachauri/minmax.

APPENDIX A

With an eye towards making our paper as self-contained as
possible, in the following we give a viable illustration of scatter
plot construction for an arbitrary 1-D function f(z),z € RL.
For more information pertaining to homological classes and per-
sistence, see [36], [40], [45], and [46].

Fig. 10 shows a 1-D signal f(z). This function has four ex-
tremum points, two local minima [¢;, ¢5] and two local maxima
[c3, c4]. Sublevel set of f(x) with R(y) = f~(c1), is shown
as collection of data points in solid red color under blue line in
Fig. 11(a). Similarly, other sublevel sets corresponding to other
extremum points ¢, ¢3, and ¢4 are shown in Fig. 11(b)—(d), re-
spectively.

The pairing scheme of critical points in 1-D case, can be un-
derstood as follows: the rank of homology groups of all sublevel
sets R(y) with y < ¢ is one: only Hy (1-D hole) is present.
At time-point co( f{2) = ¢o), the rank of homology groups for
sublevel set R(y = c¢s) becomes two with the “birth” of an-
other class Hs by entering ¢». For sublevel sets with R(y) such
that ¢ < y < ¢, the rank remained constant. Entering ¢3, the
class born at ¢o(Ho) “died” and the rank of homology groups
becomes one for sublevel set R(y = c¢3). Therefore, the persis-
tence (history) of class Hs is preserved in time-points (¢, ¢3).
Similarly, pair (¢1,¢4) represents the persistence of homology
class H;. Fig. 12 demonstrate the pairing scheme for topolog-
ical persistence. For completeness, Fig. 13 is shown with the
1-D signal f(x), Fig. 13 (left) and its scatter plot, Fig. 13 (right).

APPENDIX B

In Figs. 14 and 15, we give an illustration of critical points
for an arbitrary 2-D function defined on spherical surface, i.c.,
x € $2 and their respective location in scatter plot.
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