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ABSTRACT
Persistent homology has been applied to brain network analysis for finding the shape of brain
networks across multiple thresholds. In the persistent homology, the shape of networks is often
quantified by the sequence of k-dimensional holes and Betti numbers. The Betti numbers are
more widely used than holes themselves in topological brain network analysis. However, the
holes show the local connectivity of networks, and they can be very informative features in
analysis. In this study, we proposed a new method of measuring network differences based on
the dissimilarity measure of harmonic holes (HHs). The HHs, which represents the substructure
of brain networks, are extracted by the Hodge Laplacian of brain networks. We also found
the most contributed HHs to the network difference based on the HH dissimilarity. In clinical
application, the proposed method was applied to clustering the networks of 4 groups, normal
control (NC), stable and progressive mild cognitive impairment (MCI), and Alzheimer’s disease
(AD). The results showed that the clustering performance of the proposed method was better
than that of network distances based on only the global change of topology.

NETWORK CONSTRUCTION

We used FDG PET images in ADNI data set (http://adni.loni.usc.edu). The ADNI FDG-PET
dataset consists of 4 groups: 181 NC, 91 sMCI, 77 pMCI, and 135 AD (Age: 73.7±5.9, range
56.1−90.1). FDG PET images were preprocessed by using SPM8. The whole brain image was
parcellated into 94 regions of interest (ROIs) based on AAL2 excluding cerebellum [3]. The
distance between two nodes was estimated by the diffusion distance on positive correlation be-
tween the measurements. We constructed 600 bootstrapped networks from 600 bootstrap sam-
ples in each group by diffusion distance. The total number of generated brain networks was
2400.

DISSIMILARITY BETWEEN BRAIN NETWORKS BASED ON HHS

We estimated persistent HHs from each network by the first Hodge Laplacian [1,2]. Each HH
is an eigenvector with zero eigenvalue of the Hodge Laplacian. It is denoted by x of which
dimension is the number of edges in a network.



Suppose that two networks Ka and Kb have m and n persistent HHs, denoted by Ha =
[xa1, · · · , xam] and Hb = [xb1, · · · , xbm], respectively. We assume that the difference between net-
works is determined by the difference of local substructures of networks, and the persistent HHs
represent the substructure of a network. Then, the network dissimilarity based on persistent HHs
is defined by

DH(Ka, Kb) = inf
ψ:Ha→Hb

1

min(m,n)

∑
x∈Ha

dh(x, ψ(x)),

where dh(x, ψ(x)) is the difference between two HHs, x ∈ Ha and ψ(x) ∈ Hb, estimated by
= 1− |x>ψ(x)|. It is the smallest singular value of the matrix [x ψ(x)].

CITATION OF HH

We can also find which substructures, i.e., HHs, make the difference between two networks or
two groups of networks. The most discriminative pair of HHs between two networks are

(x, ψ(x)) = argmaxx∈Ha,ψ(x)∈Hb
inf

ψ:Ha→Hb

dh(x, ψ(x)).

If we compare two groups of networks, denoted by A and B, the citation of a HH x ∈ H in a
network K ∈ A is defined by the ratio of the difference between groups to the difference within
a group such that

ξ(x) =

∑
Kb∈B infψ:H→Hb

dh(x, ψ(x))∑
Ka∈A infψ:H→Ha dh(x, ψ(x))

.

The most cited HH is the substructure of a network maximizing the difference between groups
and minimizing the difference within a group.

RESULTS

The network distance between 2400 brain networks was estimated by (a) L2-norm, (b) Gromov-
Hausdorf (GH) distance, (c) Kolmogorov-Smirnov distance (KS) of connected components
(KS0), (d) KS of cycles (KS1), (e) bottleneck distance of holes, and (f) HH dissimilarity in
Fig. 1 [4–6]. We clustered them into 4 groups and the clustering accuracy was shown in Table
1. The 4 most cited HHs between sMCI and pMCI were shown in Fig. 2.

Table 1 Clustering accuracy

Distance
4 groups 2 groups

(NC, sMCI, pMCI, and AD) (sMCI and pMCI)

(a) L2 66.09 % 98.50 %

(b) GH 45.96 % 87.58 %

(c) KS0 52.54 % 74.00 %

(d) KS1 77.38 % 79.83 %

(e) Bottleneck 45.71 % 76.58 %

(f) HH 100 % 100 %



Figure 1. Distance of 2400 networks. (a) L2, (b) GH, (c) KS0, (d) KS1, (e) Bottleneck, and (f)
HH. The 2400 networks were sorted in the order of NC, sMCI, pMCI, and AD. Each group had
600 networks. The clustering accuracy is shown in Table .

Figure 2. (a) Clustering of the 600 most cited HHs when sMCI and pMCI were compared. (b)
Representative HHs in cluster 1, 2, 3 and 4. The left two columns showed HHs in sMCI and the
right two columns showed the corresponding HHs in pMCI. Each HH was visualized in a brain
and in a 2-dimensional plane. The shape of the HH was more clearly shown in the plane, and
the location of the HH could be checked in the brain. The color of nodes was determined by the
location of nodes in a brain: frontal (red), parietal (blue), temporal (green), occipital (purple),
subcortical (yellow), and limbic (orange) regions. If the edge weight was larger in a HH, the
color of edge was darker and the width of edge was larger.

CONCLUSIONS

We proposed a new network dissimilarity, called HH dissimilarity, and extracted network sub-
modules that discriminated between groups.
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