Stat312: Midterm Makeup Exam I.

Instructor: Moo K. Chung
mchung@stat.wisc.edu

October 12, 2004

Answer all questions clearly and circle your final answer. Your answers should be correct up to the second decimal places. One page note and a calculator are allowed. No textbooks, scrap papers or hand-held computers, PDA are allowed. This exam booklet consists of 3 problems and 6 pages.

Name:__
Student ID:_____________________________________

Pledge: On my honor, I have neither given nor received unauthorized aids on this examination.

Signature:_____________________________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

1. Suppose a random sample X_1, \ldots, X_n are coming from a normal distribution with mean μ and variance σ^2. We are interested in estimating μ and σ^2.

 (1) Write the likelihood function (5pts).

 (2) By maximizing the likelihood function, find the maximum likelihood estimators for μ and σ^2. Derive everything (5pts).
(3) Determine if the estimator for σ^2 in (2) is unbiased (5pts, no point given if (2) is not solved).

(4) What is the moment estimator of σ^2? Derive everything (5pts).
2. Suppose we toss 10 identical coins and observed 4 heads. Let p be the probability of getting head when a single coin is tossed.

(1) Write the likelihood function. Properly define all variables you are using (5pts).

(2) By maximizing the likelihood function, find the maximum likelihood estimator for p. Derive everything (5pts).
(3) What is the maximum likelihood estimator for the probability of getting tail?
3. The following 10 sample observations on breakdown voltage of a particular circuit under certain condition is given.

\[62, 50, 53, 57, 41, 53, 55, 61, 59, 64. \]

(1) What is the sample mean and the sample variance of the breakdown voltage? (5pts).

(2) Construct 98% confidence interval for the mean breakdown voltage. What is the statistical assumptions you are making to construct the confidence interval? You may use the following R output (5pts).

```r
> qnorm(1:10/100)
> [6] -1.554774 -1.475791 -1.405072 -1.340755 -1.281552
```