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Abstract

We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions.

The Green’s function of an isotropic diffusion equation on a manifold is analytically represented

using the eigenfunctions of the Laplace-Beltraimi operator. The Green’s function is then used

in explicitly constructing heat kernel smoothing as a series expansion of the eigenfunctions.

Unlike many previous surface diffusion approaches, diffusion is analytically represented using
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the eigenfunctions reducing numerical inaccuracy. Our numerical implementation is validated

against the spherical harmonic representation of heat kernel smoothing on a unit sphere. The

proposed framework is illustrated with mandible surfaces, and is compared to a widely used

iterative kernel smoothing method in computational anatomy. The MATLAB source code is

freely available at http://brainimaging.waisman.wisc.edu/~chung/lb

Keywords: heat kernel, Laplace-Beltrami operator, mandible, surface diffusion.

1 Introduction

In medical image analysis, anatomical surfaces obtained from MRI and CT are often represented

as triangular meshes. Image segmentation and surface extraction process themselves are likely to

introduce noise to the mesh coordinates. It is imperative to reduce the mesh noise while preserving

the geometric details of the objects for various applications.

Diffusion equations have been widely used in image processing as a form of noise reduction

starting with Perona and Malik in 1990 [1]. Motivated by Perona and Malik’s work, many methods

have been proposed to smooth out surface data based on diffusion [2, 3, 4]. Although numerous

efforts have been devised for surface fairing and mesh regularization [5, 6, 7, 8], a few have also

tried to smooth out measurements defined on surfaces for the purpose of statistical analysis [2, 9,

10, 11, 12]. Iterated kernel smoothing has been also a widely used method in approximately solving

diffusion equations on surfaces [12, 13, 14].

Particularly in brain imaging, isotropic heat diffusion on surfaces was introduced for subsequent

statistical analysis involving the random field theory that assumes an isotropic covariance function

as a noise model [2, 3, 9, 10, 11]. Since then, isotropic diffusion has been mainly used as the standard

smoothing technique. Such approaches mainly use finite element or finite difference schemes which is

known to suffer numerical instability if the forward Euler scheme is used. Instead of directly solving

diffusion, iterated kernel smoothing is often used in smoothing various cortical surface data: cortical

curvatures [15, 16], cortical thickness [17, 18], hippocampus [19, 20], magnetoencephalography

(MEG) [21] and functional-MRI [22, 23]. In iterated kernel smoothing, kernel weights are spatially

adapted to follow the shape of the heat kernel in a discrete fashion along a manifold. In the tangent

space of the manifold, the heat kernel can be approximated linearly using the Gaussian kernel for

small bandwidth. A kernel with large bandwidth is then constructed iteratively applying the kernel
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with small bandwidth. However, this process compounds the linearization error at each iteration

as we will demonstrate in the paper.

In this paper, we propose a new smoothing framework that constructs the heat kernel analyt-

ically using the eigenfunctions of the Laplace-Beltrami operator, avoiding the need for the linear

approximation [12, 13, 14]. Although solving for the eigenfunctions of the Laplace-Beltrami opera-

tor requires the finite element method, the proposed method is analytic in a sense that heat kernel

smoothing is formulated as a series expansion explicitly. We are not claiming our whole framework

to be analytic which is theoretically impossible when we deal with real data. The proposed method

represents isotropic heat diffusion analytically as a series expansion so it avoids the numerical insta-

bility associated with solving the diffusion equations numerically using the forward Euler scheme

[2, 9, 10]. Our radically different framework can bypass various numerical problems associated with

previous approaches: numerical instability, slow convergence, and accumulated linearization er-

ror. Although there are many papers on solving diffusion equations on arbitrary triangular meshes

[2, 3, 4, 24], this is the first paper that explicitly and correctly constructs heat kernel for an arbitrary

surface and solved heat diffusion using the eigenfunctions of Laplace-Beltrami operator.

The proposed method is illustrated with triangulated mandible surfaces obtained from CT scans

and validated on a uniformly sampled spherical mesh.

2 Heat Kernel Smoothing

Consider a real-valued measure Y defined on a closed compact manifold M⊂ R3. We assume the

following additive model on Y :

Y (p) = θ(p) + ε(p), (1)

where θ(p) is the unknown mean signal to be estimated and ε(p) is a zero-mean Gaussian random

field. We may assume further Y ∈ L2(M), the space of square integrable functions onM with the

inner product

〈f, g〉 =
∫
M
f(p)g(p) dµ(p), (2)

where µ is the Lebesgue measure such that µ(M) is the total area or volume of M. Solving

∆ψj = −λψj , (3)
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for the Laplace-Beltrami operator ∆ on M, we order eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · · ,

and corresponding eigenfunctions ψ0, ψ1, ψ2, · · · [13, 25, 26]. Then, the eigenfunctions ψj form an

orthonormal basis in L2(M) [13, 25, 27].

Using the eigenfunctions, heat kernel Kσ(p, q) is then analytically defined as

Kσ(p, q) =
∞∑
j=0

e−λjσψj(p)ψj(q), (4)

where σ is the bandwidth of the kernel. Then heat kernel smoothing of Y is defined analytically as

Kσ ∗ Y (p) =
∞∑
j=0

e−λjσβjψj(p), (5)

where βj = 〈Y, ψj〉 are Fourier coefficients [12, 13]. This is taken as the estimate for the unknown

mean signal θ.

The heat kernel (4) is the Green’s function, or the fundamental solution, of the isotropic heat

diffusion equation
∂f

∂σ
= ∆f. (6)

Therefore, the heat kernel smoothing (5) is also the solution to the diffusion equation (6) with the

initial condition f(p, σ = 0) = Y (p) after time σ. Unlike all previous approaches to heat diffusion

[2, 3, 4, 24], our formulation avoids the direct numerical discretization of the underlying diffusion

equations. Instead we are discretizing the basis functions of the given manifold M where the

diffusion equations are defined.

In this new framework, we need to compute the terms in (5). We first solve for the eigensystem

(3) and obtain λj and ψj (section 3.1). The Fourier coefficients βj are estimated using the iterative

residual fitting (IRF) algorithm (section 3.2). The finite expansion of (5) is then used as the

finite estimate for the underlying signal θ in (1). The degree for truncating the infinite series is

automatically determined using the forward model selection procedure (section 3.2). The numerical

accuracy of the whole framework is validated on a unit sphere where the mathematical ground

truth is known in terms of spherical harmonics (section 4.3). Taking our framework as the baseline,

we have compared our proposed method to iterated kernel smoothing (section 4.4) to show the

improvement of our method to the previous approach.
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3 Numerical Implementation

3.1 Generalized Eigenvalue Problem.

Since the closed form expression for the eigenfunctions of the Laplace-Beltrami operator on an

arbitrary surface is unknown, the eigenfunctions are numerically computed by discretizing the

Laplace-Beltrami operator. To solve the eigensystem (3), we need to discretize it on a triangular

mesh using the Cotan formulation [3, 26, 28, 29]. In a related work, Qiu et al. [29] presented

a similar Cotan discretization of the eigensystem and used to construct splines on a manifold;

however, there is no direct mathematical relation between splines and heat kernel smoothing. We

briefly review the Cortan formulation for discretizating the eigensystem.

Let NT be the number of triangles in the mesh that approximates the underlying manifold M.

We seek a piecewise differentiable solution fi in the i-th triangle Ti such that the solution fi(x) is

continuous across neighboring triangles. The solution f for the whole mesh is then

f(x) =
NT∑
i=1

fi(x).

Let pi1 , pi2 , pi3 be the vertices of element Ti. In Ti, we estimate fi linearly as

fi(x) =
3∑

k=1

ξikf(pik),

where nonnegative ξik are given by the barycentric coordinates [3, 7]. Any point x ∈ Ti is uniquely

determined by two conditions:

x =
3∑

k=1

ξik(x)pik ,
3∑

k=1

ξik(x) = 1.

Let g be an arbitrary piecewise linear function given by

g(x) =
NT∑
i=1

3∑
k=1

ξik(x)gik ,

where gik = g(pik) are the values of function g evaluated at vertices pik of Ti. For the function f ,

we can represent similarly as fik = f(pik). Since the Laplace-Beltrami operator is self-adjoint, we

have ∫
g∆f dµ = −

∫
〈∇f,∇g〉 dµ =

∫
f∆g dµ.
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Figure 1: A typical 1-ring neighbor of a mesh vertex pi. θij and φij are the angles opposite to the

edge pipj . T−ij and T+
ij are triangles sharing the edge pipj .

Then the integral version of the eigensystem ∆f = −λf in the triangle Ti can be written as∫
Ti

gλf dµ =
∫
Ti

〈∇f,∇g〉 dµ. (7)

The left-hand term in (7) can be written further as∫
Ti

gλf dµ =
3∑

k,l=1

gikλfil

∫
Ti

ξikξil dµ (8)

= λG′iA
iFi, (9)

where Gi = (gi1 , gi2 , gi3)′,Fi = (fi1 , fi2 , fi3)′ and 3× 3 mass matrix

Ai = (Aikl), A
i
kl =

∫
Ti

ξikξil dµ.

It can be shown that

Ai =
|Ti|
12


2 1 1

1 2 1

1 1 2

 ,
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Figure 2: Eigenfunctions of various degrees for a sample mandible surface. The eigenfunctions are

projected on the surface smoothed by the proposed heat kernel smoothing with σ = 0.5 and degree

k = 132. The first eigenfunction is simply ψ0 = 1/
√
µ(M). The color scale is thresholded at

±0.015 for better visualization.

where |Ti| is the area of the triangle Ti [30, 31]. Similarly, the right-hand term in (7) is∫
Ti

〈∇f,∇g〉 dµ =
3∑

k,l=1

gikfil

∫
Ti

〈∇ξik ,∇ξil〉 dµ (10)

= G′iC
iFi, (11)

where 3× 3 matrix Ci is given by

Ci = (Cikl), C
i
kl =

∫
Ti

〈∇ξik ,∇ξil〉 dµ.

Since Ti is planar, the gradient ∇ξik is the standard planar gradient. The matrix Ci can be further

written as [30, 31, 32]

1
2


cot θi2 + cot θi3 − cot θi3 − cot θi2

− cot θi3 cot θi1 + cot θi3 − cot θi1

− cot θi2 − cot θi1 cot θi1 + cot θi2

 ,

where θik is the incident angle of vertex pik in triangle Ti. By equating (9) and (11), we obtain

AiλFi = CiFi. (12)
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We solve (12) by assembling all triangles. To simplify the indexing, we will use slightly different

notations from now on. Let N(pi) be the set of neighboring vertices around pi, and let T−ij and T+
ij

denote two triangles sharing vertices pi, and pj . Let two angles opposite to the edge containing pi

and pj be φij and θij respectively for T+
ij and T−ij (Fig. 1). Then, the assembled sparse matrices

A = (Aij) is computed as follows. The diagonal entries are

Aii =
1
12

∑
pj∈N(pi)

(T+
ij + T−ij ),

and the off-diagonal entries are

Aij =
1
12
(
T+
ij + T−ij

)
,

if pi and pj are adjacent, and Aij = 0 otherwise. The global coefficient matrix C = (Cij), which

is the assemblage of individual element coefficients is given similarly using the cotan formulation.

The diagonal entries are

Cii =
1
2

∑
pj∈N(pi)

(cot θij + cotφij),

and the off diagonal entries are

Cij = −1
2

(cot θij + cotφij),

if pi and pj are adjacent, and Cij = 0 otherwise. When we construct A and C matrices, we compute

the off-diagonal elements first and the diagonal elements next by summing the off-diagonal terms

in the first ring neighbors. Finally, we can obtain the following generalized eigenvalue problem:

Cψ = λAψ. (13)

Since C and A are large sparse matrices, we have solved (13) using the Implicitly Restarted Arnoldi

Method [33, 34] without consuming large amount of memory and time for sparse entries. The

MATLAB code is given at http://brainimaging.waisman.wisc.edu/~chung/lb.

Fig. 2 shows the first few eigenfunctions for a mandible surface. The first eigenfunction is

trivially given as ψ0 = 1/
√
µ(M) and λ0 = 0 for a closed compact surface. It is possible to have

multiple eigenfunctions corresponding to a single eigenvalue. The multiplicity of the eigenvalues of

the Laplace-Beltrami operator is known although the exact number of multiplicity is unknown for

arbitrary manifolds [35]. For smooth genus zero surfaces, the multiplicity m is bounded by

m(λk) ≤ 2k − 3 for k ≥ 2.
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Figure 3: The plot of the root mean squared errors (RMSE) for coordinates x (blue), y (red) and z

(green) for a mandible surface, varying degree k from 5 to 200. The optimal degree for the surface

is 132 for bandwidth σ = 0.5.

Suppose ψk1, · · ·ψkkm are km eigenfunctions corresponding to eigenvalue λk. Then any linear com-

bination of ψkj is also an eigenfunction. Hence, within the same degree, the space of eigenfunctions

form a vector space. The eigenfunctions form a complete orhonormal basis in the space of square

integrable functions, L2(M), so all other possible orthonormal basis is a linear combination of

eigenfunctions.

3.2 Iterative Residual Fitting Algorithm.

Once we obtain the eigenfunctions numerically, we construct the subspace Hk, which is spanned

by up to k-th degree basis. Then we approximate the functional data Y in Hk by minimizing the

sum of squared residual:

arg min
f∈Hk

‖f − Y ‖2 =
k∑
j=0

βjψj(p), (14)
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Figure 4: The plot of optimal degree (vertical) over varying bandwidths (0 ≤ σ ≤ 100) for a

mandible surface (blue) and the average optimal degree for 10 mandible surfaces (red). As smooth-

ing increases, the optimal degree decreases. The bandwidth controls not only the amount of smooth-

ing but also the optimal degree.

where βj = 〈Y, ψj〉 are Fourier coefficients to be estimated. The coefficients can be estimated in

the least squares method. Consider the triangular mesh for M consisting of n nodes. Denote

Y = (Y (p1), · · · , Y (pn))′, β = (β0, · · · , βk)′.

Then, we can represent (14) as the normal equation,

Y = βΨ, (15)

where Ψ = (Ψ0, · · · ,Ψk) and Ψj = (ψj(p1), · · · , ψj(pn))′. The coefficients β are estimated in the

least squares fashion [36] as

β̂ = (Ψ′Ψ)−1Ψ′Y. (16)

Since the size of matrix Ψ′Ψ, i.e. k × k, can become fairly large for large number of basis, it may

be difficult to directly invert it when there is a need to obtain large number of basis. So we have

adopted a more general iterative strategy to overcome the possible computational bottleneck by
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Figure 5: Smoothed mandible surfaces. Left: the original sample surface. Top: heat kernel

smoothing with various bandwidths, σ = 0.5, 20, 50 and 100 which have corresponding optimal

degrees, 132, 81, 30, and 24 respectively. Bottom: iterated kernel smoothing with fixed bandwidth

σ = 0.5/13 with the varying number of iterations (m = 13, 520, 1300 and 2600), which results in the

effective bandwidths σ = 0.5, 20, 50 and 100. The iterated kernel smoothing results are significantly

different from the heat kernel smoothing results.

breaking a large least squares problem into smaller least squares problem using the iterative residual

fitting (IRF) algorithm [37, 38] that was originally developed for spherical harmonic representation.

In this paper, it will be shown that approximately 132 basis are sufficient for representing mandible

surfaces making the direct matrix inversion possible without the use of the IRF-algorithm. However,

we wanted to develop a more general framework that can be applied to complex high resolution

surfaces like human brain surfaces.

The Fourier coefficients are estimated based on an iterative procedure that utilizes the orthonor-

mality of the eigenfunctions. Decompose the subspace Hk into smaller subspaces as the direct

sum

Hk = I0 ⊕ I1 · · · ⊕ Ik,

where each subspace Ij is the projection of Hk along the j-th eigenfunction. Instead of directly

solving the normal equation (15), we project the normal equations into a smaller subspace Ij and

find the corresponding coefficient βj in an iterative fashion from increasing the degree from 0 to k.

At degree k = 0, we write Y = Ψ0β0 + r0, where r0 is the residual of estimating Y in subspace
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I0. Then, we estimate β0 by minimizing the residual in the least squares fashion:

β̂0 = (Ψ′0Ψ0)−1Ψ′0Y =
∑n

i=1 Y (pi)ψ0(pi)∑n
i=1 ψ

2
0(pi)

. (17)

At degree j, we have

rj = rj−1 − e−λjσΨjβj , (18)

where the previous residual rj−1 is given by

rj−1 = Y −
j−1∑
i=0

e−λiσΨiβ̂i.

The parameter βj is then estimated by minimizing the next residual rj in the least squares fashion

β̂j = (Ψ′jΨj)−1Ψ′jrj−1.

The optimal stopping rule for the algorithm is determined if the decrease of the root mean

squared errors (RMSE) is statistically no longer significant using the F -test [37, 38, 39]. Fig. 3

shows the the plot of RMSE that flattens out after certain degree. Once we estimated coefficients

up to degree k− 1, we test if adding the degree k term is statistically significant by testing the null

hypothesis

H0 : β̂k = 0. (19)

Let the sum of squared errors (SSE) of the k-th degree expansion be

SSEk =
n∑
i=1

[
Y (pi)−

k∑
j=0

e−λjσβ̂jψj(pi)
]2
. (20)

RMSE is then given as
√

SSEk/n. As the degree k increases, SSEk decreases so it is reasonable to

choose the k-th series expansion as optimal representation when the decrease of SSEk is no longer

significant. Under H0, the test statistic F follows

F =
SSEk−1 − SSEk

SSEk−1/(n− k − 2)
∼ F1,n−k−2, (21)

the F -distribution with 1 and n − k − 2 degrees of freedom. We compute the F statistic at each

degree, and find the degree of expansion where corresponding p-value first becomes bigger than the

pre-specified significance α = 0.01.
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4 Experimental Results

We applied the proposed smoothing method to mandible surfaces obtained from CT. The method is

further validated against the spherical harmonics on a unit sphere, and compared against iterative

kernel smoothing methods [12, 13, 14].

4.1 Image Acquisition and Preprocessing.

The CT images used in the study were obtained using several different models of GE multi-slice

helical CT scanners. The CT scans were acquired directly in the axial plane with a 1.25 mm slice

thickness, matrix size of 512×512 and 15–30 cm field of view (FOV). Image resolution varied and was

in the range of 0.29 to 0.59 mm as determined by the ratio of FOV divided by the matrix. CT scans

were converted to DICOM format and subsequently Analyze 8.1 software package (AnalyzeDirect,

Inc., Overland Park, KS) was used in segmenting binary mandible structure based on histogram

thresholding. By checking the Euler characteristic, bone pores (holes) in mandible images were

automatically filled up using morphological operations to make the mandible binary volume to be

topologically equivalent to a solid sphere.

4.2 Results.

We applied the proposed method in smoothing a mandible surface. The optimal eigenfunction

expansion was determined using the F -test at α = 0.01. Since there are three different degrees

corresponding to three coordinate functions, we choose the maximum of 3 optimal degrees as the

overall optimal degree. Fig. 3 shows the plot of the RMSE of a mandible surface for varying degrees

between 5 to 200. As the degree k increases, the RMSE for each coordinate rapidly decreases and

starts to flatten out at a certain degree. The optimal degree for the sample surface is determined as

132 for bandwidth 0.5. As the bandwidth increases, the optimal degree decreases due to smoothing

effect (Fig. 4). Fig. 5 shows the result of heat kernel smoothing. Since the optimal degree for one

surface may not be optimal for other surfaces, we have computed the optimal degree for 9 more

mandible surfaces and averaged them (Fig. 4). The optimal degrees at different bandwidths are

k = 185 (σ = 0.5), k = 95 (σ = 20), k = 42 (σ = 50), and k = 29 (σ = 100). These values can be

used as a guideline for determining approximate optimal degrees for other mandible surfaces.
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Figure 6: Comparison of eigenvalues for a unit sphere. 133 eigenvalues are numerically computed

(blue dotted) and compared against the ground truth (red solid) λl = l(l + 1) for up to degree

l = 11. They mach extremely well and the maximum possible relative error is 0.0032 (0.32%).

The numerical implementation was done with MATLAB 7.9 in 2 × 2.66 GHz Quad-Core Intel

Xeon processor MAC PRO desktop with 32 GB memory. For the sample mesh with 22050 vertices,

the entire process took approximately 75 seconds: 55 seconds for setting up the generalized eigen-

value problem (13), 10 seconds to actually solve it (13), 0.1 seconds for the IRF algorithm, and 9

seconds for finding the optimal degree.

4.3 Validation.

The proposed method is validated on a unit sphere where the ground truth is known. On the

unit sphere, the Laplace-Beltrami eigenfunctions are spherical harmonics; however, due to the

multiplicity of eigenvalues on the sphere, any linear combination of spherical harmonics of the

same degree is again an eigenfunction. Therefore, we only checked if solving (13) produces the

expected eigenvalues. We further checked if the constructed heat kernel matches to the ground
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Table 1: Accuracy of eigenvalues.

Computed results Theoretical values

degree j λj degree l order m λl

0 0 0 0 0

1 2.0002 1 -1 2

2 2.0002 1 0 2

3 2.0002 1 1 2

4 6.0011 2 -2 6

9 12.0038 3 -3 12

16 20.0100 4 -4 20

25 30.0206 5 -5 30

truth on the unit sphere.

The parametrization of the unit sphere is given by

p = (sin θ cosϕ, sin θ sinϕ, cos θ),

with (θ, ϕ) ∈ [0, π] ⊗ [0, 2π). The polar angle θ is the angle from the north pole and the azimutal

angle ϕ is the angle along the horizontal cross-section. The spherical harmonic of degree l and

order m, Ylm [40, 41] is defined as

Ylm =


clmP

|m|
l (cos θ) sin(|m|ϕ), −l ≤ m ≤ −1,

clm√
2
P
|m|
l (cos θ), m = 0,

clmP
|m|
l (cos θ) cos(|m|ϕ), 1 ≤ m ≤ l,

where clm =
√

2l+1
2π

(l−|m|))!
(l+|m|))! and Pml is the associated Legendre polynomials of order m given by

Pml (x) =
(1− x2)m/2

2ll!
dl+m

dxl+m
(x2 − 1)l, x ∈ [−1, 1].

There are 2l+ 1 eigenfunctions Ylm corresponding to the same eigenvalue λl = l(l+ 1). Heat kernel

is defined as

Kσ(p, q) =
∞∑
l=0

l∑
m=−l

e−l(l+1)σYlm(p)Ylm(q), (22)
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while heat kernel smoothing of functional data Y is given by

Kσ ∗ Y (p) =
∞∑
l=0

l∑
m=−l

e−l(l+1)σβlmYlm(p), (23)

where p = (θ, ϕ) and βlm = 〈Y, Ylm〉. The exact analytic form (22) serves as the ground truth for

validation.

For validation, we computed eigenvalues and constructed the heat kernels on the spherical mesh

with uniformly sampled 40,962 vertices. The validation is done two different ways.

(i) We investigated the accuracy of eigenvalues. Fig. 6 shows the 133 computed eigenvalues

compared against the ground truth. The maximum possible relative error is 0.0032 (0.32%). Table

1 shows the numerical result for few selected eigenvalues.

(ii) To investigate the accuracy of the constructed heat kernel, we compared our method to the

closed form (22). For our own method, we used expansion up to degree 132 while for (22), degree

l = 11 was used. Fig. 7 shows the result of RMSE of proposed heat kernel smoothing against the

ground truth. For sufficiently large bandwidth σ, RMSE is negligible.

4.4 Comparison.

The proposed heat kernel smoothing was compared against widely used iterated kernel smooth-

ing [12, 14]. We have used the MATLAB implementation given in http://www.stat.wisc.edu/

~mchung/softwares/hk/hk.html. In iterated kernel smoothing, the weights of the kernel are spa-

tially adapted to follow the shape of heat kernel in discrete fashion along a surface mesh. Smoothing

with large bandwidth is broken into iterated smoothing with smaller bandwidths:

Kmσ ∗ Y = Kσ ∗ · · · ∗Kσ︸ ︷︷ ︸
m times

∗Y. (24)

Denote the m-iterated kernel smoothing using a superscript as

K(m)
σ ∗ Y = Kσ ∗ · · · ∗Kσ︸ ︷︷ ︸

m times

∗Y.
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Figure 7: The plot of the root mean squared errors (RMSE) of constructed heat kernel against

the ground truth on a unit sphere for varying bandwidth σ from 0.01 to 0.5. For sufficiently large

bandwidth σ, RMSE is negligible.

Then using the parametrix expansion [25, 42], we approximated heat kernel locally using the Gaus-

sian kernel for small bandwidth:

Kσ(p, q) =
1√
4πσ

exp[−d
2(p, q)
4σ

][1 +O(σ2)], (25)

where d(p, q) is the geodesic distance between p and q. For sufficiently small bandwidth σ, all the

kernel weights were concentrated near the center, so the first neighbors of a given mesh vertex is

sufficient for approximation. Unfortunately, this approximation is bound to compound error at

each additional iteration. For numerical implementation, we used the normalized truncated kernel

given by

W̃σ(p, qi) =
exp

[
− d2(p,qi)

4σ

]∑r
j=0 exp

[
− d2(p,qj)

4σ

] , (26)

where q1, · · · , qr are r neighboring vertices of p = q0. The discrete version of the iterated heat

kernel smoothing is then defined as

W̃σ ∗ Y (p) =
r∑
i=0

W̃σ(p, qi)Y (qi). (27)
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Figure 8: Plot of the RMSE of iterated kernel smoothing against the ground truth for coordinates

x (blue), y (red) and z (green) over the number of iterations up to 200. The proposed heat kernel

smoothing with σ = 0.5 and k = 132 is taken as the ground truth and iterative kernel smoothing

is compared.

We compared the performance of iterated kernel smoothing (27) against heat kernel smoothing.

Due to the lack of the ground truth on an arbitrary surface, there have been no validation framework

on the performance of iterated kernel smoothing except [22]. For heat kernel smoothing, we used

the bandwidth σ = 0.5 and eigenfunctions up to k = 132 degree. For iterated kernel smoothing, we

varied the number of iterations 1 ≤ m ≤ 200 with the correspondingly smaller bandwidth 0.5/m to

have the effective bandwidth of 0.5. For the comparison of performance between both smoothing

methods, we calculated RMSE. The performance of the iterated kernel smoothing depended on

the number of iterations, as shown in the plot of RMSE of mesh coordinates over the number of

iterations (Fig. 8). The RMSE was up to 0.5901 and it did not decrease even when we increase the

number of iterations. This comparison quantitavely demonstrates the limitation of iterated heat

kernel smoothing which does not converge to heat diffusion, and it is also visually demonstrated in

Fig. 5.

In another comparison (Fig. 9), we numerically constructed a heat kernel with small bandwidth
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Figure 9: Kernel shape comparison. Heat kernel with bandwidth 0.025 is numerically constructed

to be used as a sample data (1st). The sample data is smoothed using heat kernel smoothing with

degree 132 and with bandwidth 1.225 (2nd) and 4.975 (3rd) resulting in the effective smoothing

bandwidth of 1.25 and 5 respectively. Iterated kernel smoothing with bandwidth 0.025 is also ap-

plied to the sample data (1st) with 49 (4th) and 199 (5th) iterations to have the effective bandwidth

of 1.25 and 5.

0.025 as a sample data. Then we performed the additional iterated kernel smoothing 49 and 199

times on the sample data to obtain a kernel with the effective smoothing bandwidth of 1.25 and

5. We also performed heat kernel smoothing on the sample data with degree 132 and bandwidths

1.225 and 4.975 making the effective bandwidths of 1.25 and 5 respectively. Fig. 9 displays the

shape difference of the two kernels. The first three are from heat kernel smoothing and the last two

are from iterated kernel smoothing. This visually demonstrates iterated kernel smoothing differs

from heat kernel smoothing.

5 Conclusion

We presented a novel heat kernel smoothing framework where the smoothed data is expanded using

the Laplace-Beltrami eigenfunctions analytically. The expansion is the solution of isotropic heat

diffusion. The method was validated on a unit sphere, where heat kernel was given exactly in terms

of spherical harmonics. As demonstrated in the validation, the proposed method is highly accurate

making heat kernel smoothing the possible ground truth for comparing other smoothing techniques.

Therefore, we have determined the accuracy of widely used iterated kernel smoothing which has not

been properly validated yet due to the lack of the ground truth. Heat kernel smoothing outperforms

iterated kernel smoothing in accuracy.
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[11] A. Cachia, J.-F. Mangin, D. Riviére, D. Papadopoulos-Orfanos, F. Kherif, I. Bloch, and

J. Régis, “A generic framework for parcellation of the cortical surface into gyri using geodesic
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