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i 
ABSTRACT 

 

Diffusion tensor magnetic resonance imaging (DT-MRI) is a non- invasive imaging 

method for assessing the characteristics and organization of tissue microstructure. The 

diffusion tensor provides information about the magnitude, anisotropy, and orientation of 

water diffusion in biological tissues.  In brain white matter, the direction of greatest 

diffusivity is typically assumed to be parallel to the white matter tracts.  The number of 

DT-MRI applications is rapidly expanding; however, diffusion tensor measurements are 

also highly sensitive to noise in the raw diffusion weighted (DW) images.  Furthermore, 

the relatively poor spatial resolution of most DT-MRI studies cause partial volume 

averaging between different tissue regions, which can lead to errors in the estimated DT-

MRI measures.  Finally, the variance of DT-MRI measures may impair the ability to 

detect and  characterize subtle differences either between regions or subjects. In this thesis, 

new acquisition and analysis methods for reducing measurement noise effects are 

investigated. 

For the case where the diffusion tensor orientation and shape may be estimated a 

priori, changing the diffusion-weighting with encoding direction may improve the overall 

accuracy of the diffusion tensor measurements. The variance of DT-MRI measurements 

is expressed as a function of directional diffusitivities and diffusion weightings. 

Minimizing the variance using quadratic optimization algorithms leads to an obtainment 

of anisotropic diffusion weightings. In this study anisotropic diffusion weighting reduced 

the variance of FA and MD measurements by roughly 50 % in the corpus callosum. 

Anisotropic Gaussian kernel smoothing was used to reduce the errors and noise for 



 

 

ii 
the entire regions of DT-MRI data. The anisotropic Gaussian kernels for convolution 

smoothing are equivalent to the water diffusion distributions described by the diffusion 

tensor.  Further the direction of greatest diffusitivity is often assumed to be parallel to the 

direction of the local white matter tracts, thus the measured diffusion tensor is a good 

candidate for anisotropic kernel smoothing. This reduces the partial averaging effects 

with high levels of smoothing.  

In voxel based analyses of DT-MRI data, isotropic Gaussian kernel smoothing is 

often used to blur the individually distinct anatomic features. Anisotropic Gaussian kernel 

smoothing may reduce the partial volume averaging which will improve anatomic 

specificity. In this study, anisotropic Gaussian smoothing was applied to DT-MR data 

from a group of autism subjects to investigate the differences of DT-MRI measurements 

between the autism and control groups. Anisotropic Gaussian kernel smoothing provides 

more consistent results for the group differences as compared with manual ROI analysis 

Finally, anisotropic Gaussian kernel smoothing may be useful for estimating anatomic 

connectivity as the diffusion will be greatest along the white matter pathways. In this 

study iterative convolution with anisotropic Gaussian kernels was used to estimate 

connectivity patterns in DT-MRI fields. Preliminary results in both phantoms and human 

brain were promising. Future developments will constrain the diffusion propagation to 

white matter to eliminate erroneous pathways.  
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CHAPTER 1 

OUTLOOK 

The Diffusion tensor (DT) is a model-based approach of describing the molecular 

diffusion displacement in a three-dimensional biological medium. Diffusion tensor MRI 

(DT-MRI) is a non-invasive method for mapping the diffusion properties in vivo. DT-

MRI provides information about the magnitude and anisotropy of water diffusion in 

biological tissues. The simplicity of the DT model is extremely promising for a broad 

range of clinical and research applications; however, one caution should be used as DT-

MRI is exceptionally sensitive to the noise in the acquired diffusion weighted (DW) 

images. This dissertation introduces and describes novel methods for reducing the effects 

of image of noise in DT-MRI and potential applications of anisotropic Gaussian filter 

construction. Anisotropic methods for the acquisition and analysis of DT-MRI are 

discussed. These approaches are promising for reducing the effects of noise in the 

computed DT-MRI maps. Further, potential applications of anisotropic image analysis 

are discussed. An outline summary of this thesis is described here. 

Chapter 2 reviews fundamental MRI physics and introduces DT-MRI. 

Formulations of detecting MR signal based on the Block equation and imaging principles 

are summarized in brief. The phenomenon of water diffusion in biological tissues is  



 

 

2 
discussed and the methodology of DT-MRI is described.  

Chapter 3 introduces a method to minimize the errors in DT-MRI measures by 

modifying the diffusion weighting as a function of diffusion encoding direction; thus the 

diffusion-weighting is anisotropic. The basic mathematical formulation is based on a 

model of noise propagation. The multivariate variables for this optimization problem are 

the directional diffusitivities from a set of user-defined diffusion sensitizing gradients. 

The propagated error in the variance of diffusion tensor measurements can be minimized 

if these directional diffusitivities are known a priori since the variance of diffusion tensor 

measurements (fractional anisotropy or mean diffusitivity) is a function of directional 

diffusitivities. In fact, the expression of co-variance of FA in terms of directional 

diffusitivity measurements is the core of this chapter.  

Chapter 4 compares several spatial filtering methods for DT-MRI data. The 

problem of spatial filtering in a tensor field image has not been widely explored to date in 

the DT-MRI literatures. In this study, isotropic Gaussian smoothing is compared with two 

anisotropic smoothing methods including a new approach which uses a blurring kernel 

based upon the local diffusion tensor. The performance of these filters for reducing errors 

(noise and bias) in DT-MRI maps is compared in both measured in vivo human brain 

data and synthetic DT-MRI data. 

Chapter 5 introduces an application of anisotropic Gaussian smoothing for voxel-

based methods for DT-MRI group analysis. The method was applied to DT-MRI data 

from a group of autism spectrum subjects compared with normal control subjects.  In 

typical voxel-based analysis, isotropic Gaussian blurring is applied to improve spatial co-

alignment between images and application of random field theory. In this study, 



 

 

3 
anisotropic Gaussian blurring was used to minimize the mixing of signals between 

anatomical structures. The results from anisotropic smoothing show more consistency 

with the results with ROI analysis in the corpus callosum.  

Chapter 6 discusses another application of the anisotropic Gaussian kernel 

smoothing for mapping anatomic brain connectivity. In this approach Gaussian 

convolution is assumed to be a local approximation of the solution to the diffusion 

equation (also called the heat equation), a method for diffusion propagation that is 

estimated from the DT-MRI data. A simulation of physical diffusion phenomenon based 

upon the measured diffusion tensor gives a connection probability to every voxel in the 

three-dimensional data. A transitional probability value at each voxel may be considered 

as a likelihood of reaching each voxel from a starting point of the propagation. 

Chapter 7 summarizes the key observations from all chapters and discusses 

potential future directions. 
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CHAPTER 2 

DIFFUSION TENSOR MAGNETIC RESONANCE IMAGING  

 

 
2.1 Introduction 

This chapter reviews the fundamentals of magnetic resonance imaging (MRI) and 

introduces the theory and methods for diffusion tensor magnetic resonance imaging (DT-

MRI).  

Nuclear magnetic resonance (NMR) was first illustrated by F. Block and E. M. 

Purcell in 1946. NMR is achieved by exciting nuclei in an externally applied magnetic 

field. The detectable MR (N is usually dropped from NMR since many people are 

alarmed by the word “nuclear”) signal is not created by a single nucleus but by an 

enormous number of nuclei- an ensemble. This ensemble driven phenomenon allows us 

to demonstrate and to study the MR phenomenon via classical vector models without 

having to resort to partial-differential wave equations in modern quantum mechanics. 

MR has been utilized in many fields of science. One of the most successful 

applications of MR is magnetic resonance imaging (MRI)- sometimes called the most 

innovative medical diagnosis tools. 

In the following sections, MR signal detection, image reconstruction, and diffusion 

are reviewed. 
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2.2 Magnetic resonance signal in Block equation  

The spin angular momentum of a nucleus with a spin number ½ (see the Table 2-1) 

has two energy states (+1/2, and -1/2). Each nuclei magnetic moment µ
r

 in the presence 

of an applied magnetic filed is governed by the relationship of (2-1) 

B
rrr

×= µτ          (2-1) 
 

where B
r

represents the magnetic field strength, and τ
r

 is the torque experienced by the 

magnetic moment µ
r

. Thermo-mechanics can help us to detect that a portion of the net 

∑ µ
r

is in the direction of the applied field B
r

, and the resultant magnetic moment per unit 

volume can be symbolized as magnetization M
r

. The time dependent behavior of M
r

in 

the presence of an applied magnetic filed can be derived as in (2-2) using 
dt
Jd
r

r
=τ  and 

J
rr

γµ =  

BM
dt
Md rr
r

×= γ         (2-2) 

 

The Bloch equation (2-2) describes that the vector 
dt
Md
r

is always oriented 

perpendicular to the plane of B
r

and M
r

, which leads to the precession movement of M
r

 

with the precession rate being dependent on the strength of the magnetic field B
r

.  This 

unique angular frequency of nuclear precession is called Larmor frequency 0ω  

 

ω0 = γ B0       (2-3) 
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Table 2-1.  Properties of some NMR-Active Nuclei [Liang and Lauterbur, 1999] 

Nucleus    Spin       Relative Sensitivity      Gyromagnetic Ratio  (MHz/T) 

1H             1/2               1.000                                      42.58 
13C            1/2                0.016                                     10.71 
19F            1/2                0.870                                      40.05 
31P            1/2               0.093                                       11.26 

 

Usually the total magnetic field is composed of three components [Nishimura, 

1996] 

 

( )( )10

,,

)(
10

BrGkBBM
dt
Md

dt
Md

BGBB

rrrrr
rr

+⋅++×=







+








δγ

δ

               (2-4) 

 
 

The gradient field G
r

 is essential to creating 2D or 3D images and always in the z 

direction, parallel to the 0B
r

. The gradient field is discussed in the next section. 1B
r

 is a 

shot-time varying magnetic field that is perpendicular to the 0B
r

 

Relaxation is an important descriptive parameter for the time evolution of 

magnetization in the two directions. When a 1B
r

field at the Larmor frequency is applied to 

the system, the magnetization is perturbed and flipped in the classical vector models. The 

perturbed magnetization shortly recovers the equilibrium. The recovery time frame is 

unique for the object of nuclei ensemble, and can be characterized with two parameters. 

The first parameter, T1, describes the spin- lattice relaxation, or longitudinal relaxation. It 
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is mathematically described by:  

 

1

0)()(
T

MtM
dt

tMd zz −
−=

r
     (2-5) 

  

where )(tMz is the longitudinal magnetization at time t and 0M is the initial longitudinal 

magnetization. 

The second parameter, T2, describes the spin-spin relaxation or the transverse 

relaxation. The characteristic decay time T2 causes the transverse magnetization TM  that 

is perpendicular to the main magnetic field to relax back to zero by dephasing the 

individual spins : 

 

2

)()(
T

tM
dt

tMd TT −=
r

     (2-6) 

 

Table 2.2 Typical brain tissue parameters measured at 1.5 T [Vlaardingerborek and Boer] 

 

 

 

   : ρ is the proton density 

 

 

Tissue                             T1(ms)                  T2(ms)                     relative  ρ 

White matter                    510                        67                             0.61 
Gray matter                      760                        77                            0.69 
Cerebrospinal fluid          2650                     280                           1.00 
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These two relaxation phenomena are the main source for the detectable MR signal, 

and are derived by Eqn (2-5) and (2-6) in the assumption of a homogeneous external 

magnetic field. The field inhomogeneiy which is often problematic for brain imaging 

causes additional signal attenuation. This is parameterized by the relaxation time T2*. T2* 

is proportional to T2 and  is also dependent on the field inhomogeneity. By combining (2-

5) and (2-6) the Block equation becomes:  

 

  

d
r 
M 
dt

= γ
r 

M × B −
M x

r 
i + M y

r 
j 

T2

−
(M z − M z

0)
r 
k 

T1

      (2-7) 

 

2.3 Signal detection and MRI reconstruction 

MR signal detection is based on Faraday’s law of electromagnetic induction and 

the principle of reciprocity. The time varying magnetic flux through a conduction loop, 

i.e. a receiver coil will induce an electromagnetic field in the coil. 

The magnetic flux through the coil by   
r 

M (
r 
r ,t)  is given by  

 

  
Φ(t) =

r 
B r(

r 
r )

object
∫ ⋅

r 
M (

r 
r ,t ) d

r 
r      (2-8) 

 

According to Faraday’s law of induction, the voltage V (t) induced in the coil is 

 

  
V (t) = −

∂Φ(t)
∂t

= −
∂
∂t

r 
B r(

r 
r )

object
∫ ⋅

r 
M (

r 
r ,t) d

r 
r      (2- 9) 
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If the receiver coil has a homogeneous reception field over the region of interest, 

as is often assumed, the signal expression can be fur ther simplified  

 

rderMtS tri
xy

object

rrr r)()0,()( ω∆−∫=      (2-10) 

 
where tt ⋅∆ )(ω  is the phase accumulation due to the frequency shift from 0ω . 

The gradient field G
r

relates specifically to the spin frequency at an object location, 

namely, r
r

 :  

 

rG
rrr

⋅+= γωω 0      (2-11) 

 

Measured with respect to the echo time TE, t’=t-TE 

∫ +=+=
t

xyxyyn xkykxtGyTGdttyx
0

, ),,( γγω      (2-12) 

∫==
'

0

)(
t

ynyyny dttGTGk γγ         (2-13) 

∫==
'

0

)('
t

xxx dttGtGk γγ         (2-14) 

These xk ,and yk  define k-space. Expanding (2-10) with (2-11) through (2-14), the signal 

can be expressed as a function of xk ,and yk  (2-15) 

dxdyeyxtS ykxki

object

yx )(2),()( +−∫∝ πρ                   (2-15) 
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2.4 Diffusion 

 
Diffusion refers to a macroscopic manifestation of Brownian motion, which was 

first studied by Robert Brown in the early 19th century. The Brownian motion refers to 

the random movement of particles in a medium, and the trajectories of the motion are 

continuous. If the motion is described in a discrete fashion, it may be called as random 

walk process.  

One way of mathematically relating Brownian motion to the diffusion equation is 

summarized in the Appendix A. A derivation of the diffusion equation from a random 

walk is discussed in the Appendix B. Those two approaches (Appendix A and B) 

constitute the background theory for the Chapter 6: probabilistic connectivity via 

diffusion process.  

The diffusion equation can also be obtained using Fick's law that relates the bulk 

diffusion flux J
r

to the concentration gradient C∇ through an apparent bulk diffusion 

coefficient D .  

CDJ ∇−=
r

,       C : the concentration gradient         (2-16) 
 

 

Combining the Fick’s law (2-16) with the equation of conservation of mass Eqn. 

(2-17),  

 
 
 

t
C

J
∂
∂

−=⋅∇
r

                        (2-17)  
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The diffusion equation is obtained as 

 

)( CD
t
C

∇⋅∇=
∂
∂

                      (2-18)  

 
 

One solution to the diffusion equation is given by the Gaussian function  

 






 −⋅−−






=

Dt
rrrr

Dt
trC

4
)()(

exp
4

1
),( 00

3 rr
r

π
      (2-19)  

 
 

in which, the diffusion coefficient D may be theoretically derived. This was done by 

Albert Einstein using kinetic theory.  D may be experimentally measured in several ways. 

The next section discusses measuring D using MR experiments. 

 

2.5 Modified Block equation with diffusion and DT-MRI  

Diffusion tensor magnetic resonance imaging (DT-MRI) is built on the assumption 

that three-dimensional diffusion phenomenon of water molecular ensembles can be 

assessed and described with diffusion tensor on a voxel basis. The diffusion tensor has 

been proved to be a particularly successful and useful model in brain imaging for 

describing the microstructure of the biological tissues using MR imaging. 

As already mentioned in the previous section, the NMR phenomenon is created by 

an ensemble of nuclei. Thermal physics tells us that the particles are always thermally 

agitated and the associated kinetic energy is proportional to the environmental 

temperature. Therefore, if the temperature is not at absolute zero, the system is not static. 
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Since anything we can measure in reality exists at some temperature above zero the 

Block equation should involve the diffusion considerations.  

A non- invasive method for measuring diffusion in biological system has been done 

by modeling the Block equations with diffusion motion. In a bipolar pulsed-gradient 

experiment [Fig 2-2], which was developed based upon a spin echo EPI pulse sequence 

[Fig 2-1], the interval of two diffusion sensitizing gradients (∆ ) leads to the added 

dissipation of transverse phase by individual spin’s random displacements and the 

resultant signal attenuation can be derived as follows [Stejskal and Tanner, 1965] 

 

)(
)(

1

0

2

MD
T

kMM
T

jMiM
BM

dt
Md zzyx r

rrr
r

r
∇⋅∇+

−
−

+
−×= γ      (2-20)         

 
 
where D is the diffusion coefficient. 

The solution of this equation is given by: 

 

)')'()''(exp())(exp()
1

exp()0(),(
02

dttkDtktkri
T

tMtrM
t rrrrr
∫−⋅−⋅−⋅==               (2-21)         

 

where 
  

r 
k (t) = γ G(t')dt '

0

t

∫ ,  

 
Ignoring T2 attenuation, the total magnetization ratio at time TE may be expressed 

in Eqn (2-21) as 

 

),exp(
)(

0

bD
M

TEM −=                (2-22)         

 
 

where 
  
b =

r 
k (t') ⋅

r 
k (t')dt'

0

TE

∫ ,                
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If anisotropic Gaussian diffusion in 3D space is considered, a tensor model may be 

employed, and the equation (2-22) above becomes  

 

 

),'exp(
)(

0

gDgb
M

TEM rr−=                               (2-23)   

 
 

where D  is a 3x3 tensor and g
r is a unit vector that represents the direction of the 

diffusion encoding gradient. More information on diffusion tensor formalism and its 

invariant measures can be found in the Appendix C. Assuming that water molecules are 

electromagnetically neutral, which leads to D  being a symmetric tensor, solving the six 

unknown tensor elements requires at least six different g
r orientations; If more than six 

encoding directions  are used, Eqn (2-23) becomes an over-determined equation. That can 

be solved by multivariate linear regression or non- linear regression. In this dissertation, 

all DT-MRI studies are based on twelve diffusion sensitizing encoding directions [Hasan 

et al 2001a] and Eqn (2-23) was solved using the singular value decomposition with 

linear regression. 

In the Stejskal-Tanner scheme (Fig 2-2), commonly employed for DT-MRI 

experiments, the b value (or b factor, diffusion weighting) is summarized as follows 

[Mattiello et al., 1997] 

 
),3/(222 δδγ −∆= Gb                                    (2-24) 
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where γ is the gyromagnetic ratio, δ is the duration of the diffusion sensitizing gradient 

and ∆  is the separation time of the two diffusion sensitizing gradient G. 

Conventional DT-MRI uses the same b value (2-25) for each encoding direction. 

Utilizing different b values per encoding direction is the subject of Chapter 3 and the 

solution of the diffusion equation- the Gaussian function (2-20), is exercised in the rest of 

the chapters. 

  

 

 

 

 

 

 

 

 

Fig 2-1 Spin echo EPI pulse schematics. EPI was developed by P. Mansfield [Mansfield, 1977]. 

EPI is a fast MRI technique to acquire an image in only a single or very few excitations.  
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Fig 2-2. Stejskal-Tanner sequence. After a 90° RF pulse, the left side diffusion gradient G is on 

over a short period δ and another RF pulse 180° is applied to precede the right side diffusion 

gradient G. Two diffusion sensitizing gradients G are separated by the time interval∆ . G, δ  and 

∆  affect the total amount of diffusion related signal attenuation on the sampled data at the echo 

time. 

 

 



 

 

16 

 

CHAPTER 3 

OPTIMIZATION OF DIFFUSION TENSOR ENCODING WITH 
ANISOTROPIC DIFFUSION WEIGHTING  

 

3.1 Introduction 

Diffusion tensor MRI and the associated measures, such as fractional anisotropy 

(FA), mean diffusitivity (MD), and eigenvector directions, are highly sensitive to image 

measurement noise.  The main strategy to decrease noise sensitivity is to employ 

uniformly distributed diffusion encoding directions with a diffusion-weighting value that 

is nearly optimum for the mean diffusivity. [Papadakis N.G et al., 1999; Jones DK et al, 

1999; Armitage et al., 2001; Hasan K.M. et al., 2001]   These approaches make sense for 

the case where the diffusion tensor distributions and directions are arbitrary or unknown.  

However, in the case where the diffusion tensor shape and orientation in a specific region 

may be estimated a priori, such as in the corpus callosum, the corticospinal tract, or the 

spinal cord, it may be possible to make more precise measurements in that region by 

using an anisotropic diffusion-weighting scheme.  In this study, the diffusion weighting 

was optimized for each encoding direction to minimize the error in FA measurements of 

the corpus callosum. 
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Fig 3-1 Examples of directional sampling schemes.  [Le Bihan et al., 2001]. Conventionally 

diffusion sensitizing encoding directions are set to be uniformly distributed and a single diffusion 

weighting factor is used for all directions. 

 

3.2 Theory  

The diffusion to noise ratio (DNR) introduced by Xing et al [Xing et al., 1997] is 

defined as: 

D

D
DNR

σ
=    DSNRκ=   , where 

)2exp(1 bD

bD
D

+
=κ                                (3-1) 

 

where D  represents the diffusitivity,  b the diffusion weighting,  and Dσ the standard 

deviation of diffusitivity. 
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Fig 3-2. Plot of 2
Dσ  as a function of ibD . 2

Dσ  is minimized at 1.1~ibD  

 

The measured diffusitivity variance (Fig 3.2) can be plotted as a function of ibD , 

and the function has a global minimum at 1.1~ibD . 

Since the diffusion-weighted image in each direction is considered to be 

independent in the diffusion tensor-encoding scheme, the DNR in each direction i can be 

denoted as
iDiD σ/ . Consequently, an invariant function, i.e., a function of eigenvalues 

can be expressed as a function of the measurement of iD . MD and FA variance 

optimizations are constructed as follows.  
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MD optimization in the anisotropic scheme 

 

The variance of MD may be expressed as: 
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MD is a linear summation of iD  which makes the second term in (3-2) to vanish.  

This means, each iD optimization, i.e. minimization of iD
2σ , will lead to MD 

optimization. 

Since MD is the first order of diffusitivity variables iD  the variance is easily 

derived. It turns out to be the same as DNR calculated above since the jG ,3,2,1
1−  in Eqn 

(3-3) is a scalar factor. 
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FA optimization 

Unlike the MD variance described above, the FA variance has a non-zero second 

term in (3-2) due to the fact that FA is the second order function of iD . Detailed 

derivation is described in the Appendix C. 
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If FA is expressed as a function ofDi , the variance FA has the following form.  
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ji

S
DD

bbS
ji

1
2

0

2
2 0σ

σ =   (Appendix C)              (3-4 b) 

The FA
2σ  is a function of diffusitivities iD  and b factors ib . The highlight of this 

chapter is in fact derivation of (3-4b) which shows that the covariance from two 

independent directional diffusitivities is related to the diffusion weight ing factors. 

Obviously if the two diffusion weighting factors are large, the covariance of the 

directional diffusitivity becomes negligible.  

Once the ROI is chosen, its representative iD is inserted into (3-4) then FA
2σ  is 

expressed as a multivariate quadratic function (3-5) 

Nibf iFA L1),(2 ==σ , N = number of encoding directions.        (3-5) 
 

Any multivariate minimization algorithm, such as the direction set method, which 

doesn’t require derivatives, may be implemented to find the minimum FA
2σ  [Lee and 

Alexander, 2004]. 

 

3.3 Methods  

The method that was used in this study involves error/noise propagation through 

Taylor expansions to calculate the error (variance) function, f=f(diffusitivities, b factors), 

and a multivariate optimization algorithm to find the minimum of the error function.  
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A single-shot spin echo EPI sequence with diffusion-tensor encoding (12 

directions (optimized using minimum energy criterion [Hasan et al 2001a]), & b = 

1000s/mm2) was used to estimate the diffusion tensor of the corpus callosum. A region of 

interest (ROI) in the  corpus callosum, which is the largest white matter pathway 

consisting mostly of contralateral axon projections that are made up of about 200-250 

million nerve fibers, was selected manually. Only voxels with FA > 0.6 and the x 

component of the major eigenvector> 0.9 retained. The measured diffusitivities of these 

voxels were averaged for each encoding direction to estimate a representative set of 

directional diffusitivities in the corpus callosum [Table 3-1].  Powell’s optimization 

method was used to estimate the twelve  directionally optimum b factors by minimizing 

the variance of FA. The optimum diffusion weighting for each direction is listed in Table 

1-1.  Note that the optimum directional diffusion weightings ranged between 595 and 

2014 s/mm2.  In order to achieve the necessary diffusion weighting for the anisotropically 

optimized encoding set, the times ∆ (interval between the two diffusion gradient pulses), 

and δ (the diffusion gradient pulse duration) were increased from 21 ms to 26.2 ms and 

from 27.4 ms to 32.2 ms, respectively.  A subsequent diffusion tensor scan was 

performed on the same subject using both with the isotropic diffusion-weighting (b = 

1000 s/mm2) and the optimized anisotropic diffusion-weighting scheme listed in Table 3-

1.  The scan was repeated nine times for each set of encoding weightings to estimate the 

variance in FA for the region that was selected (FA>0.6, ex >0.9) in the corpus callosum.   
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3.4 Results 

Simulation 

The error propagation in simulation predicted that the variance in FA should 

decrease by 56% using the anisotropic diffusion-weighting (shown in red plot, Fig 3-3). 

A set of FA optimized b factors was inserted to the Eqn. (3-2) to see the impact on MD 

variance. The reduction rate of the MD variance was close to the FA variance reduction 

(shown in blue plot, Fig 3-3) indicating that us ing the FA optimizing b factors may be 

also beneficial to optimizing MD measurements. 

 

 
 
 

Fig 3-3 simulation results using the optimum diffusion weighting that are listed in the Table 3-

1.The line in green is the variance by using b=1000 s/mm2 isotropically, and the red line indicates 

the variance of FA by using anisotropic b factors listed in the table 3-1. The blue line is the 

consequent MD variance by using the same b factors that were optimized for FA.  
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Table 3-1. Encoding directions, average diffusit ivities from ROI, their standard deviation, and 
optimum diffusion weightings 
 

 Gx Gy Gz Mean (x10-3) Std dev (x10-3) FA optimized b factors 

   0.418 
   0.502 
   0.144 
   0.698 
  -0.090 
  -0.224 
   0.953 
   0.617 
  -0.918 
  -0.577 
   0.048 
  -0.735 

 0.824 
 0.568 
-0.429 
 0.048 
-0.829 
-0.964 
 0.194 
-0.166 
 0.354 
 0.740 
 0.276 
-0.617 

 0.383 
 0.652 
-0.891 
-0.714 
 0.552 
-0.142 
 0.234 
 0.769 
 0.180 
-0.344 
-0.960 
 0.282 

    0.568 
    1.11 
    0.562 
    0.988 
    0.649 
    0.738 
    1.91 
    1.08 
    1.36 
    0.741 
    0.525 
    1.38 

    0.0921 
    0.187 
    0.0458 
    0.220 
    0.0645 
    0.0751 
    0.208 
    0.200 
    0.185 
    0.0860 
    0.0737 
    0.156 

1759 
1033 
1968 
825 
2014 
1954 
510 
872 
595 
1104 
1971 
623 

 
 

ROI based analysis  

Fig 3-4 shows an example of how voxel based analysis was done. In most cases, 

the FA variance was noticeably larger when using the isotropic diffusion weighting factor 

of 1000 s/mm2 than when using the optimum diffusion weighting factors in the corpus 

callosum area. The variance of the collection of voxels was estimated in the ROI shown 

in the Fig 3-5. The ROI was manually drawn in the corpus callosum region with the same 

threshold when the optimum diffusion weighting factor scheme was performed in the 

method section. The x axis in the plot indicates the ROI (voxel index) and each bar 

represents the standard deviation over the nine acquisition period. A significant reduction 

in the variance was observed using the anisotropic diffusion weighting scheme.  

In addition to the reduction of the FA variance, new optimum b factors decreased 

the residual error |)
lnln

(| i
i

T
i

i

io
i gDg

b
SS

D∑ −
−

= in the corpus callosum region from ~2.5 

to ~2.1. This fact ensures a better fitting to the single tensor model with the optimum b 
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factors. 

 

Visualization of images 

The optimum tensor encoding was applied to four other subjects and similar results 

were obtained.   Axial FA maps through the body of the corpus callosum for isotropic 

diffusion weighting and the optimized anisotropic diffusion-weighting are shown in Fig 

3-6.  In general, the corpus callosum appears fuller and less noisy in the FA image 

obtained with anisotropic diffusion-weighting. The other white matter regions, however, 

appear blurrier and noisier. The variances of the FA maps across the nine  runs are shown 

in Fig 3-6.  The variance in the corpus callosum is lower for anisotropic diffusion-

weighting but higher in most other brain regions. The overall reduction of the FA 

variance in the corpus callosum region using optimum b factors was threefold.   

 

 
   3.5 Conclusions 

Optimizing the diffusion-weighting for individual encoding directions was found to 

reduce the variances of FA measurements in regions where there was an a priori estimate 

of the apparent water diffusion tensor.  However, as expected, in regions where the 

diffusion tensor was not similar to the optimization case, the accuracy tended to be 

similar or worse.   

The sensitivity of the anisotropic encoding to slight variations in tensor shape and 

orientation is unknown.  In addition to the corpus callosum, this method may be useful 

for studies of other white matter regions that are relatively homogeneous and the 
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approximate direction is known before the experiment, such as the spinal cord and the 

corticospinal tract. 

 

 

 

 

 

Fig 3-4 An example of voxel based analysis using the optimum diffusion weightings that are 

listed in the table 3-1. As shown in the bottom left plot of the figure, the FA value at a voxel 

fluctuates over the time series when using an isotropic diffusion weighting factor 1000 s/mm2. 

Using the optimum diffusion weighting factor, FA variance was significantly reduced (bottom, 

right). 
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Fig 3-5 ROI analysis using the optimum diffusion weightings that are listed in the table 3-1. Each 

bar represents the standard deviation over nine time series. The standard deviation was noticeably 

reduced using anisotropic diffusion weighting schemes.  
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Fig 3-6 The top row: FA maps using b= 1000 s/mm2   vs. FA map using optimum b factors listed 

in the Table 3-1. The bottom row:  the variance map of FA over repeated measurements using 

conventional b factors vs. the variance map of FA using optimum b factors. Significantly lower 

variance was observed in the CC using the anisotropic diffusion scheme.  
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CHAPTER 4 

 NOISE FIILTERING FOR DT-MRI 

 

4.1 Introduction 

The high sensitivity of DT-MRI to noise and error in the DW images may be 

locally reduced by using the anisotropic diffusion weighting scheme discussed in the 

previous chapter. However, the local error minimization from Chapter 3 is only optimal 

for a specific tensor shape and orientation which must be known a priori. Therefore it 

might not be useful for the whole brain assessment because its directional diffusitivity 

would be different from region to region. To target the general heterogeneous region, 

increasing the number of averaging DW data can substantially increase the SNR, yet in 

certain cases (e.g., young children, anxious or claustrophobic subjects, etc.) it may be 

desirable to minimize the acquisition time of the DT-MRI protocol.  Lowering the spatial 

resolution might increase the SNR, but obviously, the spatial resolution should be 

improved to reduce partial volume averaging and to study the anatomy with greater detail 

[Alexander et al, 2001].  Consequently, either the reduction of scan time (e.g., fewer 

averages or encoding directions) or the acquisition of images with smaller voxel 

dimensions will significantly reduce the SNR of DT-MRI measurements, thereby 
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affecting the accuracy.  Reduced SNR will not only increase the variance of the 

diffusivities, anisotropy, and eigenvector directions, but will also induce biases into the 

eigenvalues and anisotropy measures [Pierpaoli and Basser, 1996; Basser and Pajevic, 

2000].  The sorting bias of eigenvalues in noisy DT-MRI data causes a systematic  

overestimation of the largest eigenvalues and an underestimation of the smallest 

eigenvalues [Anderson, 2001].  

In this chapter, a more reliable method to decrease the noise in DT-MRI through 

post processing is discussed and anisotropic Gaussian smoothing using the diffusion 

tensor at each voxel as the anisotropic diffusion kernel is proposed. The application of the 

diffusion tensor as a convolution kernel will inherently smooth the data more in the 

direction of greater diffusivity which is generally parallel to the orientation of white 

matter tracts in the brain.  Conversely, in gray matter areas, which demonstrate more 

isotropic diffusion, the smoothing will also be more isotropic. The anisotropic kernel 

smoothing approaches are compared against isotropic Gaussian smoothing and the 

Perona Malik filtering algorithm. Comparisons of filtering applied directly to the 

diffusion weighted data and to the estimated diffusion tensor elements are performed. 

The performance of each spatial filtering method is evaluated as a function of SNR in in-

vivo high- resolution human DT-MRI data using the root mean squared error (RMSE) 

that describes the accuracy and variance of the diffusion tensor measures.   
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4.2 Theory 

Image filtering and smoothing methods may be used to reduce noise in medical 

images.  However, certain types of smoothing may also blur important image features 

and the edges of structures.  Fine image features and edges may be preserved using 

anisotropic diffusion filtering methods such as Perona-Malik (PM) algorithm [Perona and 

Malik, 1990]. Note that anisotropic diffusion here refers to the image filter used and not 

the anisotropy from the diffusion tensor. The PM filter was originally developed for 

scalar images and methods for smoothing DT-MRI data may require more complex 

approaches than scalar image smoothing methods, because the diffusion tensor image 

data is multidimensional and represents spatially coherent directional information by the 

eigenvectors and eigenvalues. In this section, several smoothing algorithms are discussed: 

They are the conventional isotropic Gaussian kernel, which is mostly used in the medical 

image community, an anisotropic diffusion scheme using PDE to compensate for the 

demerits of Gaussian blurring, and anisotropic Gaussian kernel smoothing that is based 

on the measured diffusion tensor. 

 

Gaussian kernel smoothing 

Gaussian kernel smoothing is typically used in the field of image processing. The 

Gaussian convolution is a linear operator and the resultant convolved image has less 

noise due to the local averaging operation. The Gaussian kernel smoothing is essentially a 

low pass filter in that the abrupt signal intensity change, which often time is due to noise, 

is decreased thanks to the averaging with the neighborhood intensity values. The n-
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dimensional Gaussian distribution is defined as 

  

  
K(

r 
r ) =

exp(−
r 
r '
r 
r /2σ 2)

(2π )n / 2σ n ,        
r 
r = (r1,r2,L,rn )'                    (4-1) 

 
 

where r
r

 is the position vector, and σ is the standard deviation of the distribution )(rK
r

in 

the n dimensional case.  

This kernel in Eqn. (4-1) is herein called the isotropic Gaussian kernel partially 

because it has an isotropic shape and also in order to be compared against an anisotropic 

Gaussian kernel tha t is introduced later. 

The mathematical description of Gaussian convolution is defined over the entire 

domain, from - 8 to + 8, or the entire grid of points of data. However, integration of the 

entire region for each data point is computationally overloaded, and in reality, the 

Gaussian decreases exponentially, a reasonable approximation could be used. For 

instance, integrating the kernel in the closed cube [-2.58, 2.58] leads to the value, 0.99, 

which is close to 1. Therefore, a limited window size is used instead of the entire domain 

and, which leads to the procedure that the kernel should be normalized in order to keep 

the total probability 1, so that the kernel K is transformed as
∫

=

window

K
K

K
~ . 

To increase the kernel size, the iterated convolution is used. 

 

tttttn
KKKKK ⊗⊗⊗= ...    (n times)                     (4-2) 
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PDE based image smoothing : Perona Malik Algorithm 

Partial differential equations (PDEs), specifically the diffusion equation (hereafter, 

heat equation, not to be confused with the diffusion in diffusion tensor MRI), based 

technique have been used for imaging processing, and the basic idea is to lessen the 

“diffusion”, i.e., regional intensities mixing effect, where the magnitude of the gradients 

of the image intensity is large, so that the edges are kept to be sharp and the 

homogeneous area is to be smoothed relatively generously [Perona and Malik, 1990]. The 

“diffusion” function in most PDE based image smoothing schemes, is governed by image 

intensity. Eqn (4-3) is the heat equation that the Perona Malik (PM) algorithm is based on.  

 

∂I
∂t

= div[g( ∇I )∇I]                            (4-3)   

 

where I∇  is the image intensity gradient and there are infinite numbers of degree of 

freedom for choosing the function g. One common characteristic that the g function must 

have is an inverse relationship with the image gradient I∇ . Followings are examples of 

the function g [Catte et al., 1992]: 

 
2)/()( λIeIg ∇−=∇ , which tends to be better for high contrast edges over low contrast ones, and 

 

NI
Ig

)(1

1
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λ
∇

+
=∇ , which tends to better for wide regions over smaller ones. 
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In this study, the PM algorithm for DT-MRI is formulated as (4-4) 

 
])/exp[()( 2KIIg ∇−=∇                (4-4) 

 

Eqn (4-4) is from Parker et al [Parker et al., 2000]. 

 

Other Approaches 

Besides applying the PM algorithm to the raw, diffusion-weighted scalar images 

prior to the calculation of the diffusion tensor and associated measures, Pajevic et al used 

a B-spline interpolation method to regularize the diffusion tensor field. More recently, 

several investigators have applied constrained variational principles to the full diffusion 

tensor data with promising results [Pajevic et al., 2002; Coulon et al., 2004; Tschumperle  

and Deriche 2003; Wang et al., 2003, 2004]. However, these approaches have not been 

widely used because they are relatively complex and the computational demands can be 

high. Ding et al. developed the original Weickert’s method to provide a more reliable and 

computationally less demanding smoothing algorithm. [Weickert, 1999; Ding et al., 

2005] 

 

Gaussian kernel smoothing (revisited): Anisotropic Gaussian kernel smoothing  

The anisotropic Gaussian kernel that is introduced herein is a generalization of the 

isotropic Gaussian kernel formalism. H is a constant matrix that linearly transforms the 

isotropic Gaussian function to be an anisotropic shape of Gaussian profile.  

 

  KH (
r 
r ) = K(H−1r r ) /det(H )      (4-5) 
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Note that )(rKH

r
 remains as an isotropic Gaussian kernel if H is an identity matrix. 

The anisotropic Gaussian kernel based on the diffusion tensor can be built on the 

Riemannian metric tensors for the purpose of smoothing more along the larger metric 

distance, such as the major eigenvalue in the diffusion tensor [Chung et al., 2003; Lee et 

al., 2006]. The anisotropic Gaussian kernel may be formulated as 

 

2/12/

1

)(det)4(
)4/exp(

)(
Dt

trDr
rK

nt π

rr
r −−

=                    (4-6) 

 

where t represents a dummy variable (a diffusion time) that is used to adjust a width of 

the kernel (4-6) and D is a diffusion tensor.  
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 Fig 4-1.The anisotropic Gaussian kernel that is projected in the x-y plane 
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Voxel based normalization 

The tensor D should be normalized in a voxel basis in order to regularize a kernel 

shape for various ranges of diffusitivities. Our interest is in an anisotropic tensor shape 

not the magnitude of the tensor. For instance, there can be a case where two different 

voxels have the same anisotropy index but have different eigenvalues (Fig 4-1), which 

means that the ratio of eigenva lues of each voxel is constant. If each tensor is not 

normalized, the resultant anisotropic Gaussian kernel from the tensor that has bigger 

eigenvalues has a bigger bandwidth with a given t in Eqn. (4-6). Normalization can be 

done with the trace of the tensor or one of the maximum eigenvalues or minimum 

eigenvalues. In this chapter, to make a fair comparison with isotropic Gaussian kernel 

smoothing, the trace is used for the scale factor to regularize each diffusion tensor. 

In this study, a 5 x 5 x 5 voxel window size and 2.0t =  were chosen for the voxel 

size 1mm x 1mm x 1mm. If t (or s), is small enough for the FWHM to be within one 

voxel, then the purpose of Gaussian kernel smoothing, local averaging, is not effectively 

done. Also, making t relatively big results in only the concentrated value around the peak 

of the Gaussian profile within the window.  
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Fig 4-2. One dimensional Gaussian distribution as the diffusion time t increases. Each curve is 
normalized in such that the integral of the underneath area should be one. In a very shot time, the 
Gaussian profile is narrow (black, t=1) and the longer time passes, the more flattened the profile 
becomes. Therefore, if t (4-3) is too big then the distinction between different shapes of 
anisotropic Gaussian at each voxel would be not attainable. 

 
 

 
(a) (b) 

 
 
 
 

Fig 4-3.  Example of smoothing kernels (x-y plane projected) for a voxel in the corpus 
callosum for (a) isotropic Gaussian kernel and anisotropic Gaussian kernel (b). The anisotropic 
kernel shows increased preferential smoothing in the x direction, which is parallel to the WM 
structure of the corpus callosum. 
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Positive Definite Constraints 

A diffusion tensor is supposed to be positive definite and most regularization 

algorithms for DT-MRI have a constraint to keep the tensor positive definite. However, 

the Gaussian convolution operation doesn’t affect the tensor’s positiveness if the data is 

given as positive definite [Appendix D], so that it doesn’t require any constraint. On the 

other hand, the PM algorithm may not hold the positiveness [Fig 4-4]. 

 

 

Fig 4-4. A simulation to test the preservation of positive definiteness of the diffusion tensor. 

Artificial noise was added to a Cholesky-decomposed matrix (L and L’) of the tensor (positive 

definite) so that composed LL’ was guaranteed to be positive definite. Gaussian smoothing and 

PM filtering were applied to the noisy positive definite tensor. Negative voxels were rapidly 

formed by PM filter (plot in blue) whereas positive definiteness was hold with Gaussian 

smoothing. 



 

 

38 
 

4.3 Methods 

DTI Acquisition 

DT-MRI data sets that were used for the evaluation of various smoothing 

algorithms addressed in this paper were obtained from a single healthy subject.  The 

imaging was performed in accordance with the guidelines of the Institutional Review 

Board at university of Wisconsin.  DT-MRI was performed on a 3.0 Tesla GE SIGNA 

(GE Healthcare; Waukesha, WI) using a diffusion-weighted, single-shot, spin echo, EPI 

pulse sequence with diffusion-tensor encoding in 12 directions (direction set was 

optimized using minimum energy criterion – Hasan et al. 2001a). The imaging protocol 

was: cardiac gated (effective TR = 18 heartbeats ~ 19 s), TE = 73.9 ms, 1 NEX, b = 1000 

s/mm2, slice thickness = 1.8mm (contiguous 0 mm gap), 54 contiguous axial slices, field-

of-view = 230 mm, matrix = 128x128, interpolated on the scanner to 0.8984 x 0.8984 

voxel dimension.  The scan was repeated twelve times. Two data sets that had relatively 

severe head movement were excluded for the study. Image misregistrations between ten 

repeated data sets were corrected using the 3D affine image registration program Flirt in 

the FMRIB software library (http://fmrib.ox.ac.uk/fsl/). Ten registered data sets were 

used to create “gold standard” averaged data and also different levels of SNR data, such 

as NEX 3, NEX 6 data. The SNR of different NEX data were estimated in the high 

anisotropy region (FA>0.45), and is listed in Table 1. 

Linear regression was used to estimate the diffusion tensor from the raw DW data.  

The diffusion tensors were diagonalized and maps of the mean diffusitivity (MD) and  

fractional anisotropy (FA) [Basser and Pierpaoli, 1996] were generated using the 
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numerical methods that are described in [Hasan et al., 2001b]. 

 

Evaluation of Anisotropic Smoothing 

Three image filters were evaluated: an isotropic Gaussian kernel, an anisotropic 

Gaussian kernel based on the diffusion tensor D, and the Perona Malik (PM) algorithm.  

Filter performance was evaluated for application to both the original diffusion-weighted 

images, and the diffusion tensor elements. 

 Various kernel widths were investigated by using the iterative convolution in (4-2) 

up to ten times. The optimal diffusion time (a temporal step size for each iteration) for the 

Gaussian kernel and the PM smoothing was investigated with a small set of data prior to 

applying different types of smoothing algorithms to the entire  data sets for evaluation. 

The optimal diffusion time t was sought in a range of  values [0.01, 0.05, 0.1, 0.2…1.0] 

for the step size that led to the minimum RMSE of FA and each diffusion time that was 

used was 0.2 (s; seconds) for the lowest SNR data, and 0.1 (s) for the rest of data. 

The effects of the filters on two widely used DTI measures – the fractional 

anisotropy (FA) and the mean diffusivity (MD = trace(D)/3) - were evaluated by 

estimating the root mean squared error (RMSE) at each voxel for each iteration, i, which 

was quantified as the root mean square error between the gold standard maps, x~  and the 

smoothed data, ix̂ , 

 

RMSE i ( ) >−<= ∑ 2ˆ~
ixx        (4-7)  
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The effects of filtering on the major eigenvector orientation (the directional field) 

by Gaussian kernel convolution were also evaluated for voxels with high anisotropy (FA 

> 0.45).  The average error in the major eigenvector orientation was 

 

ang i )ˆˆ(cos ,,11
1 ∑ ⋅<= −

n
niee                  (4-8) 

where 
1̂e  is the gold standard major eigenvector and 

nie ,,1̂
 is the eigenvector from the nth 

filtered data set and ith iteration.   

 The measures were computed for the entire brain volume within the images. 

Regions of CSF were excluded from the analysis by using a trace threshold (trace > 0.003 

mm2 /s). All specific regions of interest including global white matter and grey matter 

ROIs were extracted using the software SPAMALIZE 

http://brainimaging.waisman.wisc.edu/~oakes/spam/spam_frames.htm by T. Oakes. 

 

Simulated Data Analysis 

The gold standard used in the real image data is non-ideal in that it still has some 

degree of noise and error.  In order to evaluate the filter performance relative to a true 

gold standard, we developed a realistic synthetic data set by taking a high quality DTI 

data set (SNR ~ 60) of a different subject with slightly different imaging parameters (3T; 

a quadrature birdcage headcoil; twelve diffusion-weighted encoding directions at b = 

1000 s/mm2 plus a non-diffusion weighted reference image (b = 0); peripheral pulse 

gating (TR was 13 heartbeats ~ 15s); eight repeated scans with magnitude averaging; 39 

contiguous 3 mm thick slices; voxel dimensions = 0.9375 x 0.9375 x 3.0 mm). To make 
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the noise ‘texture’ of the gold standard data smoother, a small degree of smoothing was 

performed using a single iteration of the isotropic Gaussian filter.  Noisy data sets at 

different levels were synthesized by adding zero-mean normal random noise with a range 

of standard deviations. The SNRs of the image sets were estimated in regions of high 

anisotropy (FA>0.45), and were between 15 and 77. The filter performance with the same 

methodology described in the previous section was applied.  
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Fig 4-5.The effects of filtering on FA (a), (c) and MD (b), (d) in the whole brain, CSF are 

excluded in the evaluation. SNR ~12 was shown in these plots. Tsr AG represents the case of 
filtering of tensor elements with an anisotropic Gaussian filter. Tsr IG represents the case of 
filtering of tensor elements with an isotropic Gaussian filter. Tsr PM represents the case of 
filtering of tensor elements with a PM algorithm. AG, IG and PM represent the case of filtering 
DW data. 
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Fig 4-6.The effects of filtering on FA (a), (c) and MD (b) (d) in the total white matter 
(thresholded FA >0.45). The effects of filtering on FA in the corpus callosum (FA is greater than 
0.6) is shown in (e) and (f) demonstrates the angular dispersion of the principal eigenvectors due 
to the filtering. 
 
 
 
 
 
        

 
 
 
 

 
 

 
 
Fig 4-7.The effects of filtering on FA (a), (b) and MD (c) ,(d)  in the total grey matter 

(thresholded FA <0.15, CSF excluded).  
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(a)      (b) 
 
Fig 4-8-(a). The first row is unfiltered FA, error, and variance map of SNR 12 data. The second 
row is the gold standard FA. The third row is AG filtered (the 4th iteration), the fourth row is IG 
filtered (the 3rd iteration), the fifth row is PM filtered (the 4th iteration) FA maps. Each iteration 
was corresponding to the minimum RMSE in Fig 4-5-(a). Fig 4-8-(b) All filtered images are at 
the 10th iteration. A significant error lied in the white matter region of IG filtered, (e.g. in the 
body of corpus callosum) Over-filtering led to almost invisible variance maps are in this figure 
(Fig 4-8-b 3rd column).  
 
 
 
 
 
 
 

 



 

 

46 
4.4 Results 

Real In Vivo DT-MRI Data 

 
Whole Brain. Plots of the estimated RMSE values (4-7) for all filters evaluated for 

the whole brain (excluding CSF) are shown in Fig 4-5. For all filters, the RMSE initially 

decreased for both FA and MD (Fig 4-5 a, b, respectively for SNR = 12) and then 

increased after 3-4 iterations for FA and a single iteration for MD.  At the lowest SNR 

level, the isotropic and anisotropic Gaussian filters were very similar in overall minimum 

RMSE; however, the error increased much more quickly for the isotropic filter after the 

minimum RMSE point was passed. The Perona Malik filter did not reduce the RMSE 

quite as effectively as the Gaussian filters at this level.  The minimum RMSE levels for 

both the original unfiltered data and each of the filters (applied to the tensor data) are 

plotted as a function of SNR in Fig 4-5-c, and d for FA and MD, respectively.  These 

plots demonstrate that all filters performed comparably, particularly when the SNR was 

large enough.  The relative improvement with filtering was much greater for FA maps 

than MD.  Another interesting observation was that filtering DW data (legends; Ag, IG, 

PM in Fig 4-5-a, b) was more effective until the RMSE reached each minimum RMSE 

and after each minimum RMSE point, filtering tensor elements (legends; Tsr Ag, Tsr IG, 

Tsr PM in Fig 4-5-a, b) increased errors more slowly from over-filtering. 

White Matter. Summary plots of RMSE filter performance in regions of generally 

homogenous white matter (FA > 0.45) are shown in Fig. 4-6.  In general, the behavior is 

similar to that observed over the entire brain.  The optimum number of iterations was 

roughly 2-3 for FA (slightly lower than for the whole brain) and 1-2 for MD.  In a region 
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of corpus callosum [Fig 4-6 e], the optimum number of iterations increased and the 

anisotropic Gaussian filter performed slightly better.  The error in the major eigenvector 

angle in white matter was greatly decreased with filtering with slightly better 

performance with the Gaussian filters at the lowest SNR level [Fig 4-6 f]. 

Grey Matter. Summary plots of RMSE filter performance in regions of moderately 

isotropic ‘grey’ matter (FA < 0.15) are shown in Fig. 4-7.  In general, the behavior of 

filtering on the MD maps (Fig. 4-7 b, d – optimum 1 iteration) is similar to that observed 

over the entire brain.  However, the filters took much longer to converge (6-9 iterations) 

when minimizing the RMSE of FA (Fig 4-7 a). Relatively large decreases in FA error 

were observed with all filters, particularly with filtering DW data [Fig 4-7c], particularly 

for lower SNR data, whereas the decreases in MD error where much smaller [Fig 4-7 d].   

Brain Images. Filter performance is compared visually in Fig 4-8.  The unfiltered 

FA map appears grainy relative to the gold standard with positive biases in regions of 

gray matter.  In all cases, the total-brain, optimum filtered image data appears much less 

grainy with reduced biases in grey matter regions. However, the fine white matter detail 

near the brain periphery is not as sharp as in the gold standard case.  The mean error and 

standard deviation maps demonstrate that these measures as well as the FA RSME in Fig 

2 are clearly reduced for all filters.  To investigate the effects of over- filtering on the 

image data, the FA maps are shown after 10 filter iterations.  It is clear that the isotropic 

Gaussian filter causes more blurring than either the anisotropic Gaussian or Perona Malik 

filters.  

Simulated Images.  The RMSE performance of the filters on the noisy synthetic 

data is plotted in Fig. 4-10.   Overall, the performances of the filters on images with 
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synthetic noise are similar to the results observed in real image data (Fig 4-5).  The 

effects of the step size for the Perona Malik filter are shown in Fig 4-10 a.  For t = 0.5 or 

less, the optimum filter performances (minimum RMSE condition) are similar, although 

smaller step sizes result in less variability with number of iterations, which may be 

preferable for cases where the optimum number of iterations are not well defined.  

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig 4-9. Simulation data  The first 
row is unfiltered FA, error, and 
variance map of SNR 15 synthetic 
data. The second row is the gold 
standard FA. The third row is AG 
filtered (the 7th iteration), the fourth 
row is IG filtered (the 5th iteration), 
the fifth row is PM filtered (the 8th 
iteration) FA maps. Each iteration 
was corresponding to the minimum 
RMSE in Fig 4-5-(a). 
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Fig 4-10. The effects of filtering on FA (a), (c) and MD (b), (d) in the whole brain region with 

synthetic noise added. 
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4.5 Discussion 

In this study, a comparison of different DT-MRI filtering methods was performed. 

In general all filtering approaches resulted in similar levels of error reduction in real DT-

MRI data when applied optimally; however, the Gaussian kernel filters (isotropic and 

anisotropic) performed better than the Perona Malik filter for the synthetic noise data set.  

Filtering, when applied optimally, does appear to reduce the root mean squared error 

(RMSE) of all the investigated measures – FA, MD and the major eigenvector direction.  

For DT-MRI data with the lowest SNR (~12), filtering reduces the RMSE of the FA by 

44%, 24%, and 67% over unfiltered data in whole brain, WM and GM.  For MD, the 

relative reductions in RMSE were much less ~ 11-12% for all tissue regions.  The angular 

error in the major eigenvector was reduced by roughly 33% in WM.  For all measures 

and tissue types, the relative and absolute improvements in RMSE decreased with 

increasing SNR.  Also, the number of iterations required to optimize the RMSE 

decreased with increasing SNR (data not shown).   

Although the optimum performance was similar for all filters in the real data, it was 

evident that the isotropic Gaussian kernel filter was more sensitive to over- filtering.  This 

is because the anisotropic filters (both anisotropic Gaussian and Perona Malik) performed 

preferential smoothing parallel to the white matter tracts, which minimizes the partial 

volume averaging between grey matter and white matter.  Since the optimum amount of 

filtering is generally not known in advance, anisotropic filtering strategies appear to be 

preferable to avoid excessive blurring.    

Another observation is that the optimum number of iterations was dependent upon 

both the tissue  and the specific measure.  For example, the optimum number of iterations 
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for minimizing RMSE of FA was generally lower in WM than in GM.  This would 

imply that the optimum filtering depends upon the specific tissue type and even the 

region of interest.  Consequently, it would be advisable to do less filtering if one is 

interested in regions of white matter FA; however, if the study focuses on gray matter 

regions like the basal ganglia, more filtering will help to reduce the amount of error in the 

measurement. In regions of white matter, the anisotropic Gaussian filters were less prone 

to errors from over-filtering.  Another example is the optimum number of iterations for 

minimizing the RMSE of MD is much smaller than minimizing the RMSE of FA.  This 

would imply that as long as the analyses of FA and MD were separate, different amounts 

of filtering may be used to optimize the errors in different maps. 

The RMSE measure is a nonspecific indicator of error in that it may reflect either 

systematic differences (e.g., mean difference) or signal variance (e.g., noise).  In general, 

the signal variance decreases with the higher amounts of filtering.  However, the 

systematic or mean differences often initially decrease a little, and then increase as the 

image data is blurred, which ultimately drives the RMSE upward.  Decreases in the 

systematic error of FA often decrease much more in regions of grey matter because this 

measure is biased in regions with isotropic diffusion at low SNR (data not shown – see 

[Pierpaoli and Basser, 1996]).  It should be noted that filtering will not remove all the 

noise and will introduce blurring, which ultimately reduces the spatial resolution of the 

image data.  Consequently, there is a balance of tradeoffs between the spatial resolution 

that can be achieved and the biases and noise associated with smaller voxels.  Anisotropic 

filtering appears to improve the noise problems, although it is not clear whether this is 

preferable over acquiring the images with slightly lower spatial resolution.  Future studies 
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are necessary to evaluate this tradeoff. 

 

4.6 Conclusions 

In this study, the performance of three spatial filtering methods for reducing the 

errors of different DT-MRI measures – FA, MD and major eigenvector orientation was 

compared. Overall, the study demonstrated that for noisy image data, optimum filtering 

reduced the errors for all measures.  The optimum performances of both the isotropic and 

anisotropic Gaussian filters were similar, yet the anisotropic filter was much less prone to 

over- filtering.  
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CHAPTER 5 

APPLICATIONS OF ANISOTROPIC GAUSSIAN 
SMOOTHING: VOXEL BASED ANALYSIS OF DT-MRI  

 

5.1 Introduction 

DT-MRI of the human brain is increasingly being employed to investigate the 

organization and microstructure of white matter tracts in the brain for a broad range of 

applications including ischemia, neurodevelopment, aging, Alzheimer’s disease and 

behavioral neurology [Erikkson et al., 2001; Moseley, 2002; Neil et al., 2002; Sotak, 

2002; Barnea-Goraly et al., 2003; Burns et al., 2003; Jones et al., 2005; Filley 2005]. In 

many of these studies, the DT-MRI properties are compared between two groups (i.e., 

disease versus control). If specific regions of the brain are hypothesized to be different or 

affected, regional segmentation tools are used to define regions of interest. However, 

when regions are not well-defined a priori, voxel based analysis methods are often used. 

In this method, images from multiple subjects are co-registered using linear (i.e., affine) 

or nonlinear warping transformations. Images are spatially blurred typically with an 

isotropic Gaussian kernel to compensate for anatomical misregistration, and improve the 

statistical properties (e.g., Gaussian random fields [Worsley et al., 1992]. Statistical 
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testing is performed at each voxel location. A significant problem with voxel-based 

analysis of DT-MRI data is that spatial blurring causes the images to lose their anatomic 

specificity. For example, standard Gaussian blurring will mix signals from WM, GM, 

CSF, and other tissues.  

In this chapter, the anisotropic Gaussian kernel smoothing that was explored in the 

previous chapter is applied to the DT-MRI group analysis specifically of the white matter 

in individuals with autism as compared to controls. Anisotropic blurring is believed to 

reduce partial volume effects and therefore may be preferable to the conventional 

isotropic smoothing. In this study anisotropic and isotropic blurring were compared. The 

results obtained using voxel-based methods in the corpus callosum were compared with 

those from an ROI analysis from the same data [Alexander et al., in press]. 

 

5.2 Methods 

DT-MRI data preparation 

DT-MRI data from seventy seven subjects were used in this study. Forty three 

subjects belonged to the autism-spectrum group and thirty four subjects matched for age, 

handedness, IQ, and head size of the autism data sets. More details about subject and 

related assessment may be found in the paper [Alexander et al., in press]. 

  Eddy currents and field inhomogeneiy related distortions  of each data set were 

corrected using a 2D affine automatic image registration program (AIR)  and in-house 

software for a field map correction method that is described in the paper [Jezzard et al, 

1995]. Distortion corrected DW images were interpolated into 2 x 2 x 2 mm3 voxels and 

six tensor elements were calculated using a multivariate log- linear regression method 
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[Basser et al, 1994]. Then the tensor was diagonalized to estimate three eigenvectors 

and eigenvalues. Maps of DT-MRI measures, FA and MD were calculated for individual 

subjects [Basser and Pierpaoli, 1996]. 

 

White matter segmentation 

General white matter was extracted using FAST [Zhang et al., 2001] in the FMRIB 

software library (http://www.fmrib.ox.ac.uk/fsl/). FAST was developed using a model of 

hidden Markov random fields, and expectation-maximization theory. More details on this 

program can be found in the paper [Zhang et al., 2001]. Two channels (the major and 

minor eigenvalues of the diffusion tensor) were used as inputs to generate three classes of 

tissues: grey matter, white matter, and CSF. 

In addition to white matter segmentation using FAST, voxels in the white matter 

segmented regions with relatively high MD values were removed (Fig 5-2) by 

thresholding  the MD maps to remove voxels that were greater than four standard 

deviations above the mean. 

 

Defining ROI on CC 

ROI analysis was done on the corpus callosum prior to performing the voxel-based 

analysis. First, the corpus callosum was contoured on a map of x component of major 

eigenvector multiplied by FA. This map ( FAe X *,1
r

) has better contrast on the voxels that 

have higher FA and larger eigenvector components of right to left major eigenvector 

directions. The extraction of the corpus callosum on the maps of ( FAe X *,1
r

) was done for 

all seventy-seven subjects by hand. 
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More specific regions on the corpus callosum were obtained [Fig 5-4]. Each sub 

region was composed of a cubical 9 x 9 x 9 voxels, and also thresholded for ( FAe X *,1
r

 to 

be greater than 0.4.     

 

Statistical analysis 

A one-way analysis of variance (ANOVA) is a way to test the equality of three or 

more means at one time by using variances. Using ANOVA, group differences on the 

DT-MRI measurements, specifically, FA, MD, and eigenvalues, in three separate sub 

regions (genu, splenium, and body) and global corpus callosum were tested. 

 

 

 
 
 
 
 
 
 
 

 
             
 
 
 
 
 
 

 

Fig 5-1 Examples of the white matter segmentation. The top row images are the original FA, MD, 

?1, ?2, and ?3 maps of one of the subjects, and the bottom row images are white matter segmented 

FA, MD, ?1, ?2, and ?3 maps using FAST. 

            
            FA       MD            ?1      ?2          ?3 
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Fig 5-2 white matter segmentation – additional removal of voxels using MD histogram. 

Relatively high MD values are highly likely due to the partial volume effects affected by 

surrounded CSF. These voxels (the right image in the plot box, shaded in hyper intensity, see the 

borderlines that are within the red circle) were successfully removed using a threshold set by 

using a histogram of MD. The right tail that was thresholded at the four times of standard 

deviation of MD. The image on the left side of the green bar that indicates the four times of 

standard deviation was produced after masking out the voxels with hyper intensities.  
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Fig 5-3 The corpus callosum segmentation. The top row is a map of ( FAe X *,1
r

: white matter 

segmented and thresholded shown as in Fig 5-2). High contrast for the corpus callosum is shown 

in the top row images. The CC was then manually extracted under a condition of FAe X *,1
r

 >0.2, 

and the extracted CC is shown in the bottom row in red shade. 
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Fig 5-4 The regional corpus callosum segmentation. The underlying image is a map of FAe X *,1
r

 

of one subject. Genu is shown in blue, body in red, and splenium in green. 

  

Voxel-based DT-MRI analysis 

Each of the six elements of the diffusion tensor data for subjects were transformed 

with the same transformation matrix by which FA maps were transformed to be 

coregistered with the reference data. The reference data was one of seventy seven 

subjects.  

In order to construct the subject-based anisotropic Gaussian kernels, the 

transformed diffusion tensor was reoriented using the preservation of principal directions 

that were previously described [Alexander et al, 2001]. The reorientation was conducted 

for the major eigen vector directions to be reoriented using the affine matrix that was 

used for the transformation of FA, MD, eigenvalue maps and all tensor elements, then the 

medium eigenvector directions that were also transformed through the same affine matrix 
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were projected to the plane that is to be normal to the reoriented major eigenvectors. 

This projection is necessary because the affine transformed medium eigenvector may not 

be perpendicular to the transformed major eigenvector. Once the major and medium 

eigenvector directions were determined, the minor eigenvectors can only exist to be 

orthogonal to both major and medium eigenvectors. Using the transformed eigenvectors 

and same eigenvalues, transformed tensor was obtained in a voxel basis. 

Smoothing kernels of the size 5 x 5 x 5 voxels were used to create the full width 

half maximum (FWHM) 12 mm anisotropic Gaussian kernel. Using a t in Eqn. (4-6) a 

value of 5.0 (s/mm2) required iterating six times to achieve a smoothing level that 

corresponded to filter size 12 mm isotropic Gaussian smoothing. Unlike the isotropic 

Gaussian kernel, anisotropic Gaussian kernel does not have a definitive FWHM since the 

three principal directions have three different FWHM in the three dimensional space. The 

total diffusion time t and iteration numbers were obtained as follows: 

1. s  in 
32/3

2

)2(
)2/'exp(

)(
σπ

σrr
rK

rr
r −

=  (the isotropic Gaussian in the three dimensional 

space), is determined with a given FWHM,  )2log(8(/FWHM=σ  

2.  The total diffusion time t is defined in the isotropic system as 2/2σ=t  

3.  Iteration number 2)/( tt ∆   based on the property of tttttn
KKKKK ⊗⊗⊗= ...  (n 

times), where t∆ is a dummy variable (local diffusion time per iteration) 

  Example: t∆ =5.0 iteration number, 6. 

 

In addition, isotropic Gaussian smoothing with a 12 mm FWHM was also 

performed. Once the individual data were smoothed, a two-tailed contrast t test was 
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performed on maps of FA, MD, and eigenvalues of the two groups. Significance levels 

for t statistics were set at P<0.005.  The resulting t statistic images were thresholded 

using the minimum given by a Bonferroni correction and random field theory [Worsley et 

al., 1992]. Cluster inference was performed using a software package FMRISTAT.  

(http://www.math.mcgill.ca/keith/fmristat/).The threshold for cluster extent was set at 

P<0.05.  

 

5.3 Results 

ROI analysis 

The segmented corpus callosum analysis was summarized in the Table 5-1. The 

axial and radial diffusitivities correspond to 1λ=aD , and  
2

32 λλ +
=rD , respectively. 

The autism group had higher MD, radial eigenvalues, and lower values in FA in the 

corpus callosum. Regionally, the body of corpus callosum was not significantly different 

between the two groups. More detailed results are reported in [Alexander et al., in press] 

 

Global analysis 

A. Smoothing: After affine normalization was done for each subject to co-register 

with the template, anisotropic Gaussian smoothing on the segmented FA, MD, ?1, ?2, and 

?3, maps looked less blurred than the isotropic Gaussian smoothing cases. Fig 5-5 shows 

white matter segmented, normalized (co-registered to the template) FA map (a) of one 

subject, FWHM 12 mm isotropic Gaussian blurred map (b), and  FWHM 12 mm 

anisotropic Gaussian blurred map (c). As suggested by the images, anisotropic Gaussian 
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smoothing preserved the more peripheral white matter structures. In addition, the 

overall intensities were less reduced with anisotropic smoothing.  

Fig 5-6 shows the histogram of the data from Fig 5-5. As indicated in the Fig 5-6-c 

anisotropic Gaussian smoothing better preserved the characteristics of the original 

distributions of FA maps. Even with a 4 mm FWHM, the isotropic smoothing caused the 

bump in the FA histogram to be eliminated. 

 

       

 

        (a) 0.306        (b) 0.124                                 (c)    0.154 

 

Fig 5-5 Isotropic kernel smoothing with FWHM 12 mm. vs. anisotropic Gaussian kernel 

smoothing 12 mm. All images displayed in the same scale. (a) is a white matter segmented 

normalized FA map of one subject. (b) is isotropic smoothing with FWHM 12 mm. (c) is 

anisotropic smoothing with FWHM 12 mm. The bottom row is the coronal view. Peripheral 

structures are preserved better with anisotropic Gaussian kernel smoothing. The numbers below 

each image are the overall averaged intensity values of FA.   
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(a) histogram of normalized FA, intensities (x10-3) 
 
 

 
 

(b) histogram of normalized, isotropically smoothed FA, intensities (x10-3) 
 

 
 

(c) histogram of normalized anisotropically smoothed FA, intensities (x10-3) 
 
 
 
Fig 5-6 a 12 mm FWHM isotropic kernel smoothing. vs. a 12 mm FWHM anisotropic Gaussian 

kernel smoothing. Histogram of Fig 5-5 data. Profiles of anisotropic smoothing is more 

representative for the raw histogram (a). 



 

 

64 
Table 5-1.  Group Comparison of Anisotropy and Diffusivities in the Corpus Callosum 

Determined by One-way ANOVA 

 
 
                                                      Autism (n=43) Control (n=34)             Group Comparison 
 
 Mean SD        Mean SD           F          Significance 
Fractional Anisotropy 
Genu .663 .042        .692 .037        10.01         .002** 
Body .664 .045        .683 .038        3.71           .058 
Splenium .693 .045        .720 .032        8.22           .005** 
Total Corpus Callosum .552 .037        .579 .024        13.45        <.001*** 
  
Mean Diffusivity (10-3 mm2/s) 
Genu .842 .048        .820 .034        5.13          .026* 
Body .869 .041        .840 .041       13.69        <.001*** 
Splenium .832 .050        .818 .026            2.21           .141 
Total Corpus Callosum .833 .037        .807 .023        13.01          .001** 
 
Axial Diffusivity (10-3 mm2/s) 
Genu 1.61 .074        1.62 .067       .33             .569 
Body 1.67 .077        1.65 .067      1.74           .191   
Splenium 1.64 .091        1.67 .071      1.30            .257 
Total Corpus Callosum 1.43 .054        1.43 .043        .11           .747   
 
Radial Diffusivity (10-3 mm2/s) 
Genu .457 .057        .420 .043    10.51           .002** 
Body .466 .057        .434 .039      8.12          .006** 
Splenium .426 .060        .394 .036     7.57            .007** 
Total Corpus Callosum .533 .045        .495 .027     18.01        <.001***  
 
 
 
***significant at the .001 level; **significant at the .01 level; *significant at the .05 level 
ANOVA = analysis of variance 
 
Table 5-1 is from Alexander et al., in press.  
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B. FA Measurements: The most of corpus callosum including the body, splenium 

and genu were shown as significantly different between two groups with the contrast of 

FA- reduced in autism using a 12 mm FWHM isotropic smoothing [Fig 5-7 a]. With the 

anisotropic smoothing, the location of clusters was slightly different. Most noticeably no 

significant differences were revealed in the body of the corpus callosum (squared in red), 

which is in agreement with the results obtained using the ROI based analyses. 

C. MD Measurements: Unlike the ROI analysis, no significant differences in mean 

diffusitivity between the control and autism groups were found with a 12 mm isotropic 

Gaussian kernel smoothing. The high T score (0-3.773) in the color bar (Fig 5-9) did 

appear on the slices that did not cover the corpus callosum. As opposed to isotropic filter, 

anisotropic smoothing showed significant clusters in the genu at the midline level, and 

global corpus callosum on the lateral side.  

D. Minor eigenvalue measurements: The voxel-based analysis was done on 

1λ and 2λ  maps, however, t maps of those two parameters did not show any significant 

values. On the other hand, significant differences in the minor eigenvalue 3λ between the 

control and autism groups were observed from both isotropic and anisotropic smoothing. 

Fig (5- ) shows bigger significant clusters and higher T score was achieved by anisotropic 

smoothing. In the ROI analysis the radial eigenvalues 2/)( 32 λλ +  were analyzed and the 

actual difference assumed to be from mainly minor eigenvalue 3λ . 
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(a)    

 

 (b)   

Fig 5-7 t-maps of FA masked from a 12 mm FWHM isotropic Gaussian kernel smoothing (a) and 

with a 12 mm FWHM anisotropic kernel smoothing (b). The color bar represents the T score.  

Uncorrected p value was given 0.005. Cluster inference was done for a p value of 0.05  
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(a)  

(b)  

Fig 5-8 t-maps of MD from a 12 mm FWHM isotropic Gaussian kernel smoothing (a) and with a 

12 mm FWHM anisotropic kernel smoothing (b). The color bar represents the T score.  

Uncorrected p value was given 0.005. Cluster inference was done for a p value of 0.05  
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Fig 5-9 t-maps of 3λ  from a 12 mm FWHM isotropic Gaussian kernel smoothing (a) and with a 

12 mm FWHM anisotropic kernel smoothing (b). The color bar represents the T score.  

Uncorrected p value was given 0.005. Cluster inference was done in p value 0.05  
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5.4 Discussion 

 The voxel-based analysis with anisotropic Gaussian smoothing was more 

consistent with the manual segmentation results in the  corpus callosum than conventional 

isotropic Gaussian smoothing. The difference between isotropic and anisotropic filter lies 

in the fact that the conventional isotropic Gaussian smoothing increases the partial 

volume signal averaging, which is reduced with anisotropic kernel smoothing. More 

thorough ROI analysis or other methods are necessary to verify the improved accuracy of 

the anisotropic Gaussian filter.  

The filter sizes that were used in this study were FWHM 12 mm, 8 mm, and 4 mm. 

The effects of the filter size on the voxel-based analyses also need to be investigated. 

According to the matched filter theorem, the filter size should be matched with signal of 

interest [Rosenfeld and Kak, 1982]. Jones et al [Jones et al., 2005] explored a wide range 

of filter sizes for the DT-MRI group analysis on schizophrenia, and concluded that each 

study should seek the optimum filter size for its own. One caveat in choosing the filter 

size is that if the filter size is too small, the residual might not be normally distributed, 

and it would not be supported by underlying assumptions of the Gaussian random field 

theory.  

 In addition, according to Jones’ paper, he found significant differences in FA maps 

at certain kernel sizes, but did not find any significant difference on MD maps between 

two groups with any size of isotropic Gaussian kernel. This might suggest that the 

isotropic Gaussian smoothing could wipe the signal assuming that the difference in fact 

exists; at least this hypothesis holds for the corpus callosum analysis in this study. 
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In order to investigate the characteristics between two different smoothing 

approaches in voxel-based analysis, a segmented binary white matter mask for each 

subject was transformed using the same affine matrix that was used for normalization of 

DT-MRI measures. Since the binary mask did not have any diffusion tensor information, 

the smoothed-normalized binary white matter mask images should not show a statistical 

significance. On the contrary, Fig 5-13-a shows clusters on the same significance level 

(P<0.005, uncorrected) when being performed with two-tailed contrast t test. More 

interestingly as reducing the size of isotropic Gaussian filter, the number and size of 

clusters reduced substantially [Fig 5-13 b]. This indicates that blurring with a 12 mm 

isotropic Gaussian filter might have confounded the DT-MRI group analysis  with 

morphologic differences. The patters were shown in similar regions to the DT-MRI 

analysis with isotropic Gaussian kernel smoothing, thus there is a confounding effect. 

Anisotropic Gaussian kernel smoothing showed far fewer morphological differences [Fig 

5-14] suggesting that the DT-MRI differences are real in this case. 

Subjects’ age, and IQ related covariates may influence the voxel based analysis; 

future studies will examine the influence of these parameters onto the autism-control 

group differences. 
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(a) 

 

(b) 

Fig 5-10 Co registered white matter mask analysis: isotropic kernel smoothing with (a) FWHM 

12 mm (b) FWHM 4 mm.  
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(a) 

 

(b) 

Fig 5-11 Co registered white matter mask analysis : anisotropic kernel smoothing with (a) FWHM 

12 mm (b) 8mm. Clusters shown for an uncorrected p value of 0.005.  
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5.5 Conclusions 

In this chapter, one application of the anisotropic Gaussian kernel smoothing was 

shown through the DT-MRI group analyses. The anisotropic Gaussian filter was tailored 

for each individual subject at a voxel level considering spatial transformation that 

occurred during data normalization. The less sensitivity of anisotropic Gaussian filter 

from over-filtering that was concluded in the chapter 4 was corroborated by the 

observation that the anisotropic Gaussian filter preserved the more peripheral white 

matter structures and the consequent blurring occurred in the direction of white matter 

directions on the white matter segmented DT measurements (FA, MD and eigenvalues). 

The ROI analysis of the corpus callosum was more consistent with results from 

anisotropically smoothed data. In addition, anisotropic smoothing showed fewer 

morphological differences through the binary mask analysis implying that anisotropic 

smoothing had less confounding effects onto the group analysis of DT-MRI measures.  
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CHAPTER 6  

PROBABILISTIC CONNECTIVITY OF DT-MRI  

VIA ANISOTROPIC GAUSSIAN KERNEL SMOOTING 

 

6.1 Introduction 

White matter tractography (WMT) is a promising method for estimating the spatial 

white matter pathways that connect brain regions. [Mori et al., 1999; Conturo et al., 1999; 

Jones et al., 1999; Bassar et al., 2000]. Most WMT algorithms are based upon the 

assumption that the major eigenvector of the diffusion tensor, in general is aligned with 

the directions of white matter bundles. Researchers are continuously developing new 

techniques for tracing anatomical fibers from DT-MRI and general diffusion imaging 

[e.g., Pajevic et al., 1999; Poupon et al., 2000; Jones 2003, O’donnell et al., 2002; Brun et 

al., 2004; Jackowski et al., 2005] 

White matter tractography is a noninvasive method for estimating a CNS structural 

connectivity. Potential applications of WMT include visualization of regional 

connectivity patterns in both healthy and diseased brains. For example, WMT may be 

used to map the locations of important white matter pathways (e.g., corticospinal tract) in 
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patients with brain lesions both prior to and after surgery [Lazar et al., 2006]. WMT 

may also be used to segment specific entire or parts of WM tracts for subsequent ROI 

analysis. 

Unfortunately, the high sensitivity of DT-MRI to noise and  other errors also causes 

errors in WMT reconstructions. A model of tractography error based on voxel size, 

distance, SNR and the difference between eigenvalues was developed by Anderson 

(2000). Lazar and Alexander validated this error model for several WMT algorithms 

[Lazar and Alexander, 2003].  The potential errors associated with single tractography 

streamline results have led to the development of probabilistic fiber tractography, which 

produces a map of connection probabilities from a defined region [Batchelor et al., 2001; 

Koch et al., 2002; Tournier et al., 2003; Behrens et al, 2003; Parker et al., 2003; Jones et 

al., 2003,; Lazar et al., 2005]. These methods also compensate somewhat for cases where 

there is less certainty in the WM fiber orientating, such as the case of non-prolate 

diffusion tensors. 

In this chapter, anisotropic Gaussian kernel smoothing that was detailed in Chapter 

4 is applied to generate probabilistic WMT maps of DT-MRI. Generating probabilistic 

WMT by way of Gaussian kerne l smoothing has similarities to formerly proposed 

probabilistic approaches including Monte Carlo simulations, and solving the heat 

equation by fast-marching algorithm [Parker et al., 2002; Bachelor et al., 2001; Koch et al. 

2001]. In contrast to theses methods, anisotropic Gaussian convolution will produce 

continuous and consistent connectivity patterns using a simple smoothing approach. The 

approach works by initializing a concentration at a specific brain region and then using 

iterative convolution smoothing to estimate a “concentration” of diffusion connectivity. 
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Gaussian convolution smoothing has been shown to be equivalent to solving the 

diffusion equation [Koenderink 1984]. 

 

6.2 Theory 

White matter tractography: Deterministic Approach 

Basic white matter fiber tracking methodologies are based on streamlines or line 

propagation algorithms 

)(
)(

st
ds

srd rr
=           (6-1) 

where )(st
r

 is the unit tangent vector to )(sr
r

at s, which is a stepping index (a dummy 

variable). Assuming that the white matter tracks are represented in the measured major 

eigenvectors of the diffusion tensor, )(st
r

 may be replaced by 

))(()( 1 srest
rrr

=          (6-2) 

where ))((1 sre
rr

 is the major eigenvector of the diffusion tensor that is estimated at 

position )(sr
r

. In regions with low diffusion anisotropy, tensor deflection was proposed 

to estimate the local tract directions [Lazar et al, 2003a].  The tensor deflection algorithm 

uses the entire diffusion tensor to approximate the unit tangent vector to the trajectory:  

invDst
rr

=)(      (6-3)  
 
A more general tractography algorithm, tensorlines, has been proposed, in which outv

r
 is 

extended as 

 ))1)((1()( inin vgDvgfefst
rrrr

+−−+=      (6-4) 
 
where f  and g are weighting factors that are in a range of [0, 1] [Weinstein et al., 1999]. 
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For all these approaches, the white matter track realization is ultimately a line 

integration of (5-1) with an initial condition, 0)0( rr
rr

= , (a starting point or a seed point). 

Several numerical integration methods have been used, including Euler’s method 

[Conturo, 1999] and Runge-Kutta integration [Basser et al., 2000] 

 

White matter tractography: Probabilistic Approaches 

Most probabilistic WMT methods use an iterative Monte Carlo tracking algorithm, 

where the tract orientation is perturbed at each step. The degree of perturbation is 

typically constrained by the local diffusion tensor. Consequently, highly anisotropic 

diffusion tensors will produce low dispersion, whereas more oblate or spherical tensors 

will result in high levels of tract dispersion [Koch et al., 2001, 2002, Parker and 

Alexander 2003b].  

A different approach is proposed here directed to solve the partial differential heat 

equation using DT-MRI data. The Monte Carlo methods above approximate the effects of 

a thermal heat equation [Appendix B]. Therefore, the heat equation is ultimately the 

general solution to the random walk (e.g., Monte Carlo) problem. [Koenderink, 1984] 

showed that the kernel smoothing in image processing is equivalent to the evolution of 

the linear heat (or diffusion) equation if the kernels are Gaussian. 
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6.3 Methods  

Simulated phantom 

 
A simple three-dimensional numerical phantom shown in Fig 6-1 was constructed. 

The phantom consisted of two perpendicular synthetic fiber bundles with high anisotropy 

(FA> 0.8) crossing each other with surroundings regions filled with very low anisotropy 

tensors (FA< 0.02). A seed (intensity value 1) was placed in the left horizontal branch 

(Fig 6-1-c) and Gaussian kernel smoothing was performed to determine the kernel 

smoothing effects on the diffusion propagation. 

 

(a)    (b)           (c) 

Fig 6-1 A numerical phantom with matrix size (100,100,100), a FA map of the central coronal 

view is shown. Two perpendicular cylinders have uniform tensor fields with high anisotropic 

properties, and the backgrounds (in black) are isotropic. The red bar indicates the numerical fiber 

in the x directions and the z direction is represented in blur in the color map (b). The position of 

an initial concentration for the diffusion propagation is shown in (c). 
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Anisotropic Gaussian kernel 

As introduced in the chapter 4, the anisotropic Gaussian kernel is  

2/12/

1
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rr
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=         (6-5) 

 
where t is the parameter that determines the width of the kernel. In this simulation a t 

value of 0.05 was used and the resultant Gaussian kernel profile in each numerical fiber is 

shown in Fig 6-2. 

 

 

(a)                        (b) 

Fig 6-2 (a) shows the x-y plane view of the kernel in the region of the red bundle in Fig 6-1(b). 

(b) is a projection view from the x-z plane in blur in color map Fig 6-1(b). Major weights in the 

kernel correspond to the shape of the fiber directions. 
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Raising the diffusion tensor to a higher power 

The diffusion tensor D  in (5-1) may be modified to accentuate the anisotropic 

shape of the tensor. The modified kernel may be formulated as  
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rr
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Powers of P=1, 3 were explored in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                            (b) 

Fig 6-3 Examples of Gaussian kernels projected on the x-y plane. (a) is the original tensor 

from the corpus callosum. (b) is the kernel from 3D at the same location 
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Human brain data 

The averaged (gold standard) DW data used in chapter 4 was employed in this 

chapter to generate diffusion tensor and corresponding anisotropic Gaussian kernels. For 

human brain data, a bigger widow (5 x 5 x 5 voxels) was used to facilitate regions of 

curvature that are very commonly encountered in the brain data whereas the window that 

was used for the previous simulation in the simplistic phantom was 3 x 3 x 3 voxels. 

 

6.4 Results 

 

Simulated phantom 
 

Fig 6-4 was generated without using the conventional threshold to mask low 

anisotropy regions. From the seeding point (in Fig 6-1), the diffusion profiles were 

spreading out in the fiber directions and toward crossing regions, the diffusion became 

separated into the three directions shown by the arrows. 

The formulation of Fig 6-5-(a) to (c) is the same as for the Fig 6-4 except, in Fig 6-

5 all diffusion propagation was restricted in the region of FA>0.1.  As shown in Fig 6-5 

(d) to (e) compared against Fig 6-5 (a) to (c), raising the power of the tensor improved the 

degree of anisotropy. 

 

Human brain data 

Fig 6-6 was generated using the power of P=1 (6-2). Increased power of the tensor 

propagated faster, however, it did not change the overall propagation maps as noticeably 
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as in the simulation.  

The starting seed point was placed at splenium (shown in Fig 6-6 a), and the 

diffusion propagation was only allowed in the region of FA > 0.2. As the iteration of 

convolution increased, the diffusion tended to propagate more in the direction of the 

streamline tractography (Fig 6-6 f).      
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        (a)                   (b)                    (c) 

 

(d)           (e)   (f) 

 

                       

Fig 6-4.  An example of the convolution smoothing with a seed point. (a), (b), and (c) are the 

maps of sagittal, coronal, and axial view of a diffusion map at the level of iteration=40. (d), (e), 

and (f) are from the iteration=200. Note that the diffusion propagation was not restricted in this 

simulation, and restriction was allowed in Fig (6-5). The color is displayed in log scale (-log1/p) 

of the diffusion probability, p  
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(a)  (b)  (c) 

 

(d)  (e)  (f) 

  

Fig 6-5 an example of effect of powers of the tensor. Increasing the power, p of PD increases the 

propagation velocity with the same t value for 1D . Using a 3x3x3 window, with t value 0.05, (a), 

(b) and (c) show sagittal, coronal, and axial views of using 1D  and FA threshold mask (FA>0.1).  

(d), (e), and (f) are sagittal, coronal, and axial view of using 3D . Gaussian convolution was 

applied 200 times with a t value of 0.05. Raising the power p, ( PD ), can accentuate the 

anisotropy shape of the tensor. Note that with the same t value and the same iteration of 

performance, the 3D case diffused faster in the fiber directions (Fig 6-5 b and e) and diffusion 

perpendicular to the fiber direction was more restricted in the magnified sagittal view (Fig 6-5 a 

and d). The sagittal views (a, d) are zoomed up for the better visualization. The color is displayed 

in log scale (-log1/p) of the diffusion probability, p.  
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(a)     (b)       (c) 

 

(d)     (e)       (f) 

  

Fig 6-6 iterations at 1 (a), 10 (b), 40 (c), 200 (d), and 400 (e). In (f), a seed was positioned at the 

same location as for the convolution simulation, and then the Runge-Kutta interpolation method, 

with a FA threshold of 0.2, and an angle threshold of 45 degree, was used to generate a single 

track. The color in a-e is displayed in log scale (-log1/p) of the diffusion probability, p  
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6.5 Discussion 

The connectivity probabilistic maps via anisotropic Gaussian kernel smoothing 

produced a propagation distribution that was based upon the voxel-wise diffusion tensor 

maps. Since the Gaussian kernel exists in three dimensions, the convolution process leads 

to the blurring in the non-major eigenvector directions. This ultimately leads to apparent 

connectivity in all arbitrary directions. To relate this issue, recently Morris et al proposed 

a method of estimating the statistical significance of connection using random walk 

simulation and PICo probabilistic tracking method [Morris et al., 2006].  In their method, 

a null connection frequency was set up with non-restricted random walk probability map 

and an experimental frequency was based on the connection map by PICo algorithm 

[Parker et al, 2003a]. A statistical test was conducted on the two distributions to achieve 

and estimate the significance of the experimental frequency connection map. Although 

their method was adopted to minimize distance-related artifacts, one of the problems of 

their method is that it is difficult to regularize the overall distribution concentration by the 

Monte Carlo algorithm. To compensate for this effect, the distributions from anisotropic 

and isotropic smoothing were computed in this study. Instead of using z statistics in 

[Morris et al., 2006] to estimate the significance,  a new concept of tensor distance by 

measuring the similarity or dissimilarity between the tensors using Kullback-Leibler (KL) 

divergence [Wang and Vemuri, 2005] can be utilized for the study of significance of 

connection. 

The KL divergence is defined [Kullback and Leibler, 1951] 
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where p(x) is the “true” probability distribution, and q(x) is the null probability 

distribution. )||( qpKL measures a natural distance (difference) between these two 

distinct probability distributions. 

For the probabilistic connectivity by anisotropic smoothing, the KL distance can be 

a measure of dissimilarity between probabilistic map from isotropic smoothing (q(x)) and 

anisotropic smoothing (p(x)). In Fig 6-7, the KL distance was measured between 1D  and 

I  (identity matrix for isotropic smoothing). Fig 6-7 shows a diffusion propagation map 

obtained using the  isotropic Gaussian kernel smoothing (a) and anisotropic Gaussian 

kernel smoothing (b). Fig 6-7-c is the dissimilarity measure using the Eqn (6-7). 

Interestingly in Fig 6-7-c the higher dissimilarity was observed in the vertical direction 

anisotropy bar (shaded in blue) and the KL distance decreased rapidly in the horizontal 

direction across the crossing region (shaded in violet). The difference between these 

crossing two directions was more evident in the KL maps. The reason for this 

dissimilarity originated from the two different FA values; FA of horizontal bar is 

0.824494 and the FA of the vertical bar is 0.874281, so that ultimately the relative 

anisotropy was directed toward the vertical bar leaving smaller values at the horizontal 

bar. 

Fig 6-8-d shows an example of the KL distance obtained in the corpus callosum. 

The modified KL distance xd
xq
xp

xp
xq
xp

qpKL
r

r
r

r
r
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)||('   was attempted to create 
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more realistic connectivity patterns shown in Fig 6-9. Applications of KL distance need 

to be developed for determining statistical significance. 

 

 

     

(a)                 (b) 

  

(c) 

 

Fig 6-7 numerical simulation. (a) isotropic smoothing (b) anisotropic smoothing (c)  KL distance 

at iteration 200.   
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(a)      (b) 

          
 
 

(c)      (d) 
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Fig 6-8 (a) Isotropic smoothing map (b) anisotropic smoothing map. (c) Subtraction map of the 

isotropic smoothing from the anisotropic smoothing map. (d) KL distance. A seed at the same 

position in the Fig 6-4 Splenium. The KL distance (dissimilarity between isotropic smoothing and 

anisotropic smoothing) is shown using the rainbow color scale. 

 

 

 (a)    (b) 

 
 

Fig 6-9 Modified KL distance for a seed situated at the same position as in the Fig 6-4 in the 

Splenium of the corpus callosum. The distance (dissimilarity between isotropic smoothing and 

anisotropic smoothing) is shown in the rainbow color scale. (b) is thresholded map for KL values 

longer than 0.3 in (a). 
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CHAPTER 7 

CONLUSIONS AND FUTURE RESEARCH PLANS 

This thesis investigates several novel methods based upon anisotropic diffusion-

weighting and image filtering.  A summary of each chapter is as follows: 

Chapter 3: anisotropic optimization of diffusion-weightings reduces the variances 

of FA and MD measurements in the corpus callosum up to ~56 %. The method presented 

in this chapter is a desirable approach when a region is homogeneous and the tensor 

shape and orientations are predictable a priori; however, if the region of interest is mixed 

with different orientations, it may lead to erroneous results for characterizing each 

different tissue type. 

Chapter 4: anisotropic Gaussian kernel smoothing is compared with isotropic 

Gaussian smoothing and the Perona Malik algorithm. The evaluation is done with a 

simulation using both synthetic noisy data and real human brain data. The performance of 

three spatial filtering methods for reducing errors of FA, MD and major eigenvector 

orientation demonstrates that an optimum level of filtering reduces the errors for all 

measures.  The optimum performances of both the isotropic and anisotropic Gaussian 

filters are similar, yet the anisotropic filter is much less prone to over- filtering.  

Chapter 5: an application of the anisotropic Gaussian kernel smoothing is shown 
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through a group analysis of autism data. The anisotropic Gaussian filter is constructed 

for each individual subject at a voxel level considering spatial transformation that takes 

place during data normalization.  The anisotropic Gaussian kernel smoothing on white 

matter segmented DT measurements data preserves the more peripheral white matter 

structures and the consequent blurring occurs in the direction of white matter directions  

on the white matter segmented DT measurements (FA, MD, and eigenvalues). The ROI 

analysis in the corpus callosum is more consistent with results from anisotropically 

smoothed data. In addition, anisotropic smoothing shows fewer morphological 

differences through the binary mask analysis implying that anisotropic smoothing 

confounds the group analysis of DT-MRI measures less frequently.  

Chapter 6: the connectivity probabilistic maps via anisotropic Gaussian kernel 

convolution produces a propagation distribution that is based upon the voxel-wise 

diffusion tensor maps. The evaluation is done with a simple numerical phantom and 

human brain data. The diffusion propagation in the phantom behaves as the tensor field 

guides in the phantom. The diffusion propagation in the splenium of the corpus callosum 

is also consistent with known anatomical connectivity. 

 

As mentioned in Discussions  of the last two chapters 5, and 6, more vigorous  

studies are required and to complete the work in depth. Subjects below are the future 

works that will be pursued. 

The group analysis of DT-MRI data for autism using either anisotropic or isotropic 

smoothing will be performed in more detail using a range of kernel sizes and examining 

possible covariates such as age and behavioral measures.  
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Anisotropic Gaussian kernel smoothing for voxel-based group analysis still 

requires more thorough validation. Experiments for evaluating the strengths and 

weakness need to be performed. The validity of anisotropic kernel smoothing for random 

field theory still needs to be examined more thoroughly. 

For the anisotropic kernel smoothing, further algorithmic development is necessary 

to minimize unlikely pathways to reduce the occurrence of false positive connections. 
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Appendix A 

Diffusion equation from Brownian motion 

Consider the one dimensional case, a particle moves between ∆ and ∆+∆ d  in a 

time intervalτ with probability ∆∆φ d)( , the probability distribution must satisfy  

∫
+∞

∞−

=∆∆ 1)(φd ,      (A-1) 

 

)()( ∆−=∆ φφ ,                      (A-2)         

0)( →∆φ  as ∞→∆ || ,      (A-3) 
 

If )t,x(C  is the density of the particles at time t , the total number of particles 
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Using the Taylor expansion  
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Substituting Taylor terms into (A-5) 
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Using the property of (A-1) and (A-2), (A-6) leads to  
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Appendix B 

Diffusion equation from Random walk 

Let ),( Nmw  be the probability that a particle will arrive m steps to the right after 

taking a total of N steps, and then (B-1) should be satisfied. This is called the difference 

equation. 

),(
2
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),( txxwtxxwttxw ∆++∆−=∆+      (B-1) 
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≡      (B-2) 

 
 

Thus )t,x(w is the probability that the particle which starts at the origin at time t=0 

is located at point at time t. 

 

),x(mx ∆=  ),t(Nt ∆=        (B-3) 
 
 

Since we are interested in the solution only after the particle has taken a large 

number of steps 

 

0t,N →∞→ ∆         0x,m →∞→ ∆                                        (B-4) 
 
 

expanding the functions in (B-1) by the Taylor’s expansion 
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Dividing each term by t∆2 and setting (B-6), the diffusion equation (B-7) is derived. 
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Appendix C 

Derivation of the covariance of directional diffusitivities 
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Since ji0 S,S,S  are all independent of each other their cross multiplication is zero 
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Derivation of FA as an explicit function of directional diffusitivities 

Starting with a single diffusion tensor model equation )exp(0 iii DbSS −= , where  

The diffusion tensor ,
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N: number of encoding directions 

∴  The diffusion tensor ∑ −=
i

i
1DGD and the tensor D can be diagonalized to 

generate 3 eigenvalues and 3 eigenvectors Calculating eigenvalues λ of the tensor D                                   
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Solving the (C-2), iλ  becomes a function of iD , which makes FA to be an explicit 

function of iD using invariants.  
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Another approach to find the FA as an explicit function of iD  would be using the 

invariants of the tensor and numerical methods. The invariants are as follows: 

 

 

The numerical approach of finding eigenvalues is 
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By inserting the (C-5) into (C-3) , 
)I2I(
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−= , which leads to the FA is an 

explicit function of diffusitivities iD  
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Appendix D 

Positive Definite 

A positive definite tensor is not altered throughout the kernel convolution as long 

as all tensor elements within the discrete integral window are positive definite. If the 

weighting factor is ijk  njni ,,1,,,1 LL ==  window size= nxn  

1=∑ ijk  

Assuming the tensor 
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the new tensor after kernel  convolution, T’ may expressed as following 
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if all tensors in j,i position  are positive definite, then 0Aij >  
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Applying the kernel to the directional diffusitivity is the same as the applying the 

kernel to the tensor due to the linearity 
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  ')'( 1GGG −  is a constant matrix. 

 

∴ T  is proportional to D  

 

 
 

 

 
 

 


