Stat312: Final Exam

Moo K. Chung
mchung@stat.wisc.edu

August 5, 2004

Answer all questions clearly and circle your final answer. Your answers should be correct up to the second decimal places.

One page note and a calculator are allowed.
No textbooks, scrap papers or hand-held computers are allowed.
All variables that are introduced should be defined.
This exam booklet consists of five problems and eleven pages.

Name:__
Student ID:____________________________________

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

Signature:_____________________________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Please use the following R output in answering the appropriate exam problems.

```r
> qnorm(c(0.99, 0.975, 0.95, 0.925, 0.9))
[1] 2.33 1.96 1.64 1.44 1.28
> qt(c(0.99, 0.975, 0.95, 0.925, 0.9), 2)
[1] 6.96 4.303 2.92 2.28 1.89
> qt(c(0.99, 0.975, 0.95, 0.925, 0.9), 3)
[1] 4.54 3.18 2.35 1.92 1.64
> qt(c(0.99, 0.975, 0.95, 0.925, 0.9), 4)
[1] 3.75 2.77 2.13 1.78 1.53
> qchisq(c(0.99, 0.975, 0.95, 0.925, 0.9), 2)
[1] 9.21 7.38 5.99 5.18 4.60
> qchisq(c(0.99, 0.975, 0.95, 0.925, 0.9), 3)
[1] 11.34 9.35 7.81 6.90 6.25
> qchisq(c(0.99, 0.975, 0.95, 0.925, 0.9), 4)
```
1. We wish to fit paired sample \((x_1, y_1), \cdots, (x_n, y_n)\) with a linear regression model \(Y = cx + \epsilon\). We assume that \(\epsilon\) follows a normal distribution with zero mean and variance \(\sigma^2\).

 (a) Estimate \(c\) by minimizing the sum of the squared residuals (5pts).

 (b) Write the log-likelihood function as a function of \(c\) and \(\sigma\) (5pts).
(c) Find the likelihood estimator of c by differentiating the log-likelihood function in (b). Derive everything (5pts).

(d) Either prove or disprove unbiasedness of the estimator you computed in (c) (5pts, no point given if (c) is incorrect).
(e) Compute the variance of the estimator you computed in (a) (5pts, no point given if (a) is incorrect).

(f) If the sample correlation coefficient of the above paired data is 0.5, what is the sample correlation coefficient of data \((x_1 - \bar{x}, y_1 - \bar{y}), \ldots, (x_n - \bar{x}, y_n - \bar{y})\)? \(\bar{x}\) and \(\bar{y}\) are the respective sample means of \(x_i\)'s and \(y_i\)'s. Prove your result (5pts).
2. When you throw a coin 10 times, you observed 3 heads. Test if the coin is biased at $\alpha = 0.2$. Clearly state appropriate parameters, hypotheses, a test statistic. You may use the following R output (15pts).

```r
> pbinom(0:5,10,0.5)
[1] 0.00 0.01 0.06 0.17 0.38 0.62
```
3. A manufacturer of automatic washers offers a particular model in one of three colors: white, green and blue. Of the 100 washers sold, 40 were white, 35 green, 25 blue. In each of the subsequent questions, clearly state appropriate parameters, hypotheses, a test statistic and its distribution under the null assumption.

(a) Would you conclude that customers have no preference? Test it at $\alpha = 0.05$ (10 pts).
(b) Would you conclude that customers have a preference for white color? Test it at $\alpha = 0.05$ (10 pts).
4. A quality control engineer has measured the numbers of defectives per day from a certain production process for 50 days and recorded below. Test if the number of defectives follows a binomial distribution at $\alpha = 0.05$. (20pts).

<table>
<thead>
<tr>
<th>number of defects</th>
<th>frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>
5. Problem on the coefficient of determination.

(a) The following is the R output of a regression analysis based on linear model \(Y = \beta_0 + \beta_1 x + \epsilon \) for 11 paired data \((x_i, y_i)\). Compute the coefficient of determination and the coefficient of correlation (5pts).

```r
> summary(lm(y ~ x))
Call:
lm(formula = y ~ x)
Residuals:
          Min 1Q Median 3Q Max
-12 -6.6 -0.28 7.64 10.06
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -14 16.1 -0.889 0.4
x              7 1 3 0.001 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```
(b) It is shown during the lecture that the coefficient of determination is always between 0 and 1. Prove it (15pts).