Nov 22, 2005

1. The covariance between X and Y is
 \[\text{Cov}(X, Y) = \mathbb{E}(X - \mu_X)(Y - \mu_Y), \]
 where $\mu_X = \mathbb{E}X, \mu_Y = \mathbb{E}Y$. It measures the relationship between two random variables.

2. **Correlation coefficient** is given by
 \[\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \text{Var}(Y)}}. \]
 It is the normalized version of the covariance.

3. \[\text{Cov}(aX + b, cY + d) = ac \text{Cov}(X, Y). \]
 \[\rho(aX + b, cY + d) = \rho(X, Y). \]

4. Suppose that the joint distribution of X and Y is a uniform distribution over $x^2 + y^2 \leq 1$. Determine the correlation coefficient of X and Y.
 Solution. The joint density is $f(x, y) = \frac{1}{\pi}$ for $(x, y) \in \{(x, y)|x^2 + y^2 \leq 1\}$ and 0 otherwise. The marginal density is
 \[f_X(x) = \int_{\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy = \frac{2\sqrt{1-x^2}}{\pi}, -1 \leq x \leq 1. \]
 Since $f_X(x)$ is an even function, $x f_X(x)$ is odd so from symmetry, $\mathbb{E}X = 0$. Similarly, $\mathbb{E}Y = 0$. Also you should be able to show $\mathbb{E}(XY) = 0$. Therefore, $\rho = 0$.

5. Suppose that X and Y are identically distributed Bernoulli random variables with parameter $0 < p < 1$ such that $\text{Cov}(X, Y) = 0$. Show that X and Y are independent.
 Solution. The condition $\text{Cov}(X, Y) = 0$ is equivalent to $P(X = 1, Y = 1) = P(X = 1)P(Y = 1) = p^2$. Then it follows $P(X = 1, Y = 0) = P(X = 1) - P(X = 1, Y = 1) = p(1 - p) = P(X = 1)P(Y = 0)$ and similarly for other cases. So we have $P(X = i, Y = j) = P(X = i)P(Y = j)$ for all $i, j = 0, 1$.

6. For random variables X and Y, prove or disprove that X and $Y - \mathbb{E}[Y|X]$ are correlated.
 Solution.
 \[
 \text{cov}(X, Y - \mathbb{E}[Y|X]) = \mathbb{E}[XY - \mathbb{E}[Y|X]] - \mathbb{E}(X)\mathbb{E}[Y - \mathbb{E}[Y|X]]
 = \mathbb{E}(XY) - \mathbb{E}[X\mathbb{E}[Y|X]] - \mathbb{E}(X)\mathbb{E}[Y] + \mathbb{E}(X)\mathbb{E}[\mathbb{E}[Y|X]]
 = \mathbb{E}(XY) - \mathbb{E}[X\mathbb{E}[Y|X]] - \mathbb{E}(X)\mathbb{E}[Y] + \mathbb{E}(X)\mathbb{E}[Y] = 0
 \]

7. Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$. Then are \bar{X} and $X_j - \bar{X}$ independent?
 Solution. $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$. Since $X_j - \bar{X}$ is a linear combination of X_j's, it is also distributed as normal. Any uncorrelated normal distributions are independent. So we only need to check if $\text{Cov}(\bar{X}, X_j - \bar{X}) = 0$.
 \[
 \text{Cov}(\bar{X}, X_j - \bar{X}) = \text{Cov}(\frac{1}{n} \sum_{i=1}^{n} X_i, X_j - \frac{1}{n} \sum_{k=1}^{n} X_k)
 = \frac{1}{n} \sum_{i=1}^{n} \text{Cov}(X_i, X_j) - \frac{1}{n} \sum_{i,k=1}^{n} \text{Cov}(X_i, X_k)
 = \frac{1}{n} \text{Var}(X_j) - \frac{1}{n} \sum_{i=1}^{n} \text{Var}(X_i)
 = \frac{1}{n} \text{Var}(X_j) - \frac{1}{n} \frac{1}{n} \text{Var}(X_j) = 0
 \]

Note. 1. The second midterm exam result: mean 25.2 ± 8.6. max 40, min 5. 12 students above 30. 18 students between 20 and 30. 11 students below 20.

Note. 2. The final homework problem will be posted in the TA’s class website by this Thursday. Solve 9 problems in Chapter 6 and 7. Due date: December 15 (Thursday).

Figure 1: Number of students (vertical) below the given exam score (horizontal).