1. **Negative binomial distribution with parameter** \(r \) **and** \(p \). Let \(X \) be the number of coin tossing until \(r \) number of heads are accumulated. Then

\[
p(x) = \binom{x-1}{r-1} p^r (1-p)^{x-r}, \ x = r, r+1, \ldots.
\]

The geometric distribution is a special case of a negative binomial distribution with \(r = 1 \).

\[
E_X = \frac{r}{p} \ 	ext{and} \ E_Y = \frac{r}{1-p}.
\]

2. **The Banach match problem.** A mathematician carries two match boxes each containing \(n \) matches. The probability of using each match box is \(\frac{1}{2} \). If he found one of the box is empty, what is the probability that the one box contains \(k \) matches?

Solution. Let \(A_k \) be the above event. Compute \(P(A_0), P(A_{n-1}), \ldots \) and you will see the pattern.

\[
P(A_k) = 2 \binom{2n-k}{n} \left(\frac{1}{2} \right)^{2n-k}, \ k = 0, 1, \ldots, n.
\]

3. **Hypergeometric distribution.** A box contains \(N \) balls, of which \(m \) are white and \(N - m \) are black. Let \(X \) be the number of white balls in \(n \) draws without replacement.

\[
p(x) = \binom{m}{x} \binom{N-m}{n-x} \binom{N}{n}, \ x = 0, 1, \ldots, \min(n, m).
\]

4. **Two people toss a fair coin** \(n \) **times each.** Find the probability that they throw equal number of heads. **solution.** Let \(E_i \) be the event the both throws \(i \) heads. Then we are computing

\[
P(\bigcup_{i=0}^{n} E_i) = \sum_{i=0}^{n} P(E_i).
\]

Note \(P(E_i) = \binom{n}{i} \left(\frac{1}{2} \right)^n \binom{m}{i} \left(\frac{1}{2} \right)^m \).

This problem can be also solved using random variables. Let \(X \) be the number of heads for the first person and \(Y \) be the number of heads for the second person. Then \(X, Y \sim \text{i.i.d. Binomial}(n, \frac{1}{2}) \).

\[
P(X = Y) = \sum_{i=0}^{n} P(X = i, Y = i)
\]

\[
= \sum_{i=0}^{n} P(X = i)P(Y = i)
\]

\[
= \sum_{i=0}^{n} \left(\binom{n}{i} \left(\frac{1}{2} \right)^n \binom{m}{i} \left(\frac{1}{2} \right)^m \right)^2
\]

From the hypergeometric distribution,

\[
\binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i} \binom{n}{i}.
\]

Hence, the probability is \(\binom{2n}{n} \frac{1}{2^{2n}} \).

NOTE: The first midterm exam will cover lectures 1-9 (upto Chapter 4). **HW 3** due Oct 20. Solve the following 9 problems. Chapter 4 Problems 42, 44, 48, 60, 64, 75, 76. Theoretical Exercises 31, 32.