1. **Motivation.** Checking the normality of data is important in setting up a statistical model. Measurements are usually modeled using a normal distribution. We may assume \(x_1, \ldots, x_n \) are \(n \) measurements from \(N(\mu, \sigma^2) \). But how do we know the data will follow normality?

2. **Example.** Consider the following example of binge drinking percentage across universities.

\[
\begin{align*}
&> \text{library(Devore6)} \\
&> \text{data(xmp01.05)} \\
&> \text{attach(xmp01.05)} \\
&> \text{hist(bingePct,14)} \\
\end{align*}
\]

If it were really from \(N(\mu, \sigma^2) \), we can estimate \(\mu \) and \(\sigma \) from the sample mean and the sample standard deviation:

\[
\begin{align*}
&> \text{sd(bingePct)} \\
&[1] 14.34699 \\
&> \text{mean(bingePct)} \\
&[1] 42.33571 \\
&> \text{length(bingePct)} \\
&[1] 140
\end{align*}
\]

There are 140 measurement in the data set. Let us randomly generate 140 numbers from \(N(42.34,14.35^2) \) and plot the histogram.

\[
\begin{align*}
&> \text{simulated} \leftarrow \text{rnorm(140,42.34,14.35)} \\
&> \text{hist(simulated,14)}
\end{align*}
\]
Unfortunately eyeball comparison can be deceptive so we need a better method to compare the two histograms. We will compare the percentiles.

3. **Definition.** Given \(n \) observations \(x_1, \cdots, x_n \), we order them from the smallest to the largest and we have \(x_{(1)}, \cdots, x_{(n)} \). The \(i \)-th smallest observation is defined as the \((i - 0.5)/n \)-th sample quantile or the \(100(i - 0.5)/n \)-th sample percentile point. If bingePct really follows \(N(42.34, 14.35^2) \), then the sample quantiles should be reasonably close to the corresponding quantiles of the normal distribution.

```r
> sorted_bingePct <- sort(bingePct)
> sorted_simulated <- sort(simulated)
> plot(sorted_simulated, sorted_bingePct)
```

![Figure 2: Left: plot of sorted data bingePct vs. sq-th quantile. This plot is called the quantile-quantile plot (QQ-plot) and is used to check the equality of distribution between two samples. This plot shows more or less a straight line so bingePct seems to follow normality. Right: normal probability plot of bingePct. Qunatile points for the x-axis is directly computed from \(N(42.34, 14.35^2) \) without simulation.]

4. **Normal probability plot.** A better method is to generate the percentile points directly from the theoretical distribution \(N(42.34, 14.35^2) \), which can be obtained by

```r
> theoretical_quantile<-qnorm((1:140-0.5)/140,42.34,14.35)
> plot(theoretical_quantile,sorted_bingePct)
```

R software has a very simple command for generating the normal probability plot:

```r
> qqnorm(bingePct)
```

![Figure 3: Normal probability plot of data that do not follow normal distributions.]

Assigned Problems. Exercise 4.82., 4.88. Homework III due this Thursday. Submit assigned problems from Lectures 07-10.