Answer all questions showing all your work **neatly**. Calculators are allowed. One page note is permitted

Name:__

Student ID:____________________________________

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

Signature:_____________________________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
1. A box contains 7 white balls and 3 black balls. A ball is chosen at random and replaced by the opposite color. Now again draw a ball.

(a) What is the probability that the second ball drawn is white? [5pts]

(b) What is the probability that the first ball drawn is black when the second ball drawn is white? [5pts]
2. The joint distribution of X and Y is given by

$$f(x, y) = \begin{cases} 2 & \text{for } y < x < 1, 0 < y < 1 \\ 0 & \text{otherwise}. \end{cases}$$

(a) Compute the probability $P(\frac{1}{2} < X < 1, \frac{1}{2} < Y < 1)$. [5pts]

(b) Determine the marginal distributions of X and Y. [5pts]

(c) Are X and Y are independent? Prove your statement. [5pts]
3. A random sample X_1, X_2, \cdots, X_n comes from the distribution

$$f(x) = \lambda x^{\lambda - 1}, \ 0 < x < 1.$$

(a) Write down the likelihood function for λ. [5pts].

(b) Derive the maximum likelihood estimator (MLE) of θ. [5pts].
4. The intelligence quotient (IQ) of 10 dogs are measured:

\[25, 21, 22, 17, 29, 25, 16, 20, 19, 22.\]

The measurements are assumed to follow a normal distribution with known variance 9. The following R output is available.

\[
\text{> qnorm(c(0.025, 0.05, 0.1))}
\]

\[
[1] -1.96 -1.64 -1.28
\]

(a) Construct a 95\% confidence interval of the mean IQ. [5pts]

(b) Determine the minimum sample size needed for the width of a 95\% confidence interval to be less than 2. [5pts]