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Introduction: session aim

This is a session on computational methods for genetic association studies
of complex traits. We aim to cover:

Key ideas for Genetic Association Studies (GWAS)

Population Structure/Ancestry Inference

Joint Association Analyses Using Both Host and Pathogen Genomes.
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Introduction: about me
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Introduction: resources

Importantly, the class site is
http://www.stat.wisc.edu/~miaoyan/ESEB.html.

PDF copies of slides

Datasets needed for exercises

Exercises for you to try

Links to software packages
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Outline

Introduction
I Motivation
I Introduction to genetic association studies (GWAS)

Topic I: Population structure inference (80 mins)
I Principal component analysis
I Supervised learning for ancestry admixture

Topic II: Genetic association analysis (80 mins)
I Linear mixed effects model
I Interaction analysis
I Advanced mixed method

What to expect in a typical session:

40 mins lecture

25 mins hands-on exercises

15 mins discussion
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Introduction to genetic association studies (GWAS)
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Motivation

Identifying large amounts of associations efficiently is a problem that
arises frequently in modern genomics data.

I Understand the genetics of important traits, e.g. traits with medical or
agricultural relevance.

I Identifying the genomic regions that control genetic variation
I Identifying expression QTLs
I Cancer genetics, for identifying problematic mutations
I Understand interaction between genotypes and the environment.

As genomics datasets become more common and sample sizes grow,
the need for efficient tests increases.

Test association at many variants instead of some and hypothesis-free
instead of hypothesis-driven.
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Genomic marker

Figure source: Exploring Plant Variation Data Workshop 2015. Ümit Seren.
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For this talk

SNP (single nucleotide polymorphism): site in genome with single
base-pair change that distinguishes some individuals from others.

SNP is just one type of genetic variants. Other examples include
inserts, deletions (Indels), and copy number variation (CNV).

Genotype counts the number of copies of each allele at a SNP hold
by individual, e.g. {0, 1, 2} for a diploid organism.
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Genotypes mirrors geography
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Novembre et al. (2008)
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Phenotype

Phenotype = Genotype + Environment + Genotype × Environment

Figure source: Exploring Plant Variation Data Workshop 2015. Ümit Seren.
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A typical GWAS pipeline

The primary goal of GWAS is to identify genetic variants that contribute
towards the phenotypic variation of complex traits. A typical GWAS involves
at least the following three broadly defined steps:

data quality control

association testing (will be discussed later)

results interpretation
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Data quality control

Quality control (QC) usually involves filtering out (i.e., removing) SNPs
with low genotype accuracy. Common SNP filters include

Missing call rate (MCR)

Minor allele frequency (MAF)

Hardy-Weinberg equilibrium (HWE)

Genotype imputation is often carried out in GWAS to allow better use of
the typed SNPs.
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Interpreting association results

Statistical analysis is performed to detect the association between a
SNP and a trait.

Each SNP will produce a test statistic measuring its association with
the trait of interest and a p-value measuring the statistical
significance.

Manhattan and quantile-quantile (Q-Q) plots are useful tools for
visualizing GWAS results
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GWAS - a successful story

Figure source: National Human Genome Research Institute
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Recent advances in GWAS for co-evolution

Some complex traits (e.g., infection) depend on the specific pairing of host
and pathogen, and therefore on their genomes jointly.
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Joint GWAS for co-evolution

Recent research shows that GWAS can be used to test for association and
gene-gene interaction in a co-evolution system that involves two interactive
organisms. (M. Wang, et al. PNAS. Vol. 115 (24), (2018) E5440-E5449.)
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Outline

Section I: Population structure inference
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Background: Population structure

Many organisms (humans, Arabidopsis) spread across the world many
thousand years ago.

Migration and genetic drift led to genetic diversity between groups.
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Population structure inferences

Inference on genetic ancestry differences among individuals from
different populations, or population structure, has been motivated
by a variety of applications:

I population genetics
I genetic association studies
I personalized medicine
I forensics

Advancements in genotyping technologies have largely facilitated the
investigation of genetic diversity at remarkably high levels of detail.

A variety of methods have been proposed for the identification of
genetic ancestry differences among individuals in a sample using
high-density genome-screen data.
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Inferring Population Structure with PCA

Principal Components Analysis (PCA) is the most widely used
approach for identifying and adjusting for ancestry difference among
sample individuals

PCA applied to genotype data can be used to calculate principal
components (PCs) that explain differences among the sample
individuals in the genetic data

The top PCs are viewed as continuous axes of variation that reflect
genetic variation due to ancestry in the sample.

PCA is an unsupervised learning tool for dimension reduction in
multivariate analysis.
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Data structure

Sample of n individuals, indexed by i = 1, 2, . . . , n.

Genome screen data on m genetic autosomal markers, indexed by
` = 1, 2, . . . ,m.

At each marker, for each individual, we have a genotype value xi`.

Here we consider bi-allelic SNP data, so xi` takes values 0, 1, or 2,
corresponding to the number of reference alleles.

We center and standardize these genotype values:

zi` =
xi` − 2p̂`√
2p̂`(1− p̂`)

,

where p̂` is an estimate of the reference allele frequency for marker l .
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Genetic Correlation Estimation

Create an n ×m matrix, Z , of centered and standardized genotype
values, and from this, a genetic correlation matrix (GRM):

Φ =
1

m
ZZT

Φ̂ij is an estimate of the genome-wide average genetic correlation
between individuals i and j .

PCA relies on individuals from the same ancestral population being
more genetically correlated than individuals from different ancestral
populations.
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Standard Principal Components Analysis (PCA)

PCA is performed by obtaining the eigen-decomposition Φ̂.

Top eigenvectors (PCs) are used as surrogates for population
structure.

Orthogonal axes of variation, i.e. linear combinations of SNPs, that
best explain the genotypic variability amongst the n sample
individuals are identified.

Individuals with “similar” values for a particular top principal
component tend to have “similar” ancestry.
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PCA of Europeans
An application of principal components to genetic data from European sam-
ples showed that the first two principal components computed using 200K
SNPs could map their country of origin accurately.
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Population structure among Arabidopsis (host) sample
An application of PCA to genetic data from 1001 Arabidopsis project largely
captures the geographical origins of the Arabidposis accessions:

US vs. European

Smaller regional groups among European accessions
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Population structure among pathogen sample
We develop a method for genetic correlation matrix (GRM) estimation using
both mutation and deletion polymorphisms. [PNAS. Vol. 115 (24), 2018.]

GRM can be used for clustering analysis.
Xanthomonas sample exhibits strong population stratification.
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Admixed Populations

Several recent and ongoing genetic studies have focused on admixed
populations: populations characterized by ancestry derived from two
or more ancestral populations that were reproductively isolated.

Admixed populations have arisen in the past several hundred years as
a consequence of historical events such as the transatlantic slave
trade, the colonization of the Americas and other long-distance
migrations.

Examples of admixed populations include
I African Americans and Hispanic Americans in the U.S
I Latinos from throughout Latin America
I Uyghur population of Central Asia
I Cape Verdeans
I South African “Coloured” population

29 / 57



Admixed Populations

The chromosomes of an admixed individual represent a mosaic of
chromosomal blocks from the ancestral populations.
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Supervised Learning for Ancestry Admixture

Methods such as STRUCTURE (Pritchard et al, 2000) and
ADMXITURE (Alexander et al,. 2009) have recently been developed
for supervised learning of ancestry proportions for an admixed
individuals using high-density SNP data.

Most use either a hidden Markov model (HMM) or an
Expectation-Maximization (EM) algorithm to infer ancestry

Example: Suppose we are interested in identifying the ancestry
proportions for an admixed individual
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Supervised Learning for Ancestry Admixture

Observed sequence on a chromosome for an admixed individual:

...TATACGTGCACCTGGATTACAGATTACAGATTACAGATTACATTGCATCGATCGAA...

Observed sequence on a chromosome for samples selected from a
“homogenous” reference population:

...TGATCCTGAACCTAGATTACAGATTACAGATTACAGATTACAATGCTTCGATGGAC...

...AGATCCTGAACCTAGATTACAGATTACAGATTACAGATACCAATGCTTCGATGGAC...

...CGATCCTGAACCTAGATTACAGATTACAGATTTGCGTATACAATGCTTCGATGGAC...
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HapMap ASW and MXL Ancestry

Genome-screen data on 150,872 autosomal SNPs was used to
estimate ancestry

Estimated genome-wide ancestry proportions of every individual using
the ADMIXTURE (Alexander et al., 2009) software

A supervised analysis was conducted using genotype data from the
following reference population samples for three “ancestral”
populations

I HapMap YRI for West African ancestry
I HapMap CEU samples for northern and western European ancestry
I HGDP Native American samples for Native American ancestry
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Conomos, Matthew P et al. Genetic epidemiology 39.4 (2015): 276-293.
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Figure source: SISG 2017. Timothy Thornton and Michael Wu.
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Table source: SISG 2017. Timothy Thornton and Michael Wu.
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Topic 2: Genetic association studies in structured population
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Association analysis

In the previous session, we gave an overview of genome-wide
association studies (GWAS).

Association analysis involves identifying genetic loci that influence the
phenotypic variation of a quantitative trait.

Association analysis is commonly conducted with GWAS using
common variants, such as variants with minor allele frequencies ≥ 1%
- 5%

Some quantitative traits can be largely influenced by a single gene as
well as by environmental factors or gene-gene interaction.
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Association analysis

The classical quantitative genetics model introduced by Ronald Fisher
(1918) is Y = G + E , where Y is the phenotypic value, G is the
genetic value, and E is the environmental deviation.

G is the combination of all genetic loci that influence the phenotypic
value and E consists of all non-genetic factors that influence the
phenotype
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Heritability

The broad-sense heritability is defined to be

H2 =
σ2
G

σ2
Y

H2 is the proportion of the total phenotypic variance that is due to all
genetic effects (additive and dominance)

There are a number of methods for heritability estimation of a trait.
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Linear regression with SNPs
The “two degrees of freedom model”:

E (Y ) = β0 + βAa × (G == Aa) + βaa × (G == aa)
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Linear regression with SNPs
An alternative is the “dominant model”:

E (Y ) = β0 + β × (G 6= AA)
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Linear regression with SNPs
or the “recessive model”:

E (Y ) = β0 + β × (G == aa)
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Linear regression with SNPs
Finally many GWAS analyses fit the “additive model”:

E (Y ) = β0 + β × (# minor alleles)
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Additive Genetic Model

Most GWAS perform single SNP association testing with linear regression
assuming an additive model:

E (Y ) = β0 + βX ,

where X is the genotype at the SNP to be tested, e.g. X ∈ {0, 1, 2} for a
bi-allelic SNP.
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Beyond main SNP effects

Beyond single SNP effects
I Gene-Environment Interaction
I Within-species gene-gene Interaction
I Between-species gene-gene Interaction

“Interaction” means different things in different context:
I Communication, human-computer interaction
I Chemistry, reaction
I Quantitative genetics: epistasis
I Statistics: non-additive (primarily “multiplicative”)
I Others – a lot of general vagueness

Interaction is a three-variable concept. One of these is the response
variable (Y ) and the other two are predictors X1 and X2.

Effect modification: one variable changes the effect of the other on
outcome (deviation from additivity)
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Interaction

Multiplicative interactions: combined effect exceeds the additive
effects of individual variables

Standard 2-way interaction model:
E (yi ) = β0 + βgGi + βeEi + βgeGiEi .

Example:
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Interaction in host-pathogen system
Population interaction:

Gene-Gene interaction
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Additive Genetic Model

A simple linear model (SLM) generally refers to the following model:

Y = β0 + β1X1 + ε,

or with interaction

Y = β0 + β1X1 + β2X2 + β12X1X2 + ε,

Y consists of the phenotype values, or case-control status for N
individuals.

X1, X2 are the genotypes at the SNPs to be tested.

What would your interpretation of ε be for these models?

49 / 57



Risk

Neglecting or not accounting for ancestry differences among sample
individuals can lead to false positive or spurious associations!

This is a serious concern for all genetic association studies.
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Confounding due to Hidden sample Structure
Spurious association due to confounding factors:

Population Stratification

Family Relationship

Cryptic Relatedness
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Linear Mixed Model (LMM)

Linear mixed model (LMM) corrects for confounding and increases power
for association:
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Linear Mixed Model (LMM)

Standard linear mixed-effect model (LMM):

Y︸︷︷︸
phenotype

= Gγ︸︷︷︸
genotype at tested locus

+ Wβ︸︷︷︸
covariates

+ε,

ε ∼ N(0,Σ), Σ = σ2
aΦ + σ2

e I.︸ ︷︷ ︸
variance components

where Φ is the structure matrix designated to reflect the dependence
among sampled subjects, and could be chosen to be

I function of the genealogies among sampled subjects (e.g, kinship
matrix)

I or, genetic relatedness matrix (also called empirical kinship matrix)
estimated from genome-wide SNP data

Mixed-effect model is widely used in genetic association studies.
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LMM approaches for quantitative traits

A number of similar linear mixed-effects methods have recently been
proposed for association testing when there is cryptic structure: Kang
HM et al [2010, Nat Genet, EMMAX], Lippert et al [2011, Nat
Methods], Zhou & Stephen [2012, Nat Genet], and others.
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Joint GWAS for co-evolution

We have developed ATOMM (for Analysis with a Two-Organism Mixed
Model) method for simultaneously detects association signals on a pair of
genomes, while controlling for population structure in both species.

ATOMM Framework for Joint Association Analysis Input Output
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M. Wang, et al. PNAS. Vol. 115 (24), (2018) E5440-E5449.
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Top interactive SNPs vs. top marginal SNPs.
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Estimate Under the Null: Gaussian trait Binomial-like trait

Parameter Estimate Estimate

Intercept (β0) .19 (se .010) -3.01 (se .046)
Other covariates (omitted) ... ...
Total Variance (σ2

t ) 1.54 5.14
Proportion of Residual Variance due to:
Arabidopsis (ξ1) .027 .028
Xanthomonas (ξ2) .567 .545
Arab. - Xan. Interaction (ξ3) .020 .020
Batch effect (ξ4) .075 .081
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ATOMM software: https://github.com/Miaoyanwang/ATOMM matlab

Plink software: http://zzz.bwh.harvard.edu/plink/
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Appendix: Plink Software
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Plink Overview

PLINK is a free, open-source whole genome association analysis
toolset, designed to perform a range of basic, large-scale analyses in a
computationally efficient manner:

PLINK has numerous useful features for managing and analyzing
genetic data:

I Gene-based tests of association
I Screen for epistasis
I Gene-environment interaction with continuous and dichotomous

environments
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Input Files

Genotype data is a text file
I Pedigree file (.ped)
I Map file (.map)

Genotype data is a compressed binary file
I Fam File (.fam)
I Bim file (.bim)
I Bed file (.bed)
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Input Files

Pedigree File - the first six columns are mandatory:
I Family ID
I Individual ID
I Paternal ID
I Maternal ID
I Sex (1=male; 2=female; other=unknown)
I Phenotype
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Input Files

MAP File has 4 columns:
I chromosome (1-22, X, Y or 0 if unplaced)
I rs# or snp identifier
I Genetic distance (morgans)
I Base-pair position (bp units)
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Quality Control (QC)

Summary statistics options:
I minor allele frequency (MAF): –freq
I SNP missing rate: –missing
I Individual missing rate: –missing
I Hardy-Weinberg: –hardy

MAF: –maf

SNP missing rate: –geno

Individual missing rate: –mind

Hardy-Weinberg: –hwe
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