

The Waisman Laboratory for Brain Imaging and Behavior

Persistent homological brain network analysis

Moo K. Chung

University of Wisconsin-Madison www.stat.wisc.edu/~mchung

http://nbiasite.wordpress.com

NONSTANDARD BRAIN IMAGE ANALYSIS

ORGANIZERS

PROGRAM VENUE

REGISTRATION

Satellite Meeting of 2018 OHBM Singapore

June 22-23, 2018

Plenary Talks

Peter Bandettini, Jean-Baptiste Poline

Session on Deep Learning

Dinggang Shen, Daniel Alexander, Jong Chul Ye, Jong-Hwan Lee

Session on Imaging Genetics

Anqi Qiu, Li Shen, Hongtu Zhu, Tomas Nichols

Session on Nonstandard EEG Analysis

Hernando Ombao, Hakmook Kang, Mak Fiecas, Tim Johnson

Session on Nonstandard fMRI Analysis

Martin Lindquist, Alex D. Leow, Bharat Biswal, Christian F. Beckmann

Session on Nonstandard Brain Connectomics

Moo K. Chung, Andrew Zalesky, James C. Gee, Carl-Fredrik Westin

Poster Session

Abstract

Persistent homology, a branch of recently popular computational topology, provides a coherent mathematical framework for quantifying the topological structures of brain networks. Instead of looking at networks at a fixed scale, as usually done in many standard brain network analysis, persistent homology observes the changes of topological features of the network over multiple resolutions and scales. In doing so, it reveals the most persistent topological features that are robust under noise perturbations. This robustness in performance under different scales is needed for obtaining more stable quantification of the network. For the first half of the talk, we will review the basics of persistent homology. The remaining half of the talk will be focused on its applications in EEG and dMRI based brain network analysis. The talk is based on doi.org/10.1109/TMI.2012.2219590.

Acknowledgement

Yuan Wang, Ross Luo, Nagesh Adluru, Andrew Alexander, Seth Pollack, Richard Davidson, Hill Goldsmith University of Wisconsin-Madison, USA

Benjamin Lahey University of Chicago

Hyekyung Lee, Dong Soo Lee Seoul National University

Victorial Villalta-Gil, David Zald Vanderbilt University

Jae Jun Woo, Jong Chul Ye KAIST, Korea

Hernando Ombao KAUST, Saudi Arabia
Guorong Wu University of North Carolina – Chapel Hill

NIH grants: R01 EB022856, R01 MH101504, P30 HD003352, U54 HD09025

Rips Filtration

Carlsson & de Silva, 2010 Edelsbrunner & Harer, 2009

What is filtration?

$$\mathcal{G}_1 \subset \mathcal{G}_2 \subset \mathcal{G}_3 \subset \cdots$$

Sequence of nested objects or vector spaces

Monotonic feature function

$$\beta_i(\mathcal{G}_1) < \beta_i(\mathcal{G}_2) < \beta_i(\mathcal{G}_3) < \cdots$$

Simplicial complex

Simplicial complex

Not a valid simplicial complex

Cubical complex

Left central gyrus

4-neighbor connectivity

6-neighbor connectivity

Rips complex of point cloud data

Rips complex approximates the topology of the point cloud data by connecting two point cloud data, x_i and x_j , if $d(x_i, x_j) < \varepsilon$.

Rips Filtration of cloud point data

Rips complex of point cloud data

 $\varepsilon = 70$ mm

Rips complex of point cloud data

 $\varepsilon = 70 \text{mm}$

Morse Filtration

Persistence Diagrams of Cortical Surface Data

Moo K. Chung^{1,2}, Peter Bubenik³, and Peter T. Kim⁴

<u>Chung et al., 2009</u> Information Processing in Medical Imaging (IPMI) 5636:386-397. <u>Pachauri et al., 2011</u> IEEE Transactions on Medical Imaging 30:1760-1770

Morse theory in signal processing

$$Y = \mu + \epsilon$$

Unknown signal μ is assumed to be a Morse function: all critical values are unique.

Sublevel set

$$R(y) = \mu^{-1}(-\infty, y]$$

Number of connected components #R(y)

Morse filtration

Consider a sublevel set

$$R(y) = \mu^{-1}(-\infty, y]$$

For critical values

$$R(b) \subset R(c)$$

For all critical values
$$y_1 < y_2 < \cdots$$
,

$$R(y_1) \subset R(y_2) \subset \cdots$$

Persistent Diagrams

Persistence Diagram (PD)

Pair the time of death with the time of the closest earlier birth

Signal in persistent diagrams

How do we analyze a collection of PDs?

Critical values capture the pattern of signal changes

Example:
$$f(x) = x + 7(x - \frac{1}{2})^2 + \frac{1}{2}\cos(8\pi x) + \epsilon$$

Stability of persistence diagram

$$d(D(f), D(g)) \le ||f - g||_{\infty}$$

Persistent homology on cortical thickness

blue= control (n=11) red= autism (n=16)

Kernel density (uniform kernel) in persistent diagram

Statistical significance?

Degree-I distribution

Max t = 3.9507Min t = -3.0961

Permutation test based on 5000 random

95 percentile = 3.6432 5 percentile = -4.0237

More pairings for the control subjects

= More cortical folding

Persistent Landscape

Bubenik, 2015 Journal of Machine Learning Research Wang et al. 2014 Distinguished Paper Award in ENAR Wang et al. 2018 Annals of Applied Statistics, in press

Temporal epilepsy EEG

Seizure starts

Existing methods are too sensitive

What method will not detect the deforation of signal

Barcodes & persistent landscapes

Persistent landscape

Barcodes & persistent landscapes

Persistent landscapes

before seizure

during seizure

Corrected p-value

No signal is signal!

Topological invariance \rightarrow seizure origin

Standard brain network analysis

Standard brain connectivity analysis framework

Zalesky et al. 2010 Neurolmage

Dense fMRI cross-correlation networks

Topology changes depend on thresholds

Tracing the evolution of multi-scale functional networks in a mouse model of depression using persistent brain network homology

Arshi Khalid a, Byung Sun Kim A, Moo K. Chung b,d, Jong Chul Ye c,*, Daejong Jeon A,**

Connectivity in fMRI: A Review and a Preview

Victor Solo, Life-Fellow, IEEE, Jean-Baptiste Poline, Martin A. Lindquist, Sean L. Simpson, F. DuBois Bowman, Moo K. Chung, Ben Cassidy, Member, IEEE.

Solo et al. 2018 IEEE Transactions on Medical Imaging

Graph theory

Feature based
Too many features
No models

Graphical models

Comp. Bottleneck Often Bayesian

Persistent homology

Topological invariants Model on topology Very robust

Graph Filtration

Computing the Shape of Brain Networks Using Graph Filtration and Gromov-Hausdorff Metric

Hyekyoung Lee^{1,2,3}, Moo K. Chung^{2,6,7}, Hyejin Kang^{1,3}, Boong-Nyun Kim⁵, and Dong Soo Lee^{1,3,4}

Lee et al. 2011 MICCAI 302-309
Lee et al. 2012 IEEE Transactions on Medical Image 31:2267-2277

Network as a metric space

Nodes:
$$V=\{1,2,\cdots,p\}$$

Edge weights:
$$w=(w_{ij})$$
 $w_{i,j} \geq 0, \ w_{ii}=0, \ w_{ij}=w_{ji}$ $w_{ij} \leq w_{ik}+w_{kj}$

$$\mathcal{X} = (V, w)$$
 is a metric space

Correlation metric

$$1-\operatorname{corr}(\mathbf{x}_i,\mathbf{x}_j)$$
 is not a metric

$$\sqrt{1-\mathrm{corr}(\mathbf{x}_i,\mathbf{x}_j)}$$
 is a metric

Graph filtration=single linkage dendrogram

Brain network as dendrogram

Graph filtration on directed graphs

PET metabolic connectivity

24 attention deficit hyperactivity disorder (ADHD) children

26 autism spectrum disorder (ASD) children

Il pediatric control subjects

Pet metabolic connectivity

90 x 90 correlation map

Rips filtration on I-correlation

Graph filtrations

I-correlation

Maltreated multimodal study

31 normal controls (12 ± 2 yrs.)

23 maltreated while living in post-institutional settings (2.5±1.4 yrs.) before adopted (11 ± 2 yrs.)

MRI -> Jacobian determinant

DTI → FA-values

Graph filtrations on Jacobian determinant

Maltreated children are anatomically more homogenous

Graph filtrations on FA-values

Tennessee twin fMRI study

11 monozygotic (MZ) twins

14 dizygotic (DZ) twins9 same-sex DZ pairs (5 male, 4 female)5 different-sex DZ pairs

Paired statistical contrast images

Monetary incentive delay task

3 runs of 40 trials

delay for \$0 trials—delay for \$1 trials—delay for \$5 trials—

General Linear Model

$$W(v_i) = Zb(v_i) + \varepsilon(v_i)$$

 $c^T b(v_i)$ Contrast map

Networks at filtration value 0.7

MZ-twins

DZ-twins

Networks at filtration value 0.8

MZ-twins DZ-twins

Networks at filtration value 0.9

Heritability Index (at both nodes and edges)

p-value < 0.0002

Heritability index map

+25000 nodes

+0.6 billion connections

Voxel-level functional network

Betti Numbers

Betti numbers β_i

of i-dimensional holes/loops

$$\beta_0$$
 = # of connected components = 3 β_1 = # of ID holes = I β_2 = # of 2D cavities =0

Representation: (3,1,0,0,...)

Euler characteristic:

$$\chi = \beta_0 - \beta_1 = 2$$

$$\beta_0 = 1, \beta_1 = 2, \beta_2 = 1$$

Representation: (1,2,1,0,0,...)

0-th Betti plot on PET correlation network

24 attention deficit hyperactivity disorder (ADHD) children
26 autism spectrum disorder
(ASD) children
I I pediatric control subjects

Hole Detection in Metabolic Connectivity of Alzheimer's Disease Using k-Laplacian

Hyekyoung Lee¹, Moo K. Chung², Hyejin Kang¹, and Dong Soo Lee¹

Persistent homology on hierarchical connectivity

Winsconsin Twin Project

58 Monozygontic (MZ) twin pairs53 same-sex dizygotic (DZ) twin pairs

III pairs = 222 subjects

6 non-DWI: b=0
63 DWI: b=500 (9 dir.), 800 (18 dir.), 2000 (36 dir.)
Isotropic 2mm resolution

20-layer hierarchical parcellation

20-layer hierarchical parcellation

Number of voxels in each layer

Hierarchical connectivity S^i_{jk}

$$S_{jk}^{i} = \sum_{\mathbf{R}_{l}^{i+1} \subset \mathbf{R}_{j}^{i}} \sum_{\mathbf{R}_{m}^{i+1} \subset \mathbf{R}_{k}^{i}} S_{lm}^{i+1}$$

Hierarchical connectivity matrix

Twin correlations & heritability index

Twin correlations & heritability index (layer 3)

Betti-0 plot (# of connected components)

More complex graph filtrations

Integrated Multimodal Network Approach to PET and MRI Based on Multidimensional Persistent Homology

Hyekyoung Lee, 1,2 Hyejin Kang, 1,3 Moo K. Chung, 4,5 Seonhee Lim, 6 Bung-Nyun Kim, 7 and Dong Soo Lee 1,2*

 β_0 surface plot

Lee et al. 2017 HBM 38:1387-1402

Persistent Homology in Sparse Regression and Its Application to Brain Morphometry

Moo K. Chung*, Jamie L. Hanson, Jieping Ye, Richard J. Davidson, and Seth D. Pollak

Chung et al. 2013 MICCAI 300-307
Chung et al. 2015 IEEE Transactions on Medical Imaging 34:1928-1939

Topological properties of the structural brain network constructed using the ε-neighbor method

Min-Hee Lee, Dong Youn Kim, Moo K. Chung*, Andrew L. Alexander and Richard J. Davidson

Chung et al. 2011 SPIE 79624G
Lee et al. 2018 IEEE Biomedical Engineering

Degree-Based Statistic and Center Persistency for Brain Connectivity Analysis

Kwangsun Yoo, 1,2 Peter Lee, 1,2 Moo K. Chung, William S. Sohn, Sun Ju Chung, Duk L. Na, 5,6 Daheen Ju, and Yong Jeong 1,2*

Center persistency (CP)

each cluster. The CP is calculated by obtaining the sum of the weighted degrees for the entire possible range of thresholds.

$$CP_{v_i} = \int w_{v_i}(s)ds \approx \sum_n w_{v_i}(s)\Delta s$$

Persistent homological network distances

Chung et al. 2017

<u>Topological distances beweeen brain networks</u>,

<u>Connectomics in Neurolmaging (CNI) 10511:161-170</u>

Matrix norm based distances

$$\mathcal{X}^{1} = (V, w^{1}) \qquad \mathcal{X}^{2} = (V, w^{2})$$

$$D_{l}(\mathcal{X}^{1}, \mathcal{X}^{2}) = \left(\sum_{i,j} |w_{ij}^{1} - w_{ij}^{2}|^{l}\right)^{1/l}$$

$$D_{\infty}(\mathcal{X}^{1}, \mathcal{X}^{2}) = \max_{\forall i,j} |w_{ij}^{1} - w_{ij}^{2}|$$

Matrix norm fails!

$$D_l(\mathcal{X}^1, \mathcal{X}^2) = \infty$$
 $D_{\infty}(\mathcal{X}^1, \mathcal{X}^2) = \infty$

Gromov-Hausdorff distance

Lee et al., 2011 MICCAI 6892:302-309

Lee et al. 2012 IEEE Transactions on Medical Image 31:2267-2277

Single linkage distance (SLD)

Single linkage distance (SLD)

ultrametric $s_{ij} \leq \max(s_{ik}, s_{kj})$

Gromov-Hausdorff distance between networks

Single linkage distance

Connectivity matrix of brain network

(d) Pairwise Distance Matrix = 1 - correlation

Clustering accuracy on PET correlation network

ō.	GH	bottleneck	slope	modularity	clustering coeff.	char. path length	small-worldness	transitivity
avg.	0.9630	0.5112	0.8306	0.6106	0.6118	0.6558	0.6349	0.5512
std.	0.0655	0.0827	0.1428	0.0761	0.1341	0.1027	0.1065	0.1353

Limitation of GH-distance

Need to design new topological distances

Kolmogorov-Smirnov (KS) distance

Chung, M.K. et al. 2017

<u>Exact topological inference for paired brain networks via persistent homology. Information Processing in Medical Imaging (IPMI) 10265:299-310</u>

Betti-0 plot on FA correlations

KS-distance:
$$\max_{\lambda} |B_1(\lambda) - B_2(\lambda)|$$

p-value < 0.000 l

Number of connected components

p-value < 0.0002

Size of the largest connected component

Exact permutation test

Theorem 1.

$$D_q = \sup_{1 \le j \le q} \left| B(G_{\lambda_j}^1) - B(G_{\lambda_j}^2) \right|$$

$$P(D_q \ge d) = 1 - \frac{A_{q,q}}{\binom{2q}{q}}$$

$$A_{u,v} = A_{u-1,v} + A_{u,v-1}$$

$$|u-v| < d$$

MATLAB codes:

www.stat.wisc.edu/

~mchung/twins

Theorem 2.

$$\lim_{q \to \infty} P\left(D_q / \sqrt{2q} \ge d\right) = 2\sum_{i=1}^{\infty} (-1)^{i-1} e^{-2i^2 d^2}$$

MATLAB codes:

www.stat.wisc.edu/

~mchung/twins

Validations

Null data check:

Network of random pairs in two group comparison

parameter 0.5

parameter 0.7

Random graph simulations

Simulating modular structure

$$\mathbf{x}_i = N(0, I)$$

$$\mathbf{y}_i = 0.5\mathbf{x}_{ci+1} + N(0, \sigma^2 I)$$

module size: c number of nodes

Simulations on modular structures

p-values on network distances

	Modules						
Na diff	0 vs. 0 4 vs. 4	0.93	0.93	0.93	0.87	1.00	1.00
NO dill.	4 vs. 4	0.89	0.89	0.90	0.86	0.87	0.88
	4 vs. 5 5 vs. 10	0.14	0.06	0.03	0.29	0.07**	0.07**
Diff.	5 vs. 10	0.47	0.19	0.10	0.33	0.01	0.06*

$$* = x 10^{-3}$$

 $** = x 10^{-4}$